support isolates in visualization
This commit is contained in:
		
							parent
							
								
									582cf263ea
								
							
						
					
					
						commit
						0b95bea30e
					
				| @ -13,10 +13,7 @@ from nltk.corpus import stopwords | ||||
| from nltk.util import ngrams | ||||
| import string | ||||
| from random import random | ||||
| 
 | ||||
| # remove urls | ||||
| # taken from https://stackoverflow.com/questions/3809401/what-is-a-good-regular-expression-to-match-a-url | ||||
| urlregex = re.compile(r"[-a-zA-Z0-9@:%._\+~#=]{1,256}\.[a-zA-Z0-9()]{1,6}\b([-a-zA-Z0-9()@:%_\+.~#?&//=]*)") | ||||
| from redditcleaner import clean | ||||
| 
 | ||||
| # compute term frequencies for comments in each subreddit by week | ||||
| def weekly_tf(partition, mwe_pass = 'first'): | ||||
| @ -95,8 +92,8 @@ def weekly_tf(partition, mwe_pass = 'first'): | ||||
|         # lowercase         | ||||
|         text = text.lower() | ||||
| 
 | ||||
|         # remove urls | ||||
|         text = urlregex.sub("", text) | ||||
|         # redditcleaner removes reddit markdown(newlines, quotes, bullet points, links, strikethrough, spoiler, code, superscript, table, headings) | ||||
|         text = clean(text) | ||||
| 
 | ||||
|         # sentence tokenize | ||||
|         sentences = sent_tokenize(text) | ||||
| @ -107,14 +104,13 @@ def weekly_tf(partition, mwe_pass = 'first'): | ||||
|         # remove punctuation | ||||
|                          | ||||
|         sentences = map(remove_punct, sentences) | ||||
| 
 | ||||
|         # remove sentences with less than 2 words | ||||
|         sentences = filter(lambda sentence: len(sentence) > 2, sentences) | ||||
| 
 | ||||
|         # datta et al. select relatively common phrases from the reddit corpus, but they don't really explain how. We'll try that in a second phase. | ||||
|         # they say that the extract 1-4 grams from 10% of the sentences and then find phrases that appear often relative to the original terms | ||||
|         # here we take a 10 percent sample of sentences  | ||||
|         if mwe_pass == 'first': | ||||
| 
 | ||||
|             # remove sentences with less than 2 words | ||||
|             sentences = filter(lambda sentence: len(sentence) > 2, sentences) | ||||
|             sentences = list(sentences) | ||||
|             for sentence in sentences: | ||||
|                 if random() <= 0.1: | ||||
|  | ||||
| @ -1,7 +1,7 @@ | ||||
| #all: /gscratch/comdata/output/reddit_similarity/tfidf/comment_terms_130k.parquet /gscratch/comdata/output/reddit_similarity/tfidf/comment_authors_130k.parquet /gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_terms_130k.parquet /gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_authors_130k.parquet
 | ||||
| srun_singularity=source /gscratch/comdata/users/nathante/cdsc_reddit/bin/activate && srun_singularity.sh | ||||
| srun_singularity_huge=source /gscratch/comdata/users/nathante/cdsc_reddit/bin/activate && srun_singularity_huge.sh | ||||
| base_data=/gscratch/comdata/output/ | ||||
| base_data=/gscratch/comdata/output | ||||
| similarity_data=${base_data}/reddit_similarity | ||||
| tfidf_data=${similarity_data}/tfidf | ||||
| tfidf_weekly_data=${similarity_data}/tfidf_weekly | ||||
| @ -97,7 +97,7 @@ ${tfidf_data}/tfidf_weekly/comment_authors_100k.parquet: /gscratch/comdata/outpu | ||||
| 	start_spark_and_run.sh 4 tfidf.py authors_weekly --topN=100000 --outpath=${tfidf_weekly_data}/comment_authors_100k.parquet | ||||
| 
 | ||||
| ${tfidf_weekly_data}/comment_terms_30k.parquet:  /gscratch/comdata/output/reddit_ngrams/comment_terms.parquet ${similarity_data}/subreddits_by_num_comments.csv | ||||
| 	start_spark_and_run.sh 4 tfidf.py terms_weekly --topN=30000 --outpath=${tfidf_weekly_data}/comment_authors_30k.parquet | ||||
| 	start_spark_and_run.sh 2 tfidf.py terms_weekly --topN=30000 --outpath=${tfidf_weekly_data}/comment_authors_30k.parquet | ||||
| 
 | ||||
| ${tfidf_weekly_data}/comment_authors_30k.parquet: /gscratch/comdata/output/reddit_ngrams/comment_terms.parquet ${similarity_data}/subreddits_by_num_comments.csv | ||||
| 	start_spark_and_run.sh 4 tfidf.py authors_weekly --topN=30000 --outpath=${tfidf_weekly_data}/comment_authors_30k.parquet | ||||
|  | ||||
| @ -23,9 +23,6 @@ class tf_weight(Enum): | ||||
| infile = "/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_terms.parquet" | ||||
| cache_file = "/gscratch/comdata/users/nathante/cdsc_reddit/similarities/term_tfidf_entries_bak.parquet" | ||||
| 
 | ||||
| def termauthor_tfidf(term_tfidf_callable, author_tfidf_callable): | ||||
|      | ||||
| 
 | ||||
| # subreddits missing after this step don't have any terms that have a high enough idf | ||||
| # try rewriting without merges | ||||
