Merge remote-tracking branch 'refs/remotes/origin/master' into master
This commit is contained in:
		
						commit
						13eb95b3b0
					
				| @ -71,8 +71,8 @@ https://stanford.edu/~rezab/papers/dimsum.pdf. If similarity_threshold=0 we get | |||||||
|     similarities = similarities.join(df, on='j') |     similarities = similarities.join(df, on='j') | ||||||
|     similarities = similarities.rename(columns={'subreddit':"subreddit_j"}) |     similarities = similarities.rename(columns={'subreddit':"subreddit_j"}) | ||||||
| 
 | 
 | ||||||
|     similarities.write_feather(output_feather) |     similarities.to_feather(output_feather) | ||||||
|     similarities.write_csv(output_csv) |     similarities.to_csv(output_csv) | ||||||
|     return similarities |     return similarities | ||||||
|      |      | ||||||
| if __name__ == '__main__': | if __name__ == '__main__': | ||||||
|  | |||||||
							
								
								
									
										45
									
								
								clustering.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										45
									
								
								clustering.py
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,45 @@ | |||||||
|  | import pandas as pd | ||||||
|  | import numpy as np | ||||||
|  | from sklearn.cluster import AffinityPropagation | ||||||
|  | import fire | ||||||
|  | 
 | ||||||
|  | def affinity_clustering(similarities, output, damping=0.5, max_iter=100000, convergence_iter=30, preference_quantile=0.5, random_state=1968): | ||||||
|  |     ''' | ||||||
|  |     similarities: feather file with a dataframe of similarity scores | ||||||
|  |     preference_quantile: parameter controlling how many clusters to make. higher values = more clusters. 0.85 is a good value with 3000 subreddits. | ||||||
|  |     ''' | ||||||
|  | 
 | ||||||
|  |     df = pd.read_feather(similarities) | ||||||
|  |     n = df.shape[0] | ||||||
|  |     mat = np.array(df.drop('subreddit',1)) | ||||||
|  |     mat[range(n),range(n)] = 1 | ||||||
|  | 
 | ||||||
|  |     preference = np.quantile(mat,preference_quantile) | ||||||
|  | 
 | ||||||
|  |     clustering = AffinityPropagation(damping=damping, | ||||||
|  |                                      max_iter=max_iter, | ||||||
|  |                                      convergence_iter=convergence_iter, | ||||||
|  |                                      copy=False, | ||||||
|  |                                      preference=preference, | ||||||
|  |                                      affinity='precomputed', | ||||||
|  |                                      random_state=random_state).fit(mat) | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  |     print(f"clustering took {clustering.n_iter_} iterations") | ||||||
|  |     clusters = clustering.labels_ | ||||||
|  | 
 | ||||||
|  |     print(f"found {len(set(clusters))} clusters") | ||||||
|  | 
 | ||||||
|  |     cluster_data = pd.DataFrame({'subreddit': df.subreddit,'cluster':clustering.labels_}) | ||||||
|  | 
 | ||||||
|  |     cluster_sizes = cluster_data.groupby("cluster").count() | ||||||
|  |     print(f"the largest cluster has {cluster_sizes.subreddit.max()} members") | ||||||
|  | 
 | ||||||
|  |     print(f"the median cluster has {cluster_sizes.subreddit.median()} members") | ||||||
|  | 
 | ||||||
|  |     print(f"{(cluster_sizes.subreddit==1).sum()} clusters have 1 member") | ||||||
|  | 
 | ||||||
|  |     cluster_data.to_feather(output) | ||||||
|  | 
 | ||||||
|  | if __name__ == "__main__": | ||||||
|  |     fire.Fire(affinity_clustering) | ||||||
							
								
								
									
										43
									
								
								fit_tsne.py
									
									
									
									
									
								
							
							
						
						
									
										43
									
								
								fit_tsne.py
									
									
									
