junior-sheer/notebooks/_push_pull.qmd
2024-03-08 12:50:47 -06:00

410 lines
12 KiB
Plaintext

```{r}
#| echo: false
#| output: false
#| warning: false
#| label: push-pull-prep
library(arrow)
library(tidyverse)
library(tsibble)
library(fable)
library(lmtest)
library(jsonlite)
library(here)
source(here("code/helpers.R"))
accounts <- load_accounts()
jm <- arrow::read_feather(here("data/scratch/joinmastodon.feather"))
```
```{r}
#| label: prep-break-one-raw-counts
server_list <- c(
"mastodon.social", "mastodon.online"
)
early.jm_servers <- as_tibble(fromJSON(here("data/joinmastodon-2020-09-18.json")))$domain
early.day_counts <- accounts %>%
filter(created_at < "2021-09-01") %>%
mutate(created_day = as.Date(floor_date(created_at, unit = "day"))) %>%
mutate(server_code = ifelse(server %in% early.jm_servers, "joinmastodon", "other")) %>%
mutate(server_code = ifelse(server == "mastodon.social", "mastodon.social", server_code)) %>%
mutate(server = ifelse(server == "mastodon.online", "mastodon.online", server_code)) %>%
group_by(created_day, server) %>%
summarize(count = n(), .groups = "drop") %>%
as_tsibble(., key=server, index=created_day) %>%
fill_gaps(count=0) %>%
mutate(first_open = ((created_day >= "2020-09-18") & (created_day < "2020-11-01"))) %>%
#mutate(second_open = ((created_day > "2020-11-02") & (created_day < "2020-11-05"))) %>%
mutate(third_open = (created_day >= "2021-04-17")) %>%
mutate(open = (first_open | third_open))
early.data_plot <- early.day_counts %>%
mutate(created_week = as.Date(floor_date(created_day, unit = "week"))) %>%
ggplot(aes(x = created_day, y=count)) +
geom_rect(data = (early.day_counts %>% filter(open)),
aes(xmin = created_day - 0.5, xmax = created_day + 0.5, ymin = 0, ymax = Inf),
fill = "lightblue", alpha = 0.3) + # Adjust color and transparency as needed
geom_bar(stat="identity") +
facet_wrap(~ server, ncol=1, strip.position = "left") + #, scales="free_y") +
scale_x_date(expand = c(0, 0), date_labels = "%B %Y") +
scale_y_log10() +
labs(
title = "Open registration periods on mastodon.social (August 2020 - August 2021)",
x = "Account Created Date",
y = "Count"
) +
theme_bw_small_labels()
```
```{r}
#| label: table-early-open-coefs
if (knitr::is_latex_output()) {
format <- "latex"
} else {
format <- "html"
}
model_data <- early.day_counts %>%
mutate(count = log1p(count)) %>%
ungroup %>%
arrange(created_day) %>%
mutate(day = row_number())
fit <- model_data %>%
model(arima = ARIMA(count ~ open + day + open:day + fourier(period=7, K=2) + pdq(2,0,0) + PDQ(0,0,0,period=7)))
early.table <- fit %>% tidy %>%
mutate(p.value = scales::pvalue(p.value)) %>%
pivot_wider(names_from=server, values_from = c(estimate, std.error, statistic, p.value)) %>%
select(-c(.model)) %>%
select(term,
estimate_mastodon.online, p.value_mastodon.online,
estimate_mastodon.social, p.value_mastodon.social,
estimate_joinmastodon, p.value_joinmastodon,
estimate_other, p.value_other
) %>%
#select(term, starts_with("estimate"), starts_with("p.value")) #%>%
knitr::kable(
.,
format = format,
col.names = c("Term", "mastodon.online", "", "mastodon.social", "", "joinmastodon", "", "other", ""),
digits = 4,
align = c("l", "r", "r", "r", "r", "r", "r", "r", "r"),
booktabs = T
)
```
```{r}
#| label: prep-break-two-raw-counts
email.jm_servers <- as_tibble(fromJSON(here("data/joinmastodon-2023-08-25.json")))$domain
email.day_counts <- accounts %>%
filter(created_at > "2022-07-01") %>%
filter(created_at < "2022-10-26") %>%
mutate(created_day = as.Date(floor_date(created_at, unit = "day"))) %>%
mutate(server_code = ifelse(server %in% email.jm_servers, "joinmastodon", "other")) %>%
mutate(server = ifelse(server == "mastodon.social", "mastodon.social", server_code)) %>%
#mutate(server = server_code) %>%
