1
0

deleted files already in repository

This commit is contained in:
Dionna Taylor 2025-02-27 13:34:16 -08:00
parent cd55f5bf69
commit 855fa49611
7 changed files with 0 additions and 219 deletions

Binary file not shown.

Before

Width:  |  Height:  |  Size: 139 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 115 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 366 KiB

View File

@ -1,58 +0,0 @@
setwd("~/Desktop/cdsc/health literacy/")
best = read.csv("Best_Data.csv")
# subsetting desired years
years = c("2007", "2010", "2013", "2016")
best_subsetted = best[best$Year %in% years,]
# creating empty rows for interpolation + interpolating the mean (stigma) scores
expand = function(df){
total_years = seq(min(df$Year), max(df$Year))
expanded_df = data.frame(Year = total_years)
unique_diseases = unique(df$Reconciled_Name)
expanded_data = data.frame()
for (disease in unique_diseases){
disease_data = df[df$Reconciled_Name == disease, ]
expanded_disease_data = merge(expanded_df, disease_data, by = "Year", all.x = TRUE)
expanded_disease_data$Reconciled_Name = disease
expanded_data = rbind(expanded_data, expanded_disease_data)
}
for (disease in unique_diseases) {
disease_data = expanded_data[expanded_data$Reconciled_Name == disease, ]
known_year = which(!is.na(disease_data$mean))
# sort known_year it by year
for (i in 1:(length(known_year) - 1)) {
before_year = known_year[i]
after_year = known_year[i + 1]
if (is.na(after_year)){
print("break")
break
}
start_mean = disease_data$mean[before_year]
end_mean = disease_data$mean[after_year]
num_missing = after_year - before_year - 1
print(after_year)
if (num_missing > 0) {
increment = (end_mean - start_mean) / (num_missing + 1)
for (j in 1:num_missing) {
disease_data$mean[before_year + j] = start_mean + increment * j
}
}
}
expanded_data[expanded_data$Reconciled_Name == disease, ] = disease_data
}
return(expanded_data)
}
best_interpolated = expand(best_subsetted)

View File

@ -1,19 +0,0 @@
setwd("~/Desktop/cdsc/health literacy/")
mapping = read.delim("Mapping - Sheet1.tsv")
mapping <- mapping[,colnames(mapping) != "Notes"]
IHME = read.csv("IHME_Data.csv")
best <- read.csv("Best_Data.csv")
# first, create the list of all the one-to-ones
d <- merge(best, mapping[!is.na(mapping$Mapping_Type) & mapping$Mapping_Type == "one-to-one",], by.x="Reconciled_Name", by.y="Best_Disease_Name", all=TRUE)
# now merge the imhe data on
d <- merge(d, IHME[IHME$measure_name == "DALYs (Disability-Adjusted Life Years)",
c("cause_id", "measure_name", "year", "val")],
by.x=c("IHME_Cause_ID", "Year"),
by.y=c("cause_id", "year"))
# next, handle the one-to-manys but summing up

Binary file not shown.

Before

Width:  |  Height:  |  Size: 355 KiB

View File

@ -1,142 +0,0 @@
---
title: "syphilis traffic"
output: html_document
date: "2024-11-19"
---
```{r}
library(ggplot2)
library(dplyr)
posts_per_year = syphilisall %>%
filter(!is.na(Year) & Year != 2021) %>%
group_by(Year) %>%
summarise(Number_of_Posts = n())
ggplot(posts_per_year, aes(x = Year, y = Number_of_Posts)) +
geom_line() +
geom_point() +
labs(title = "Volume of Syphilis Traffic Over Time",
x = "Year",
y = "Number of Posts Across All of Reddit")
```
```{r}
sum(is.na(syphilisall$Year))
sum(syphilisall$Year == "")
```
```{r}
posts_per_year = syphilisall %>%
filter(!is.na(Year) & Year != 2021) %>% # Exclude NA values and 2021
group_by(Year, subreddit) %>% # Group by both 'Year' and 'subreddit'
summarise(Number_of_Posts = n(), .groups = "drop") # Count the number of posts per subreddit and year
# Plotting the result
ggplot(posts_per_year, aes(x = Year, y = Number_of_Posts, color = subreddit)) +
geom_line(aes(group = subreddit)) + # Draw a line for each subreddit
geom_point() + # Add points for each year/subreddit combination
theme(legend.position="none") +
labs(title = "Volume of Syphilis Traffic Over Time",
x = "Year",
y = "Number of Posts per Subreddit")
```
```{r}
unique_values = unique(syphilisall$subreddit)
length(unique_values)
```
```{r}
top_subreddits = syphilisall %>%
filter(!is.na(Year) & Year != 2021) %>%
group_by(subreddit) %>%
summarise(total_posts = n(), .groups = "drop") %>%
top_n(10, total_posts)
posts_per_year = syphilisall %>%
filter(subreddit %in% top_subreddits$subreddit, !is.na(Year) & Year != 2021) %>%
group_by(Year, subreddit) %>%
summarise(Number_of_Posts = n(), .groups = "drop")
ggplot(posts_per_year, aes(x = Year, y = Number_of_Posts, color = subreddit)) +
geom_line(aes(group = subreddit)) +
geom_point() +
labs(title = "Volume of Syphilis Traffic Over Time",
x = "Year",
y = "Number of Posts per Subreddit")
```
```{r}
sum(is.na(syphilisall$subreddit))
sum(syphilisall$subreddit == "")
```
```{r}
top_subreddits = syphilisall %>%
filter(!is.na(Year) & Year != 2021, subreddit != "") %>%
group_by(subreddit) %>%
summarise(total_posts = n(), .groups = "drop") %>%
top_n(10, total_posts)
posts_per_year = syphilisall %>%
filter(subreddit %in% top_subreddits$subreddit, !is.na(Year) & Year != 2021) %>%
group_by(Year, subreddit) %>%
summarise(Number_of_Posts = n(), .groups = "drop")
ggplot(posts_per_year, aes(x = Year, y = Number_of_Posts, color = subreddit)) +
geom_line(aes(group = subreddit)) +
geom_point() +
labs(title = "Volume of Syphilis Traffic Over Time in Top Ten Subreddits",
x = "Year",
y = "Number of Posts per Subreddit")
```
```{r}
top_subreddits = syphilistotal %>%
filter(!is.na(Year) & Year != 2021) %>%
group_by(subreddit) %>%
summarise(total_posts = n(), .groups = "drop") %>%
top_n(10, total_posts)
posts_per_year = syphilistotal %>%
filter(subreddit %in% top_subreddits$subreddit, !is.na(Year) & Year != 2021) %>%
group_by(Year, subreddit) %>%
summarise(Number_of_Posts = n(), .groups = "drop")
ggplot(posts_per_year, aes(x = Year, y = Number_of_Posts, color = subreddit)) +
geom_line(aes(group = subreddit)) +
geom_point() +
labs(title = "Volume of Syphilis Traffic Over Time",
x = "Year",
y = "Number of Posts per Subreddit")
```