									
									
								
							| @ -1,35 +1,34 @@ | |||||||
|  | import fire | ||||||
| import pyarrow | import pyarrow | ||||||
| import pandas as pd | import pandas as pd | ||||||
| from numpy import random | from numpy import random | ||||||
| import numpy as np | import numpy as np | ||||||
| from sklearn.manifold import TSNE | from sklearn.manifold import TSNE | ||||||
| 
 | 
 | ||||||
| df = pd.read_feather("reddit_term_similarity_3000.feather") | similarities = "term_similarities_10000.feather" | ||||||
| df = df.sort_values(['i','j']) |  | ||||||
| 
 | 
 | ||||||
| n = max(df.i.max(),df.j.max()) | def fit_tsne(similarities, output, learning_rate=750, perplexity=50, n_iter=10000, early_exaggeration=20): | ||||||
|  |     ''' | ||||||
|  |     similarities: feather file with a dataframe of similarity scores | ||||||
|  |     learning_rate: parameter controlling how fast the model converges. Too low and you get outliers. Too high and you get a ball. | ||||||
|  |     perplexity: number of neighbors to use. the default of 50 is often good. | ||||||
| 
 | 
 | ||||||
| def zero_pad(grp): |     ''' | ||||||
|     p = grp.shape[0] |     df = pd.read_feather(similarities) | ||||||
|     grp = grp.sort_values('j') |  | ||||||
|     return np.concatenate([np.zeros(n-p),np.ones(1),np.array(grp.value)]) |  | ||||||
| 
 | 
 | ||||||
| col_names = df.sort_values('j').loc[:,['subreddit_j']].drop_duplicates() |     n = df.shape[0] | ||||||
| first_name = list(set(df.subreddit_i) - set(df.subreddit_j))[0] |     mat = np.array(df.drop('subreddit',1),dtype=np.float64) | ||||||
| col_names = [first_name] + list(col_names.subreddit_j) |     mat[range(n),range(n)] = 1 | ||||||
| mat = df.groupby('i').apply(zero_pad) |     mat[mat > 1] = 1 | ||||||
| mat.loc[n] = np.concatenate([np.zeros(n),np.ones(1)]) |     dist = 2*np.arccos(mat)/np.pi | ||||||
| mat = np.stack(mat) |     tsne_model = TSNE(2,learning_rate=750,perplexity=50,n_iter=10000,metric='precomputed',early_exaggeration=20,n_jobs=-1) | ||||||
|  |     tsne_fit_model = tsne_model.fit(dist) | ||||||
| 
 | 
 | ||||||
| mat = mat + np.tril(mat.transpose(),k=-1) |     tsne_fit_whole = tsne_fit_model.fit_transform(dist) | ||||||
| dist = 2*np.arccos(mat)/np.pi |  | ||||||
| 
 | 
 | ||||||
| tsne_model = TSNE(2,learning_rate=750,perplexity=50,n_iter=10000,metric='precomputed',early_exaggeration=20,n_jobs=-1) |     plot_data = pd.DataFrame({'x':tsne_fit_whole[:,0],'y':tsne_fit_whole[:,1], 'subreddit':df.subreddit}) | ||||||
| 
 | 
 | ||||||
| tsne_fit_model = tsne_model.fit(dist) |     plot_data.to_feather(output) | ||||||
| 
 | 
 | ||||||
| tsne_fit_whole = tsne_fit_model.fit_transform(dist) | if __name__ == "__main__": | ||||||
| 
 |     fire.Fire(fit_tsne) | ||||||
| plot_data = pd.DataFrame({'x':tsne_fit_whole[:,0],'y':tsne_fit_whole[:,1], 'subreddit':col_names}) |  | ||||||
| 
 |  | ||||||
| plot_data.to_feather("tsne_subreddit_fit.feather") |  | ||||||
|  | |||||||
| @ -2,11 +2,67 @@ from pyspark.sql import Window | |||||||
| from pyspark.sql import functions as f | from pyspark.sql import functions as f | ||||||
| from enum import Enum | from enum import Enum | ||||||
| from pyspark.mllib.linalg.distributed import CoordinateMatrix | from pyspark.mllib.linalg.distributed import CoordinateMatrix | ||||||
|  | from tempfile import TemporaryDirectory | ||||||
|  | import pyarrow | ||||||
|  | import pyarrow.dataset as ds | ||||||