#filter(server != "other") %>%
group_by(created_day, server) %>%
summarize(count = n(), .groups = "drop") %>%
as_tsibble(., key = server, index = created_day) %>%
fill_gaps(count = 0) %>%
mutate(open = ((created_day < "2022-08-13") |
(created_day > "2022-10-03")))
email.data_plot <- email.day_counts %>%
#filter(server != "other") %>%
mutate(created_week = as.Date(floor_date(created_day, unit = "week"))) %>%
ggplot(aes(x = created_day, y = count)) +
geom_rect(
data = (email.day_counts %>% filter(open)),
aes(
xmin = created_day - 0.5,
xmax = created_day + 0.5,
ymin = 0,
ymax = Inf
),
fill = "lightblue",
alpha = 0.3
) + # Adjust color and transparency as needed
geom_bar(stat = "identity") +
facet_wrap( ~ server, ncol = 1, strip.position = "left") + #, scales="free_y") +
scale_x_date(expand = c(0, 0), date_labels = "%B %Y") +
labs(
title = "Closure of mastodon.social (2022)",
x = "Account Created Date",
y = "Count"
) +
theme_bw_small_labels()
```
```{r}
#| label: email-open-coefs
if (knitr::is_latex_output()) {
format <- "latex"
} else {
format <- "html"
}
model_data <- email.day_counts %>%
mutate(count = log1p(count)) %>%
ungroup %>%
arrange(created_day) %>%
mutate(day = row_number())
fit <- model_data %>%
model(arima = ARIMA(count ~ open + day + open:day + fourier(period=7, K=2) + pdq(2,0,0) + PDQ(0,0,0,period=7)))
email.table <- fit %>% tidy %>%
mutate(p.value = scales::pvalue(p.value)) %>%
pivot_wider(names_from=server, values_from = c(estimate, std.error, statistic, p.value)) %>%
select(-c(.model)) %>%
select(term,
estimate_mastodon.social, p.value_mastodon.social,
estimate_joinmastodon, p.value_joinmastodon,
estimate_other, p.value_other
) %>%
knitr::kable(
.,
format = format,
col.names = c("Term", "mastodon.social", "", "joinmastodon", "", "other", ""),
digits = 4,
align = c("l", "r", "r", "r", "r", "r", "r"),
booktabs = T
)
```
```{r}
#| label: prep-break-three-raw-counts
late.jm_servers <- as_tibble(fromJSON(here("data/joinmastodon-2023-08-25.json")))$domain
last.day_counts <- accounts %>%
filter(created_at > "2022-12-01") %>%
filter(created_at < "2023-05-01") %>%
mutate(created_day = as.Date(floor_date(created_at, unit = "day"))) %>%
mutate(server_code = ifelse(server %in% late.jm_servers, "joinmastodon", "other")) %>%
mutate(server_code = ifelse(server == "mastodon.social", "mastodon.social", server_code)) %>%
mutate(server = server_code) %>%
#filter(server != "other") %>%
group_by(created_day, server) %>%
summarize(count = n(), .groups = "drop") %>%
as_tsibble(., key=server, index=created_day) %>%
fill_gaps(count=0) %>%
mutate(open = (created_day > "2023-02-08") | ((created_day > "2022-12-10") & (created_day < "2022-12-17")))
last.data_plot <- last.day_counts %>%
#filter(server != "other") %>%
mutate(created_week = as.Date(floor_date(created_day, unit = "week"))) %>%
ggplot(aes(x = created_day, y=count)) +
geom_rect(data = (last.day_counts %>% filter(open)),
aes(xmin = created_day - 0.5, xmax = created_day + 0.5, ymin = 0, ymax = Inf),
fill = "lightblue", alpha = 0.3) + # Adjust color and transparency as needed
geom_bar(stat="identity") +
facet_wrap(~ server, ncol=1, strip.position = "left") + #, scales="free_y") +
scale_x_date(expand = c(0, 0), date_labels = "%B %Y") +
#scale_y_log10() +
labs(
x = "Account Created Date",
y = "Count"
) +
theme_bw_small_labels()
#library(patchwork)
#early.data_plot + email.data_plot + last.data_plot + plot_layout(ncol = 1)
```
```{r}
#| label: late-open-coefs
if (knitr::is_latex_output()) {
format <- "latex"
} else {
format <- "html"
}
model_data <- last.day_counts %>%
mutate(count = log1p(count)) %>%
ungroup %>%
arrange(created_day) %>%
mutate(day = row_number())
fit <- model_data %>%
model(arima = ARIMA(count ~ open + day + open:day + fourier(period=7, K=2) + pdq(2,0,0) + PDQ(0,0,0,period=7)))
