jm = pl.read_json("data/joinmastodon-2023-08-25.json") jm_servers = set(jm["domain"].unique().to_list()) jm_td = td = TagData(jm_servers, 256, min_server_accounts=2) jm_tfidf = td.bm(n_server_accounts=0, n_servers=2, n_accounts=10)#.filter(pl.col("accounts") / pl.col("D") > 0.0001) mat = built_tfidf_matrix(jm_tfidf, jm_td.tag_to_index, jm_td.host_to_index) m = (mat.T / scipy.sparse.linalg.norm(mat.T, ord=2, axis=0)) # good one server_similarlity = cosine_similarity(m.tocsr()) # Export server similarity tag_sm = cosine_similarity(mat.tocsr()) tag_index_included = (np.sum(tag_sm, axis=0) > 0) included_tag_strings = np.array(list(jm_td.tag_to_index.keys()))[tag_index_included] tag_sm_matrix = tag_sm[np.ix_(tag_index_included, tag_index_included)] # import Affinity Prop from sklearn.cluster import AffinityPropagation ap = AffinityPropagation(affinity="precomputed", random_state=0).fit(tag_sm_matrix) clusters = pl.DataFrame({"tag": included_tag_strings, "cluster": ap.labels_}) # select a random element from each cluster clusters.group_by("cluster").agg([pl.col("tag").shuffle().first().alias("tag")]).sort("cluster")["tag"].to_list() example_topics = ["tech", "linux", "hacking", "gamedev"] example_indices = [s in example_topics for s in included_tag_strings] similar_servers = cosine_similarity(np.array(example_indices).reshape(-1,1).T, mat[np.ix_(tag_index_included)].T) np.array(list(jm_td.host_to_index.keys()))[np.argsort(-similar_servers[0])][0:10] #np.array(list(jm_td.host_to_index.keys()))[np.argsort(-similarlity[jm_td.host_to_index["historians.social"]])][0:10] #np.array(list(jm_td.host_to_index.keys()))[np.where(np.sum(mat, axis=0) < 0.01)[1]] server_samples = set(pl.scan_ipc("data/scratch/all_tag_posts.feather").select("host").unique().collect().sample(fraction = 1.0)["host"].to_list()) td = TagData(server_samples, 256, min_server_accounts=2) tfidf = td.bm(n_server_accounts=0, n_servers=2, n_accounts=10)#.filter(pl.col("accounts") / pl.col("D") > 0.0001) baseline_host_to_index = td.host_to_index full_mat = built_tfidf_matrix(tfidf, td.tag_to_index, td.host_to_index).T #m = (full_mat.T / scipy.sparse.linalg.norm(full_mat.T, ord=2, axis=0)).T m = (full_mat / scipy.sparse.linalg.norm(full_mat, ord=2, axis=0)) # good one baseline_similarlity = cosine_similarity(m) l = [] for i in range(np.shape(baseline_similarlity)[0] - 1): #s_index = min(i, np.shape(baseline_similarlity)[0] - 1) l.append( pl.DataFrame({ "Source": list(td.host_to_index.keys())[i], "Target": list(td.host_to_index.keys())[i+1:], "Similarity": baseline_similarlity[i][i+1:] }) ) similarity_df = pl.concat(l).filter(pl.col("Similarity") > 0.0) similarity_df.write_ipc("data/scratch/server_similarity.feather") server = "hci.social" similarity_df.filter((pl.col("Source") == server) | (pl.col("Target") == server)).sort("Similarity", descending=True)[0:10] tfidf.filter(pl.col("host") == server)[0:10] tfidf.filter(pl.col("tags") == "aoir2023") m = (full_mat.T / scipy.sparse.linalg.norm(full_mat.T, ord=2, axis=0)) # good one tag_similarity = cosine_similarity(m) l = [] for i in range(np.shape(tag_similarity)[0] - 1): #s_index = min(i, np.shape(baseline_similarlity)[0] - 1) l.append( pl.DataFrame({ "Source": list(td.tag_to_index.keys())[i], "Target": list(td.tag_to_index.keys())[i+1:], "Similarity": tag_similarity[i][i+1:] }) ) tag_similarity_df = pl.concat(l).filter(pl.col("Similarity") > 0.0)