junior-sheer/FediRecommender/TagData.py
Carl Colglazier 60023b07d1 Refactor scripts and code.
Split manuscripts into their own directories / projects.
2025-05-26 20:08:57 -05:00

94 lines
5.0 KiB
Python

import polars as pl
from scipy.sparse import lil_matrix
def built_tfidf_matrix(df: pl.DataFrame, tag_to_index, host_to_index) -> lil_matrix:
"""
Helper function to build a sparse matrix from the tf-idf dataframe.
"""
n_tags = len(tag_to_index)
n_hosts = len(host_to_index)
m = lil_matrix((n_tags, n_hosts), dtype=float)
for row in df.iter_rows(named=True):
m[tag_to_index[row["tags"]], host_to_index[row["host"]]] = row["tf_idf"]
return m
def get_all_tag_posts(servers, data_dir="data/"):
return pl.read_ipc(f"{data_dir}/scratch/all_tag_posts.feather").filter(
pl.col("created_at") >= pl.date(2023, 5, 1)
).filter(pl.col("created_at") < pl.date(2023, 8, 1)).filter(
pl.col("host").is_in(servers)
)
class TagData:
def get_all_tag_posts(servers, data_dir="data"):
return pl.read_ipc(f"{data_dir}/scratch/all_tag_posts.feather").filter(
pl.col("created_at") >= pl.date(2023, 5, 1)
).filter(pl.col("created_at") < pl.date(2023, 8, 1)).filter(
pl.col("host").is_in(servers)
)
def __init__(self, servers: set[str], n_tags: int, min_server_accounts: int = 1, data_dir: str = "data"):
self.data_dir = data_dir
# TODO: minimum tags from server to be included?
self.servers = servers
self.n_tags = n_tags
all_tag_posts = TagData.get_all_tag_posts(servers, self.data_dir)
all_tag_posts_topn = all_tag_posts.explode("tags").unique(["host", "acct", "tags"]).group_by(["host", "tags"]).agg([
pl.col("id").len().alias("accounts"), # How many accounts on the server are using this tag?
]).sort(["accounts", "tags"], descending=True).with_columns(pl.lit(1).alias("counter")).with_columns(
pl.col("counter").cumsum().over("host").alias("running_count")
).filter(pl.col("running_count") <= n_tags).drop("counter", "running_count").filter(pl.col("accounts") >= min_server_accounts)
self._all_tag_posts_topn = all_tag_posts_topn
self._server_accounts = all_tag_posts_topn.group_by("host").agg([
pl.col("tags").len().alias("server_tag_count"), # The total number tags on the server
pl.sum("accounts").alias("accounts_sum"), # The total number of account-tag pairs
])#.filter(pl.col("server_accounts") >= 10)
#self._server_accounts = all_tag_posts.unique(["host", "acct"]).group_by("host").agg([
# pl.col("acct").len().alias("accounts_sum"), # The total number of accounts on the server
#])
self._most_seen_tags = self._all_tag_posts_topn.group_by("tags").agg([
pl.sum("accounts").alias("total_accounts"), # account sum, how many accounts are using this tag excluding those on servers where they are the only ones
pl.col("accounts").len().alias("server_count") # server count, how many servers are using this tag?
]).sort("server_count", descending=True)#.filter(pl.col("server_count") >= 3).filter(pl.col("total_accounts") >= 10)
self.tag_to_index = {tag: i for i, tag in enumerate(self._all_tag_posts_topn["tags"].unique().sort().to_list())}
self.host_to_index = {host: i for i, host in enumerate(self._all_tag_posts_topn["host"].unique().sort().to_list())}
def server_accounts(self, n=10):
return self._server_accounts.filter(pl.col("accounts_sum") >= n)
def most_seen_tags(self, n_servers=3, n_accounts=10):
return self._most_seen_tags.filter(pl.col("server_count") >= n_servers).filter(pl.col("total_accounts") >= n_accounts)
def tfidf(self, n_server_accounts=5, n_servers=3, n_accounts=10):
"""
TF-IDF algorithm.
"""
most_seen_tags = self.most_seen_tags(n_servers, n_accounts)
server_accounts = self.server_accounts(n_server_accounts)
tf = self._all_tag_posts_topn.join(
most_seen_tags, on="tags", how="inner"
).join(
server_accounts, on="host", how="inner"
).with_columns(
(pl.col("accounts") / pl.col("accounts_sum")).alias("tf")
)
num_servers = len(self._all_tag_posts_topn.unique("host"))
idf = most_seen_tags.with_columns(((1 + num_servers)/(1 + pl.col("server_count"))).log().alias("idf"))
tfidf = tf.join(idf, on="tags", how="inner").with_columns((pl.col("tf") * pl.col("idf")).alias("tf_idf")).sort("tf_idf", descending=True)
return tfidf
def bm(self, n_server_accounts=5, n_servers=3, n_accounts=10):
"""
BM25 algorithm.
"""
k = 1.2
b = 0.75
most_seen_tags = self.most_seen_tags(n_servers, n_accounts)
server_accounts = self.server_accounts(n_server_accounts)
num_servers = len(self._all_tag_posts_topn.unique("host"))
D = server_accounts.rename({"accounts_sum": "D"}).with_columns((pl.col("D") / pl.col("D").mean()).alias("nd"))
tf = self._all_tag_posts_topn.join(D, on="host", how="inner").with_columns(
((pl.col("accounts") * (k + 1))/(pl.col("accounts") + k*(1-b+b*pl.col("nd")))).alias("tf")
)
idf = most_seen_tags.with_columns(
(1 + (num_servers - pl.col("server_count") + 0.5)/((pl.col("server_count") + 0.5))).log().alias("idf")
)
bm = tf.join(idf, on="tags", how="inner").with_columns((pl.col("tf") * pl.col("idf")).alias("tf_idf")).sort("tf_idf", descending=True)
return bm