|  | from scipy.sparse import csr_matrix | ||||||
|  | import pandas as pd | ||||||
|  | import numpy as np | ||||||
| 
 | 
 | ||||||
| class tf_weight(Enum): | class tf_weight(Enum): | ||||||
|     MaxTF = 1 |     MaxTF = 1 | ||||||
|     Norm05 = 2 |     Norm05 = 2 | ||||||
| 
 | 
 | ||||||
|  | def read_tfidf_matrix(path,term_colname): | ||||||
|  |     term = term_colname | ||||||
|  |     term_id = term + '_id' | ||||||
|  |     term_id_new = term + '_id_new' | ||||||
|  | 
 | ||||||
|  |     dataset = ds.dataset(path,format='parquet') | ||||||
|  |     entries = dataset.to_table(columns=['tf_idf','subreddit_id_new',term_id_new]).to_pandas() | ||||||
|  |     return(csr_matrix((entries.tf_idf,(entries[term_id_new]-1, entries.subreddit_id_new-1)))) | ||||||
|  |      | ||||||
|  | def column_similarities(mat): | ||||||
|  |     norm = np.matrix(np.power(mat.power(2).sum(axis=0),0.5,dtype=np.float32)) | ||||||
|  |     mat = mat.multiply(1/norm) | ||||||
|  |     sims = mat.T @ mat | ||||||
|  |     return(sims) | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def prep_tfidf_entries(tfidf, term_colname, min_df, included_subreddits): | ||||||
|  |     term = term_colname | ||||||
|  |     term_id = term + '_id' | ||||||
|  |     term_id_new = term + '_id_new' | ||||||
|  | 
 | ||||||
|  |     if min_df is None: | ||||||
|  |         min_df = 0.1 * len(included_subreddits) | ||||||
|  | 
 | ||||||
|  |     tfidf = tfidf.filter(f.col("subreddit").isin(included_subreddits)) | ||||||
|  | 
 | ||||||
|  |     # reset the subreddit ids | ||||||
|  |     sub_ids = tfidf.select('subreddit_id').distinct() | ||||||
|  |     sub_ids = sub_ids.withColumn("subreddit_id_new",f.row_number().over(Window.orderBy("subreddit_id"))) | ||||||
|  |     tfidf = tfidf.join(sub_ids,'subreddit_id') | ||||||
|  | 
 | ||||||
|  |     # only use terms in at least min_df included subreddits | ||||||
|  |     new_count = tfidf.groupBy(term_id).agg(f.count(term_id).alias('new_count')) | ||||||
|  | #    new_count = new_count.filter(f.col('new_count') >= min_df) | ||||||
|  |     tfidf = tfidf.join(new_count,term_id,how='inner') | ||||||
|  |      | ||||||
|  |     # reset the term ids | ||||||
|  |     term_ids = tfidf.select([term_id]).distinct() | ||||||
|  |     term_ids = term_ids.withColumn(term_id_new,f.row_number().over(Window.orderBy(term_id))) | ||||||
|  |     tfidf = tfidf.join(term_ids,term_id) | ||||||
|  | 
 | ||||||
|  |     tfidf = tfidf.withColumnRenamed("tf_idf","tf_idf_old") | ||||||
|  |     # tfidf = tfidf.withColumnRenamed("idf","idf_old") | ||||||
|  |     # tfidf = tfidf.withColumn("idf",f.log(25000/f.col("count"))) | ||||||
|  |     tfidf = tfidf.withColumn("tf_idf", (tfidf.relative_tf * tfidf.idf).cast('float')) | ||||||
|  |      | ||||||
|  |     tempdir =TemporaryDirectory(suffix='.parquet',prefix='term_tfidf_entries',dir='.') | ||||||
|  |      | ||||||
|  |     tfidf.write.parquet(tempdir.name,mode='overwrite',compression='snappy') | ||||||
|  |     return tempdir | ||||||
| 
 | 
 | ||||||
| def cosine_similarities(tfidf, term_colname, min_df, included_subreddits, similarity_threshold): | def cosine_similarities(tfidf, term_colname, min_df, included_subreddits, similarity_threshold): | ||||||
|     term = term_colname |     term = term_colname | ||||||
|  | |||||||
| @ -8,38 +8,23 @@ import pandas as pd | |||||||
| import fire | import fire | ||||||
