junior-sheer/code/recommender.py
2024-02-27 14:08:11 -06:00

32 lines
1.1 KiB
Python

# gensim dict
from gensim.corpora.dictionary import Dictionary
from gensim.models import Nmf
host_bow_clusters = all_tag_posts_filtered.explode("tags").rename({"tags":"tag"}).join(
clusters, on="tag", how="inner"
).drop("tag").join(
clusters, on="cluster", how="inner"
).drop("cluster").unique(["host", "id", "tag"]).group_by("host").agg([
pl.col("tag")
])
bow_str = host_bow_clusters["tag"].to_list()
dict = Dictionary(bow_str)
bow = [dict.doc2bow(x) for x in bow_str]
nmf = Nmf(bow, num_topics=10)
##
#tf_idf
host_names = tf_idf["host"].unique().sort().to_list()
n_servers = len(host_names)
host_name_lookup = {host_names[i]: i for i in range(n_servers)}
n_clusters = tf_idf["cluster"].max() + 1#len(tf_idf.unique("cluster"))
id_names = {i: clusters.unique("cluster")["tag"].to_list()[i] for i in range(n_clusters)}
m = lil_matrix((n_clusters, n_servers), dtype=int)
for row in tf_idf.iter_rows(named=True):
m[row["cluster"], host_name_lookup[row["host"]]] = row["count"]
dict = Dictionary([host_names])
nmf = Nmf(corpus=m.tocsc(), num_topics=128, id2word=id_names)