import polars as pl from scipy.sparse import lil_matrix from sklearn.metrics.pairwise import cosine_similarity import numpy as np import textdistance from scipy.stats import kendalltau import rbo import scipy def built_tfidf_matrix(df: pl.DataFrame, tag_to_index, host_to_index) -> lil_matrix: #tag_to_index = {tag: i for i, tag in enumerate(tfidf["tags"].unique().sort().to_list())} n_tags = len(tag_to_index) #host_to_index = {host: i for i, host in enumerate(tfidf["host"].unique().sort().to_list())} n_hosts = len(host_to_index) m = lil_matrix((n_tags, n_hosts), dtype=float) for row in df.iter_rows(named=True): m[tag_to_index[row["tags"]], host_to_index[row["host"]]] = row["tf_idf"] return m class TagData: def __init__(self, servers: set[str], n_tags: int, min_server_accounts: int = 1): # TODO: minimum tags from server to be included? self.servers = servers self.n_tags = n_tags all_tag_posts = pl.read_ipc("data/scratch/all_tag_posts.feather").filter( #all_tag_posts = read_tag_posts.filter( pl.col("created_at") >= pl.date(2023, 5, 1) ).filter(pl.col("created_at") < pl.date(2023, 8, 1)).filter( pl.col("host").is_in(servers) ) all_tag_posts_topn = all_tag_posts.explode("tags").unique(["host", "acct", "tags"]).group_by(["host", "tags"]).agg([ pl.col("id").len().alias("accounts"), # How many accounts on the server are using this tag? ]).sort(["accounts", "tags"], descending=True).with_columns(pl.lit(1).alias("counter")).with_columns( pl.col("counter").cumsum().over("host").alias("running_count") ).filter(pl.col("running_count") <= n_tags).drop("counter", "running_count").filter(pl.col("accounts") >= min_server_accounts) self._all_tag_posts_topn = all_tag_posts_topn self._server_accounts = all_tag_posts_topn.group_by("host").agg([ pl.col("tags").len().alias("server_tag_count"), # The total number tags on the server pl.sum("accounts").alias("accounts_sum"), # The total number of account-tag pairs ])#.filter(pl.col("server_accounts") >= 10) #self._server_accounts = all_tag_posts.unique(["host", "acct"]).group_by("host").agg([ # pl.col("acct").len().alias("accounts_sum"), # The total number of accounts on the server #]) self._most_seen_tags = self._all_tag_posts_topn.group_by("tags").agg([ pl.sum("accounts").alias("total_accounts"), # account sum, how many accounts are using this tag excluding those on servers where they are the only ones pl.col("accounts").len().alias("server_count") # server count, how many servers are using this tag? ]).sort("server_count", descending=True)#.filter(pl.col("server_count") >= 3).filter(pl.col("total_accounts") >= 10) self.tag_to_index = {tag: i for i, tag in enumerate(self._all_tag_posts_topn["tags"].unique().sort().to_list())} self.host_to_index = {host: i for i, host in enumerate(self._all_tag_posts_topn["host"].unique().sort().to_list())} def server_accounts(self, n=10): return self._server_accounts.filter(pl.col("accounts_sum") >= n) def most_seen_tags(self, n_servers=3, n_accounts=10): return self._most_seen_tags.filter(pl.col("server_count") >= n_servers).filter(pl.col("total_accounts") >= n_accounts) def tfidf(self, n_server_accounts=5, n_servers=3, n_accounts=10): most_seen_tags = self.most_seen_tags(n_servers, n_accounts) server_accounts = self.server_accounts(n_server_accounts) tf = self._all_tag_posts_topn.join( most_seen_tags, on="tags", how="inner" ).join( server_accounts, on="host", how="inner" ).with_columns( (pl.col("accounts") / pl.col("accounts_sum")).alias("tf") ) num_servers = len(self._all_tag_posts_topn.unique("host")) idf = most_seen_tags.with_columns(((1 + num_servers)/(1 + pl.col("server_count"))).log().alias("idf")) tfidf = tf.join(idf, on="tags", how="inner").with_columns((pl.col("tf") * pl.col("idf")).alias("tf_idf")).sort("tf_idf", descending=True) return tfidf def bm(self, n_server_accounts=5, n_servers=3, n_accounts=10): k = 1.2 b = 0.75 most_seen_tags = self.most_seen_tags(n_servers, n_accounts) server_accounts = self.server_accounts(n_server_accounts) num_servers = len(self._all_tag_posts_topn.unique("host")) D = server_accounts.rename({"accounts_sum": "D"}).with_columns((pl.col("D") / pl.col("D").mean()).alias("nd")) tf = self._all_tag_posts_topn.join(D, on="host", how="inner").with_columns( ((pl.col("accounts") * (k + 1))/(pl.col("accounts") + k*(1-b+b*pl.col("nd")))).alias("tf") ) idf = most_seen_tags.with_columns( (1 + (num_servers - pl.col("server_count") + 0.5)/((pl.col("server_count") + 0.5))).log().alias("idf") ) bm = tf.join(idf, on="tags", how="inner").with_columns((pl.col("tf") * pl.col("idf")).alias("tf_idf")).sort("tf_idf", descending=True) return bm # Constraint: What if we only consider the _top_ 100 tags from each server? # Server clusters work quite well! # Tag clusters? #tag_simiarlity = cosine_similarity(full_mat.tocsr()) #tag_simiarlity[td.tag_to_index["ai"]] #np.array(list(td.tag_to_index.keys()))[np.argsort(-tag_simiarlity[td.tag_to_index["ai"]])][0:10] #np.array(list(td.tag_to_index.keys()))[np.argsort(-tag_simiarlity[td.tag_to_index["mastoart"]])][0:10] #baseline = np.argsort(-host_simiarlity[host_to_index["hci.social"]]) def sampler(host_list, n_servers, n_tags, baseline, baseline_td: TagData): baseline_keys = set(baseline_td.host_to_index.keys()) server_samples = set(host_list.filter( pl.col("host").is_in(baseline_keys) ).sample(n=n_servers-1)["host"].to_list()) server_is = [baseline_td.host_to_index[i] for i in server_samples] sampled_server_indices = np.array(server_is) tagdata = TagData(server_samples, n_tags, min_server_accounts=2) tfidf = tagdata.bm(n_server_accounts=5, n_servers=3, n_accounts=10)#n_server_accounts=0, n_servers=2, n_accounts=1) full_mat = built_tfidf_matrix(tfidf, baseline_td.tag_to_index, baseline_td.host_to_index).T m = (full_mat / scipy.sparse.linalg.norm(full_mat, ord=2, axis=0)) # good one host_sim = cosine_similarity(m) rs = [] for serv in server_samples: comp_server_index = baseline_td.host_to_index[serv] bl = np.argsort(-baseline[comp_server_index][sampled_server_indices]) comparison = np.argsort(-host_sim[comp_server_index][sampled_server_indices]) reference_ranks = {x: i for i, x in enumerate(bl)} current_ranks = [reference_ranks[x] for x in comparison] r = rbo.RankingSimilarity(list(range(len(current_ranks)))[1:], current_ranks[1:]).rbo(p=0.80, k=16, ext=True) rs.append(r) return rs def run_simulations(): #read_tag_posts = pl.read_ipc("data/scratch/all_tag_posts.feather") server_samples = set(pl.scan_ipc("data/scratch/all_tag_posts.feather").select("host").unique().collect().sample(fraction = 1.0)["host"].to_list()) #td = TagData(server_samples, 1_000_000, min_server_accounts=2) #tfidf = td.bm(n_server_accounts=5, n_servers=3, n_accounts=10) td = TagData(server_samples, 256, min_server_accounts=2) tfidf = td.bm(n_server_accounts=0, n_servers=2, n_accounts=10) baseline_host_to_index = td.host_to_index full_mat = built_tfidf_matrix(tfidf, td.tag_to_index, td.host_to_index).T m = (full_mat / scipy.sparse.linalg.norm(full_mat, ord=2, axis=0)) # good one baseline_similarlity = cosine_similarity(m) #np.array(list(td.host_to_index.keys()))[np.argsort(-baseline_similarlity[td.host_to_index["hci.social"]])][0:10] #np.array(list(td.host_to_index.keys()))[np.argsort(-baseline_similarlity[td.host_to_index["urbanists.social"]])][0:10] host_list = pl.scan_ipc( "data/scratch/all_tag_posts.feather" ).select("host").unique().collect() runs = [] for server_sizes in [256, 128, 64, 32]: # for tag_counts in [256, 128, 64, 32, 16, 8]: for run in range(128): print(server_sizes, tag_counts, run) s = sampler(host_list, server_sizes, tag_counts, baseline_similarlity, td) runs.append(pl.DataFrame({"servers": server_sizes, "tags": tag_counts, "run": run, "rbo": s})) print(np.mean(s)) all_runs = pl.concat(runs) all_runs.write_ipc("data/scratch/simulation_rbo.feather")