| from itertools import islice | from itertools import islice | ||||||
| from pathlib import Path | from pathlib import Path | ||||||
| from similarities_helper import cosine_similarities | from similarities_helper import cosine_similarities, prep_tfidf_entries, read_tfidf_matrix, column_similarities | ||||||
| 
 | import scipy | ||||||
| spark = SparkSession.builder.getOrCreate() | # outfile='test_similarities_500.feather'; | ||||||
| conf = spark.sparkContext.getConf() | # min_df = None; | ||||||
| 
 | # included_subreddits=None; topN=100; exclude_phrases=True; | ||||||
| # outfile = '/gscratch/comdata/users/nathante/test_similarities_500.feather'; min_df = None; included_subreddits=None; similarity_threshold=0; |  | ||||||
| def term_cosine_similarities(outfile, min_df = None, included_subreddits=None, similarity_threshold=0, topN=500, exclude_phrases=True): |  | ||||||
|     ''' |  | ||||||
|     Compute similarities between subreddits based on tfi-idf vectors of comment texts  |  | ||||||
|      |  | ||||||
|     included_subreddits : string |  | ||||||
|         Text file containing a list of subreddits to include (one per line) if included_subreddits is None then do the top 500 subreddits |  | ||||||
| 
 |  | ||||||
|     similarity_threshold : double (default = 0) |  | ||||||
|         set > 0 for large numbers of subreddits to get an approximate solution using the DIMSUM algorithm |  | ||||||
| https://stanford.edu/~rezab/papers/dimsum.pdf. If similarity_threshold=0 we get an exact solution using an O(N^2) algorithm. |  | ||||||
| 
 |  | ||||||
|     min_df : int (default = 0.1 * (number of included_subreddits) |  | ||||||
|          exclude terms that appear in fewer than this number of documents. |  | ||||||
| 
 |  | ||||||
|     outfile: string |  | ||||||
|          where to output csv and feather outputs |  | ||||||
| ''' |  | ||||||
| 
 | 
 | ||||||
|  | def term_cosine_similarities(outfile, min_df = None, included_subreddits=None, topN=500, exclude_phrases=False): | ||||||
|  |     spark = SparkSession.builder.getOrCreate() | ||||||
|  |     conf = spark.sparkContext.getConf() | ||||||
|     print(outfile) |     print(outfile) | ||||||
|     print(exclude_phrases) |     print(exclude_phrases) | ||||||
| 
 | 
 | ||||||
|     tfidf = spark.read.parquet('/gscratch/comdata/users/nathante/subreddit_tfidf.parquet') |     tfidf = spark.read.parquet('/gscratch/comdata/users/nathante/subreddit_tfidf.parquet') | ||||||
| 
 | 
 | ||||||
|     if included_subreddits is None: |     if included_subreddits is None: | ||||||
|         included_subreddits = list(islice(open("/gscratch/comdata/users/nathante/cdsc-reddit/top_25000_subs_by_comments.txt"),topN)) |         rankdf = pd.read_csv("/gscratch/comdata/users/nathante/cdsc-reddit/subreddits_by_num_comments.csv") | ||||||
|         included_subreddits = {s.strip('\n') for s in included_subreddits} |         included_subreddits = set(rankdf.loc[rankdf.comments_rank <= topN,'subreddit'].values) | ||||||
| 
 | 
 | ||||||
|     else: |     else: | ||||||
|         included_subreddits = set(open(included_subreddits)) |         included_subreddits = set(open(included_subreddits)) | ||||||
| @ -47,7 +32,23 @@ https://stanford.edu/~rezab/papers/dimsum.pdf. If similarity_threshold=0 we get | |||||||
|     if exclude_phrases == True: |     if exclude_phrases == True: | ||||||
