Merge remote-tracking branch 'origin/icwsm_dataverse'
This commit is contained in:
		
						commit
						3d192ab82f
					
				
							
								
								
									
										2
									
								
								__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										2
									
								
								__init__.py
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,2 @@ | ||||
| from .timeseries import load_clusters, load_densities, build_cluster_timeseries | ||||
| 
 | ||||
| @ -1,74 +0,0 @@ | ||||
| from pyspark.sql import functions as f | ||||
| from pyspark.sql import SparkSession | ||||
| from pyspark.sql import Window | ||||
| from pyspark.sql.types import FloatType | ||||
| import zlib | ||||
| 
 | ||||
| def zlib_entropy_rate(s): | ||||
|     sb = s.encode() | ||||
|     if len(sb) == 0: | ||||
|         return None | ||||
|     else: | ||||
|         return len(zlib.compress(s.encode(),level=6))/len(s.encode()) | ||||
|      | ||||
| zlib_entropy_rate_udf = f.udf(zlib_entropy_rate,FloatType()) | ||||
| 
 | ||||
| spark = SparkSession.builder.getOrCreate() | ||||
| 
 | ||||
| df = spark.read.parquet("/gscratch/comdata/output/reddit_comments_by_author.parquet",compression='snappy') | ||||
| 
 | ||||
| df = df.withColumn("saidbot",f.lower(f.col("body")).like("%bot%")) | ||||
| 
 | ||||
| # df = df.filter(df.subreddit=='seattle') | ||||
| # df = df.cache() | ||||
| botreplies = df.filter(f.lower(df.body).rlike(".*[good|bad] bot.*")) | ||||
| botreplies = botreplies.select([f.col("parent_id").substr(4,100).alias("bot_comment_id"),f.lower(f.col("body")).alias("good_bad_bot"),f.col("link_id").alias("gbbb_link_id")]) | ||||
| botreplies = botreplies.groupby(['bot_comment_id']).agg(f.count('good_bad_bot').alias("N_goodbad_votes"), | ||||
|                                                         f.sum((f.lower(f.col('good_bad_bot')).like('%good bot%').astype("double"))).alias("n_good_votes"), | ||||
|                                                         f.sum((f.lower(f.col('good_bad_bot')).like('%bad bot%').astype("double"))).alias("n_bad_votes")) | ||||
| 
 | ||||
| comments_by_author = df.select(['author','id','saidbot']).groupBy('author').agg(f.count('id').alias("N_comments"), | ||||
|                                                                                 f.mean(f.col('saidbot').astype("double")).alias("prop_saidbot"), | ||||
|                                                                                 f.sum(f.col('saidbot').astype("double")).alias("n_saidbot")) | ||||
| 
 | ||||
| # pd_comments_by_author = comments_by_author.toPandas() | ||||
| # pd_comments_by_author['frac'] = 500 / pd_comments_by_author['N_comments'] | ||||
| # pd_comments_by_author.loc[pd_comments_by_author.frac > 1, 'frac'] = 1 | ||||
| # fractions = pd_comments_by_author.loc[:,['author','frac']] | ||||
| # fractions = fractions.set_index('author').to_dict()['frac'] | ||||
| 
 | ||||
| # sampled_author_comments = df.sampleBy("author",fractions).groupBy('author').agg(f.concat_ws(" ", f.collect_list('body')).alias('comments')) | ||||
| df = df.withColumn("randn",f.randn(seed=1968)) | ||||
| 
 | ||||
| win = Window.partitionBy("author").orderBy("randn") | ||||
| 
 | ||||
| df = df.withColumn("randRank",f.rank().over(win)) | ||||
| sampled_author_comments = df.filter(f.col("randRank") <= 1000) | ||||
| sampled_author_comments = sampled_author_comments.groupBy('author').agg(f.concat_ws(" ", f.collect_list('body')).alias('comments')) | ||||
| 
 | ||||
| author_entropy_rates = sampled_author_comments.select(['author',zlib_entropy_rate_udf(f.col('comments')).alias("entropy_rate")]) | ||||
| 
 | ||||
| parents = df.join(botreplies, on=df.id==botreplies.bot_comment_id,how='right_outer') | ||||
| 
 | ||||
| win1 = Window.partitionBy("author") | ||||
| parents = parents.withColumn("first_bot_reply",f.min(f.col("CreatedAt")).over(win1)) | ||||
| 
 | ||||
| first_bot_reply = parents.filter(f.col("first_bot_reply")==f.col("CreatedAt")) | ||||
| first_bot_reply = first_bot_reply.withColumnRenamed("CreatedAt","FB_CreatedAt") | ||||
| first_bot_reply = first_bot_reply.withColumnRenamed("id","FB_id") | ||||
| 
 | ||||
| comments_since_first_bot_reply = df.join(first_bot_reply,on = 'author',how='right_outer').filter(f.col("CreatedAt")>=f.col("first_bot_reply")) | ||||
| comments_since_first_bot_reply = comments_since_first_bot_reply.groupBy("author").agg(f.count("id").alias("N_comments_since_firstbot")) | ||||
| 
 | ||||
| bots = parents.groupby(['author']).agg(f.sum('N_goodbad_votes').alias("N_goodbad_votes"), | ||||
|                                           f.sum(f.col('n_good_votes')).alias("n_good_votes"), | ||||
