support passing in a model object.
This commit is contained in:
parent
3c1d5df97e
commit
0613193e9d
@ -230,7 +230,7 @@ def test_lsi_sims():
|
||||
# if n_components is a list we'll return a list of similarities with different latent dimensionalities
|
||||
# if algorithm is 'randomized' instead of 'arpack' then n_iter gives the number of iterations.
|
||||
# this function takes the svd and then the column similarities of it
|
||||
def lsi_column_similarities(tfidfmat,n_components=300,n_iter=10,random_state=1968,algorithm='randomized',lsi_model_save=None,lsi_model_load=None):
|
||||
def lsi_column_similarities(tfidfmat,n_components=300,n_iter=10,random_state=1968,algorithm='randomized',lsi_model=None,lsi_model_save=None,lsi_model_load=None):
|
||||
# first compute the lsi of the matrix
|
||||
# then take the column similarities
|
||||
|
||||
@ -241,7 +241,10 @@ def lsi_column_similarities(tfidfmat,n_components=300,n_iter=10,random_state=196
|
||||
|
||||
svd_components = n_components[0]
|
||||
|
||||
if lsi_model_load is not None and Path(lsi_model_load).exists():
|
||||
if lsi_model is not None:
|
||||
mod = lsi_model
|
||||
|
||||
elif lsi_model_load is not None and Path(lsi_model_load).exists():
|
||||
print("loading LSI")
|
||||
mod = pickle.load(open(lsi_model_load ,'rb'))
|
||||
lsi_model_save = lsi_model_load
|
||||
|
@ -70,7 +70,10 @@ def cosine_similarities_weekly_lsi(*args, n_components=100, lsi_model=None, **kw
|
||||
term_colname= kwargs.get('term_colname')
|
||||
# lsi_model = "/gscratch/comdata/users/nathante/competitive_exclusion_reddit/data/similarity/comment_authors_compex_LSI/1000_author_LSIMOD.pkl"
|
||||
#simfunc = partial(lsi_column_similarities,n_components=n_components,random_state=random_state,algorithm='randomized',lsi_model=lsi_model)
|
||||
simfunc = partial(lsi_column_similarities,n_components=n_components,random_state=kwargs.get('random_state'),lsi_model_load=lsi_model)
|
||||
if isinstance(lsi_model,str):
|
||||
lsi_model = pickle.load(open(lsi_model,'rb'))
|
||||
|
||||
simfunc = partial(lsi_column_similarities,n_components=n_components,random_state=kwargs.get('random_state'),lsi_model=lsi_model)
|
||||
|
||||
return cosine_similarities_weekly(*args, simfunc=simfunc, **kwargs)
|
||||
|
||||
@ -92,20 +95,20 @@ def cosine_similarities_weekly(tfidf_path, outfile, term_colname, included_subre
|
||||
nterms = conn.execute(f"SELECT MAX({term_colname + '_id'}) as nterms FROM read_parquet('{tfidf_path}/*/*.parquet')").df()
|
||||
nterms = nterms.nterms.values
|
||||
nterms = int(nterms[0])
|
||||
weeks = conn.execute(f"SELECT DISTINCT week FROM read_parquet('{tfidf_path}/*/*.parquet')").df()
|
||||
weeks = conn.execute(f"SELECT DISTINCT CAST(CAST(week AS DATE) AS STRING) AS week FROM read_parquet('{tfidf_path}/*/*.parquet')").df()
|
||||
weeks = weeks.week.values
|
||||
conn.close()
|
||||
|
||||
print(f"computing weekly similarities")
|
||||
week_similarities_helper = partial(_week_similarities,simfunc=simfunc, tfidf_path=tfidf_path, term_colname=term_colname, outdir=outfile, min_df=min_df, max_df=max_df, included_subreddits=included_subreddits, topN=None, subreddit_names=subreddit_names,nterms=nterms)
|
||||
|
||||
for week in weeks:
|
||||
week_similarities_helper(week)
|
||||
# pool = Pool(cpu_count())
|
||||
|
||||
# list(pool.imap(week_similarities_helper, weeks))
|
||||
# pool.close()
|
||||
# with Pool(cpu_count()) as pool: # maybe it can be done with 40 cores on the huge machine?
|
||||
# for week in weeks:
|
||||
# week_similarities_helper(week)
|
||||
|
||||
with Pool(cpu_count()) as pool: # maybe it can be done with 128 cores on the huge machine?
|
||||
list(pool.imap(week_similarities_helper, weeks))
|
||||
pool.close()
|
||||
|
||||
|
||||
|
||||
def author_cosine_similarities_weekly(outfile, infile='/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_authors_test.parquet', min_df=2, max_df=None, included_subreddits=None, topN=500, static_tfidf_path=None):
|
||||
|
Loading…
Reference in New Issue
Block a user