|         tfidf = tfidf.filter(~f.col(term).contains("_")) |         tfidf = tfidf.filter(~f.col(term).contains("_")) | ||||||
| 
 | 
 | ||||||
|     sim_dist, tfidf = cosine_similarities(tfidf, 'term', min_df, included_subreddits, similarity_threshold) |     print("creating temporary parquet with matrix indicies") | ||||||
|  |     tempdir = prep_tfidf_entries(tfidf, 'term', min_df, included_subreddits) | ||||||
|  |     tfidf = spark.read.parquet(tempdir.name) | ||||||
|  |     subreddit_names = tfidf.select(['subreddit','subreddit_id_new']).distinct().toPandas() | ||||||
|  |     subreddit_names = subreddit_names.sort_values("subreddit_id_new") | ||||||
|  |     subreddit_names['subreddit_id_new'] = subreddit_names['subreddit_id_new'] - 1 | ||||||
|  |     spark.stop() | ||||||
|  | 
 | ||||||
|  |     print("loading matrix") | ||||||
|  |     mat = read_tfidf_matrix(tempdir.name,'term') | ||||||
|  |     print('computing similarities') | ||||||
|  |     sims = column_similarities(mat) | ||||||
|  |     del mat | ||||||
|  |      | ||||||
|  |     sims = pd.DataFrame(sims.todense()) | ||||||
|  |     sims = sims.rename({i:sr for i, sr in enumerate(subreddit_names.subreddit.values)},axis=1) | ||||||
|  |     sims['subreddit'] = subreddit_names.subreddit.values | ||||||
| 
 | 
 | ||||||
|     p = Path(outfile) |     p = Path(outfile) | ||||||
| 
 | 
 | ||||||
| @ -55,25 +56,72 @@ https://stanford.edu/~rezab/papers/dimsum.pdf. If similarity_threshold=0 we get | |||||||
|     output_csv =  Path(str(p).replace("".join(p.suffixes), ".csv")) |     output_csv =  Path(str(p).replace("".join(p.suffixes), ".csv")) | ||||||
|     output_parquet =  Path(str(p).replace("".join(p.suffixes), ".parquet")) |     output_parquet =  Path(str(p).replace("".join(p.suffixes), ".parquet")) | ||||||
| 
 | 
 | ||||||
|     sim_dist.entries.toDF().write.parquet(str(output_parquet),mode='overwrite',compression='snappy') |     sims.to_feather(outfile) | ||||||
|  |     tempdir.cleanup() | ||||||
|  |     path = "term_tfidf_entriesaukjy5gv.parquet" | ||||||
|      |      | ||||||
|     #instead of toLocalMatrix() why not read as entries and put strait into numpy |  | ||||||
|     sim_entries = pd.read_parquet(output_parquet) |  | ||||||
| 
 | 
 | ||||||
|     df = tfidf.select('subreddit','subreddit_id_new').distinct().toPandas() | # outfile = '/gscratch/comdata/users/nathante/test_similarities_500.feather'; min_df = None; included_subreddits=None; similarity_threshold=0; | ||||||
|     spark.stop() | # def term_cosine_similarities(outfile, min_df = None, included_subreddits=None, similarity_threshold=0, topN=500, exclude_phrases=True): | ||||||
|     df['subreddit_id_new'] = df['subreddit_id_new'] - 1 | #     ''' | ||||||
|     df = df.sort_values('subreddit_id_new').reset_index(drop=True) | #     Compute similarities between subreddits based on tfi-idf vectors of comment texts  | ||||||
|     df = df.set_index('subreddit_id_new') |  | ||||||
|      |      | ||||||
|     similarities = sim_entries.join(df, on='i') | #     included_subreddits : string | ||||||
|     similarities = similarities.rename(columns={'subreddit':"subreddit_i"}) | #         Text file containing a list of subreddits to include (one per line) if included_subreddits is None then do the top 500 subreddits | ||||||
|     similarities = similarities.join(df, on='j') |  | ||||||
|     similarities = similarities.rename(columns={'subreddit':"subreddit_j"}) |  | ||||||