| def reindex_tfidf(infile, term_colname, min_df=None, max_df=None, included_subreddits=None, topN=500, week=None, from_date=None, to_date=None, rescale_idf=True, tf_family=tf_weight.MaxTF): | ||||
| @ -283,7 +280,7 @@ def build_weekly_tfidf_dataset(df, include_subs, term_colname, tf_family=tf_weig | ||||
|         df = df.withColumn("tf_idf",  (0.5 + 0.5 * df.relative_tf) * df.idf) | ||||
| 
 | ||||
|     df = df.repartition(400,'subreddit','week') | ||||
|     dfwriter = df.write.partitionBy("week").sortBy("subreddit") | ||||
|     dfwriter = df.write.partitionBy("week") | ||||
|     return dfwriter | ||||
| 
 | ||||
| def _calc_tfidf(df, term_colname, tf_family): | ||||
| @ -339,7 +336,7 @@ def build_tfidf_dataset(df, include_subs, term_colname, tf_family=tf_weight.Norm | ||||
| 
 | ||||
|     df = _calc_tfidf(df, term_colname, tf_family) | ||||
|     df = df.repartition('subreddit') | ||||
|     dfwriter = df.write.sortBy("subreddit","tf") | ||||
|     dfwriter = df.write | ||||
|     return dfwriter | ||||
| 
 | ||||
| def select_topN_subreddits(topN, path="/gscratch/comdata/output/reddit_similarity/subreddits_by_num_comments_nonsfw.csv"): | ||||
|  | ||||
| @ -22,8 +22,12 @@ def base_plot(plot_data): | ||||
|     # | ||||
|     #    subreddit_select = alt.selection_single(on='click',fields=['subreddit'],bind=subreddit_dropdown,name='subreddit_click') | ||||
|      | ||||
|     base_scale = alt.Scale(scheme={"name":'category10', | ||||
|                                    "extent":[0,100], | ||||
|                                    "count":10}) | ||||
| 
 | ||||
|     color = alt.condition(cluster_click_select , | ||||
|                           alt.Color(field='color',type='nominal',scale=alt.Scale(scheme='category10')), | ||||
|                           alt.Color(field='color',type='nominal',scale=base_scale), | ||||
|                           alt.value("lightgray")) | ||||
|    | ||||
|      | ||||
| @ -84,6 +88,11 @@ def viewport_plot(plot_data): | ||||
|     return chart | ||||
| 
 | ||||
| def assign_cluster_colors(tsne_data, clusters, n_colors, n_neighbors = 4): | ||||
|     isolate_color = 101 | ||||
| 
 | ||||
|     cluster_sizes = clusters.groupby('cluster').count() | ||||
|     singletons = set(cluster_sizes.loc[cluster_sizes.subreddit == 1].reset_index().cluster) | ||||
| 
 | ||||
|     tsne_data = tsne_data.merge(clusters,on='subreddit') | ||||
|      | ||||
|     centroids = tsne_data.groupby('cluster').agg({'x':np.mean,'y':np.mean}) | ||||
| @ -120,15 +129,17 @@ def assign_cluster_colors(tsne_data, clusters, n_colors, n_neighbors = 4): | ||||
|     color_assignments = np.repeat(-1,len(centroids)) | ||||
| 
 | ||||
|     for i in range(len(centroids)): | ||||
|         knn = indices[i] | ||||
|         knn_colors = color_assignments[knn] | ||||
|         available_colors = color_ids[list(set(color_ids) - set(knn_colors))] | ||||
| 
 | ||||
|         if(len(available_colors) > 0): | ||||
|             color_assignments[i] = available_colors[0] | ||||
|         if (centroids.iloc[i].name == -1) or (i in singletons): | ||||
|             color_assignments[i] = isolate_color | ||||
|         else: | ||||
|             raise Exception("Can't color this many neighbors with this many colors") | ||||
|             knn = indices[i] | ||||
|             knn_colors = color_assignments[knn] | ||||
|             available_colors = color_ids[list(set(color_ids) - set(knn_colors))] | ||||
| 
 | ||||
|             if(len(available_colors) > 0): | ||||
|                 color_assignments[i] = available_colors[0] | ||||
|             else: | ||||
|                 raise Exception("Can't color this many neighbors with this many colors") | ||||
| 
 | ||||
|     centroids = centroids.reset_index() | ||||
|     colors = centroids.loc[:,['cluster']] | ||||
| @ -143,12 +154,13 @@ def build_visualization(tsne_data, clusters, output): | ||||
|     # clusters = "/gscratch/comdata/output/reddit_clustering/subreddit_author_tf_similarities_10000.feather" | ||||
| 
 | ||||
|     tsne_data = pd.read_feather(tsne_data) | ||||
|     tsne_data = tsne_data.rename(columns={'_subreddit':'subreddit'}) | ||||
|     clusters = pd.read_feather(clusters) | ||||
| 
 | ||||
|     tsne_data = assign_cluster_colors(tsne_data,clusters,10,8) | ||||
| 
 | ||||
|     # sr_per_cluster = tsne_data.groupby('cluster').subreddit.count().reset_index() | ||||
|     # sr_per_cluster = sr_per_cluster.rename(columns={'subreddit':'cluster_size'}) | ||||
|     sr_per_cluster = tsne_data.groupby('cluster').subreddit.count().reset_index() | ||||
|     sr_per_cluster = sr_per_cluster.rename(columns={'subreddit':'cluster_size'}) | ||||
| 
 | ||||
|     tsne_data = tsne_data.merge(sr_per_cluster,on='cluster') | ||||
| 
 | ||||
|  | ||||
		Loading…
	
		Reference in New Issue
	
	Block a user