# Generates a list of similar servers import polars as pl import scipy import numpy as np from sklearn.metrics.pairwise import cosine_similarity from FediRecommender import TagData, built_tfidf_matrix server_samples = set(pl.scan_ipc("data/scratch/all_tag_posts.feather").select("host").unique().collect().sample(fraction = 1.0)["host"].to_list()) # Create data object td = TagData(servers=server_samples, n_tags=256, min_server_accounts=2, data_dir='data') # Normalize data using BM tfidf = td.bm(n_server_accounts=0, n_servers=2, n_accounts=10)#.filter(pl.col("accounts") / pl.col("D") > 0.0001) baseline_host_to_index = td.host_to_index full_mat = built_tfidf_matrix(tfidf, td.tag_to_index, td.host_to_index).T m = (full_mat / scipy.sparse.linalg.norm(full_mat, ord=2, axis=0)) # good one baseline_similarlity = cosine_similarity(m) l = [] for i in range(np.shape(baseline_similarlity)[0] - 1): l.append( pl.DataFrame({ "Source": list(td.host_to_index.keys())[i], "Target": list(td.host_to_index.keys())[i+1:], "Similarity": baseline_similarlity[i][i+1:] }) ) similarity_df = pl.concat(l).filter(pl.col("Similarity") > 0.0) similarity_df.write_ipc("data/scratch/server_similarity.feather")