| 
 | 
 | ||||||
|     similarities.write_feather(output_feather) | #     similarity_threshold : double (default = 0) | ||||||
|     similarities.write_csv(output_csv) | #         set > 0 for large numbers of subreddits to get an approximate solution using the DIMSUM algorithm | ||||||
|     return similarities | # https://stanford.edu/~rezab/papers/dimsum.pdf. If similarity_threshold=0 we get an exact solution using an O(N^2) algorithm. | ||||||
|  | 
 | ||||||
|  | #     min_df : int (default = 0.1 * (number of included_subreddits) | ||||||
|  | #          exclude terms that appear in fewer than this number of documents. | ||||||
|  | 
 | ||||||
|  | #     outfile: string | ||||||
|  | #          where to output csv and feather outputs | ||||||
|  | # ''' | ||||||
|  | 
 | ||||||
|  | #     print(outfile) | ||||||
|  | #     print(exclude_phrases) | ||||||
|  | 
 | ||||||
|  | #     tfidf = spark.read.parquet('/gscratch/comdata/users/nathante/subreddit_tfidf.parquet') | ||||||
|  | 
 | ||||||
|  | #     if included_subreddits is None: | ||||||
|  | #         included_subreddits = list(islice(open("/gscratch/comdata/users/nathante/cdsc-reddit/top_25000_subs_by_comments.txt"),topN)) | ||||||
|  | #         included_subreddits = {s.strip('\n') for s in included_subreddits} | ||||||
|  | 
 | ||||||
|  | #     else: | ||||||
|  | #         included_subreddits = set(open(included_subreddits)) | ||||||
|  | 
 | ||||||
|  | #     if exclude_phrases == True: | ||||||
|  | #         tfidf = tfidf.filter(~f.col(term).contains("_")) | ||||||
|  | 
 | ||||||
|  | #     sim_dist, tfidf = cosine_similarities(tfidf, 'term', min_df, included_subreddits, similarity_threshold) | ||||||
|  | 
 | ||||||
|  | #     p = Path(outfile) | ||||||
|  | 
 | ||||||
|  | #     output_feather =  Path(str(p).replace("".join(p.suffixes), ".feather")) | ||||||
|  | #     output_csv =  Path(str(p).replace("".join(p.suffixes), ".csv")) | ||||||
|  | #     output_parquet =  Path(str(p).replace("".join(p.suffixes), ".parquet")) | ||||||
|  | 
 | ||||||
|  | #     sim_dist.entries.toDF().write.parquet(str(output_parquet),mode='overwrite',compression='snappy') | ||||||
|  |      | ||||||
|  | #     #instead of toLocalMatrix() why not read as entries and put strait into numpy | ||||||
|  | #     sim_entries = pd.read_parquet(output_parquet) | ||||||
|  | 
 | ||||||
|  | #     df = tfidf.select('subreddit','subreddit_id_new').distinct().toPandas() | ||||||
|  | #     spark.stop() | ||||||
|  | #     df['subreddit_id_new'] = df['subreddit_id_new'] - 1 | ||||||
|  | #     df = df.sort_values('subreddit_id_new').reset_index(drop=True) | ||||||
|  | #     df = df.set_index('subreddit_id_new') | ||||||
|  | 
 | ||||||
|  | #     similarities = sim_entries.join(df, on='i') | ||||||
|  | #     similarities = similarities.rename(columns={'subreddit':"subreddit_i"}) | ||||||
|  | #     similarities = similarities.join(df, on='j') | ||||||
|  | #     similarities = similarities.rename(columns={'subreddit':"subreddit_j"}) | ||||||
|  | 
 | ||||||
|  | #     similarities.to_feather(output_feather) | ||||||
|  | #     similarities.to_csv(output_csv) | ||||||
|  | #     return similarities | ||||||
|      |      | ||||||
| if __name__ == '__main__': | if __name__ == '__main__': | ||||||
|     fire.Fire(term_cosine_similarities) |     fire.Fire(term_cosine_similarities) | ||||||
|  | |||||||
							