last.table <- fit %>% tidy %>%
mutate(p.value = scales::pvalue(p.value)) %>%
pivot_wider(names_from=server, values_from = c(estimate, std.error, statistic, p.value)) %>%
select(-c(.model)) %>%
select(term,
estimate_mastodon.social, p.value_mastodon.social,
estimate_joinmastodon, p.value_joinmastodon,
estimate_other, p.value_other
) %>%
knitr::kable(
.,
format = format,
col.names = c("Term", "mastodon.social", "", "joinmastodon", "", "other", ""),
digits = 4,
align = c("l", "r", "r", "r", "r", "r", "r"),
booktabs = T
)
```
```{r}
#| eval: false
library(sandwich)
model.poisson <- early.day_counts %>%
filter(server == "mastodon.online") %>%
filter(created_day > "2020-08-01") %>%
filter(created_day < "2021-09-01") %>%
ungroup %>%
arrange(created_day) %>%
mutate(day = row_number()) %>%
glm(count ~ day*open, data=., family=poisson)
v <- sqrt(diag(vcovHC(model.poisson, type = "HC0")))
coeftest(model.poisson, vcovHC(model.poisson, type="HC0"))
```
<!-- begin section that actually exports -->
::: {.panel-tabset}
#### Early
```{r}
#| label: fig-break-one-raw-counts
#| fig-height: 4
#| fig-width: 6.75
#| fig-env: figure*
#| fig-pos: p
early.data_plot
```
#### Email
```{r}
#| label: fig-break-two-raw-counts
#| fig-height: 3.5
#| fig-width: 6.75
#| fig-env: figure*
#| fig-pos: p
email.data_plot
```
#### Last
```{r}
#| label: fig-break-three-raw-counts
#| fig-height: 3.5
#| fig-width: 6.75
#| fig-env: figure*
#| fig-pos: p
last.data_plot
```
:::
::: {.panel-tabset}
#### Early
::: {#tbl-early .column-body}
```{r}
early.table
```
Caption
:::
#### Email
::: {#tbl-email .column-body}
```{r}
email.table
```
:::
#### Last
::: {#tbl-last .column-body}
```{r}
last.table
```
:::
:::
```{r}
#| label: fig-mastodon-online-forecast
#| fig-cap: "Historical signup counts for mastodon.online and two alternative forecasts based on whether or not mastoodn.social is accepting signups."
#| fig-height: 2.7
#| fig-width: 6.75
#| exec: false
#| fig-env: figure*
model_data <- early.day_counts %>%
mutate(count = log1p(count)) %>%
ungroup %>%
arrange(created_day) %>%
mutate(day = row_number())
fit <- model_data %>%
model(arima = ARIMA(count ~ open + day + open:day + fourier(period=7, K=2) + pdq(2,0,0) + PDQ(0,0,0,period=7)))
f_server <- "mastodon.online"
new_data <- tsibble(
created_day = max(model_data$created_day) + 1:100,
day = max(model_data$day) + 1:100,
server = f_server #""
)
model.obj <- fit %>%
filter(server == f_server) %>%
select(arima) %>% pull %>% first
forecast.open <- model.obj %>%
forecast(new_data=(new_data %>% add_column(open = TRUE))) %>%
hilo %>% unpack_hilo(`95%`)
forecast.closed <- model.obj %>%
forecast(new_data=(new_data %>% add_column(open = FALSE))) %>%
hilo %>% unpack_hilo(`95%`)
hist_data <- as_tibble(model_data) %>% filter(server == f_server) %>% select(created_day, server, count, open) %>% rename(count_mean=count)
bind_rows(
as_tibble(forecast.open),
as_tibble(forecast.closed)
) %>%
rename(count_mean=.mean) %>%
ggplot(aes(x=created_day, y=count_mean)) +
geom_line(aes(color=open, group=open)) + #, linetype="dashed") +
geom_ribbon(aes(ymin=`95%_lower`, ymax=`95%_upper`, group=open, fill=open), alpha=0.25) +
geom_line(aes(x=created_day, y=count_mean), data=hist_data) + # , color=open, group=open
geom_rect(data = (hist_data %>% filter(open)),
aes(xmin = created_day - 0.5, xmax = created_day + 0.5, ymin = 0, ymax = Inf),
fill = "lightblue", alpha = 0.3) + # Adjust color and transparency as needed
labs(
x = "Date",
y = "Accounts created (log1p)",
color = "Signups open on mastodon.social",
fill = "Signups open on mastodon.social"
) +
scale_x_date(expand = c(0, 0), date_labels = "%B %Y") +
theme_bw_small_labels() +
theme(legend.position="top", axis.title.x=element_blank())
```