								
								
									
										30
									
								
								top_subreddits_by_comments.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										30
									
								
								top_subreddits_by_comments.py
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,30 @@ | |||||||
|  | from pyspark.sql import functions as f | ||||||
|  | from pyspark.sql import SparkSession | ||||||
|  | from pyspark.sql import Window | ||||||
|  | from pyspark.mllib.linalg.distributed import RowMatrix, CoordinateMatrix | ||||||
|  | import numpy as np | ||||||
|  | import pyarrow | ||||||
|  | import pandas as pd | ||||||
|  | import fire | ||||||
|  | from itertools import islice | ||||||
|  | from pathlib import Path | ||||||
|  | from similarities_helper import cosine_similarities | ||||||
|  | 
 | ||||||
|  | spark = SparkSession.builder.getOrCreate() | ||||||
|  | conf = spark.sparkContext.getConf() | ||||||
|  | 
 | ||||||
|  | df = spark.read.parquet("/gscratch/comdata/output/reddit_comments_by_subreddit.parquet") | ||||||
|  | 
 | ||||||
|  | # remove /u/ pages | ||||||
|  | df = df.filter(~df.subreddit.like("u_%")) | ||||||
|  | 
 | ||||||
|  | df = df.groupBy('subreddit').agg(f.count('id').alias("n_comments")) | ||||||
|  | 
 | ||||||
|  | win = Window.orderBy(f.col('n_comments').desc()) | ||||||
|  | df = df.withColumn('comments_rank',f.rank().over(win)) | ||||||
|  | 
 | ||||||
|  | df = df.toPandas() | ||||||
|  | 
 | ||||||
|  | df = df.sort_values("n_comments") | ||||||
|  | 
 | ||||||
|  | df.to_csv('/gscratch/comdata/users/nathante/cdsc-reddit/subreddits_by_num_comments.csv',index=False) | ||||||
							
								
								
									
										1
									
								
								visualization/data/term_affinityprop_10000.feather
									
									
									
									
									
										Symbolic link
									
								
							
							
						
						
									
										1
									
								
								visualization/data/term_affinityprop_10000.feather
									
									
									
									
									
										Symbolic link
									
								
							| @ -0,0 +1 @@ | |||||||
|  | ../../.git/annex/objects/Qk/wG/SHA256E-s145210--14a2ad6660d1e4015437eff556ec349dd10a115a4f96594152a29e83d00aa784/SHA256E-s145210--14a2ad6660d1e4015437eff556ec349dd10a115a4f96594152a29e83d00aa784 | ||||||
							
								
								
									
										1
									
								
								visualization/data/term_affinityprop_3000.feather
									
									
									
									
									
										Symbolic link
									
								
							
							
						
						
									
										1
									
								
								visualization/data/term_affinityprop_3000.feather
									
									
									
									
									
										Symbolic link
									
								
							| @ -0,0 +1 @@ | |||||||
|  | ../../.git/annex/objects/w7/2f/SHA256E-s44458--f1c5247775ecf06514a0ff9e523e944bc8fcd9d0fdb6f214cc1329b759d4354e/SHA256E-s44458--f1c5247775ecf06514a0ff9e523e944bc8fcd9d0fdb6f214cc1329b759d4354e | ||||||
							
								
								
									
										1
									
								
								visualization/data/term_tsne_10000.feather
									
									
									
									
									
										Symbolic link
									
								
							
							
						
						
									
										1
									
								
								visualization/data/term_tsne_10000.feather
									
									
									
									
									
										Symbolic link
									
								
							| @ -0,0 +1 @@ | |||||||
|  | ../../.git/annex/objects/WX/v3/SHA256E-s190874--c2aea719f989dde297ca5f13371e156693c574e44acd9a0e313e5e3a3ad4b543/SHA256E-s190874--c2aea719f989dde297ca5f13371e156693c574e44acd9a0e313e5e3a3ad4b543 | ||||||
							
								
								
									
										1
									
								
								visualization/data/term_tsne_3000.feather
									
									
									
									
									
										Symbolic link
									
								
							
							
						
						
									
										1
									
								
								visualization/data/term_tsne_3000.feather
									
									
									
									
									
										Symbolic link
									
								
							| @ -0,0 +1 @@ | |||||||
|  | ../../.git/annex/objects/mq/2z/SHA256E-s58834--2e7b3ee11f47011fd9b34bddf8f1e788d35ab9c9e0bb6a1301b0b916135400cf/SHA256E-s58834--2e7b3ee11f47011fd9b34bddf8f1e788d35ab9c9e0bb6a1301b0b916135400cf | ||||||
		Loading…
	
		Reference in New Issue
	
	Block a user