|                                           f.sum(f.col('n_bad_votes')).alias("n_bad_votes"), | ||||
|                                           f.count(f.col('author')).alias("N_bot_posts")) | ||||
| 
 | ||||
| bots = bots.join(comments_by_author,on="author",how='left_outer') | ||||
| bots = bots.join(comments_since_first_bot_reply,on="author",how='left_outer') | ||||
| bots = bots.join(author_entropy_rates,on='author',how='left_outer') | ||||
| 
 | ||||
| bots = bots.orderBy("N_goodbad_votes",ascending=False) | ||||
| bots = bots.repartition(1) | ||||
| bots.write.parquet("/gscratch/comdata/output/reddit_good_bad_bot.parquet",mode='overwrite') | ||||
| @ -1,55 +1,36 @@ | ||||
| #srun_cdsc='srun -p comdata-int -A comdata --time=300:00:00 --time-min=00:15:00 --mem=100G --ntasks=1 --cpus-per-task=28'
 | ||||
| srun_singularity=source /gscratch/comdata/users/nathante/cdsc_reddit/bin/activate && srun_singularity.sh | ||||
| similarity_data=/gscratch/comdata/output/reddit_similarity | ||||
| clustering_data=/gscratch/comdata/output/reddit_clustering | ||||
| selection_grid="--max_iter=3000 --convergence_iter=15,30,100 --damping=0.5,0.6,0.7,0.8,0.85,0.9,0.95,0.97,0.99, --preference_quantile=0.1,0.3,0.5,0.7,0.9" | ||||
| #selection_grid="--max_iter=3000 --convergence_iter=[15] --preference_quantile=[0.5] --damping=[0.99]"
 | ||||
| all:$(clustering_data)/subreddit_comment_authors_10k/selection_data.csv $(clustering_data)/subreddit_comment_authors-tf_10k/selection_data.csv $(clustering_data)/subreddit_comment_terms_10k/selection_data.csv | ||||
| # $(clustering_data)/subreddit_comment_authors_30k.feather/SUCCESS $(clustering_data)/subreddit_authors-tf_similarities_30k.feather/SUCCESS
 | ||||
| # $(clustering_data)/subreddit_comment_terms_30k.feather/SUCCESS
 | ||||
| srun_singularity=srun -p compute-bigmem -A comdata --time=48:00:00 --mem=362G -c 40 /bin/bash -c  | ||||
| similarity_data=../../data/reddit_similarity | ||||
| clustering_data=../../data/reddit_clustering | ||||
| kmeans_selection_grid=--max_iters=[3000] --n_inits=[10] --n_clusters=[100,500,1000,1250,1500,1750,2000] | ||||
| hdbscan_selection_grid=--min_cluster_sizes=[2,3,4,5] --min_samples=[2,3,4,5] --cluster_selection_epsilons=[0,0.01,0.05,0.1,0.15,0.2] --cluster_selection_methods=[eom,leaf] | ||||
| affinity_selection_grid=--dampings=[0.5,0.6,0.7,0.8,0.95,0.97,0.99] --preference_quantiles=[0.1,0.3,0.5,0.7,0.9] --convergence_iters=[15] | ||||
| 
 | ||||
| $(clustering_data)/subreddit_comment_authors_10k/selection_data.csv:selection.py $(similarity_data)/subreddit_comment_authors_10k.feather clustering.py | ||||
| 	$(srun_singularity) python3 selection.py $(similarity_data)/subreddit_comment_authors_10k.feather $(clustering_data)/subreddit_comment_authors_10k $(clustering_data)/subreddit_comment_authors_10k/selection_data.csv $(selection_grid) -J 20 | ||||
| authors_tf_10k_input_lsi=$(similarity_data)/subreddit_comment_authors-tf_10k_LSI | ||||
| authors_tf_10k_output_lsi=$(clustering_data)/subreddit_comment_authors-tf_10k_LSI | ||||
| 
 | ||||
| $(clustering_data)/subreddit_comment_terms_10k/selection_data.csv:selection.py $(similarity_data)/subreddit_comment_terms_10k.feather clustering.py | ||||
| 	$(srun_singularity) python3 selection.py $(similarity_data)/subreddit_comment_terms_10k.feather $(clustering_data)/subreddit_comment_terms_10k  $(clustering_data)/subreddit_comment_terms_10k/selection_data.csv $(selection_grid) -J 20  | ||||
| all:authors_tf_10k_lsi | ||||
| 
 | ||||
| $(clustering_data)/subreddit_comment_authors-tf_10k/selection_data.csv:clustering.py $(similarity_data)/subreddit_comment_authors-tf_10k.feather | ||||
| 	$(srun_singularity) python3 selection.py $(similarity_data)/subreddit_comment_authors-tf_10k.feather $(clustering_data)/subreddit_comment_authors-tf_10k  $(clustering_data)/subreddit_comment_authors-tf_10k/selection_data.csv $(selection_grid) -J 20 | ||||
| authors_tf_10k_lsi:${authors_tf_10k_output_lsi}/kmeans/selection_data.csv ${authors_tf_10k_output_lsi}/hdbscan/selection_data.csv ${authors_tf_10k_output_lsi}/affinity/selection_data.csv | ||||
| 
 | ||||
| # $(clustering_data)/subreddit_comment_authors_30k.feather/SUCCESS:selection.py $(similarity_data)/subreddit_comment_authors_30k.feather clustering.py
 | ||||
| # 	$(srun_singularity) python3 selection.py $(similarity_data)/subreddit_comment_authors_30k.feather $(clustering_data)/subreddit_comment_authors_30k $(selection_grid) -J 10 && touch $(clustering_data)/subreddit_comment_authors_30k.feather/SUCCESS
 | ||||
| ## LSI Models
 | ||||
| ${authors_tf_10k_output_lsi}/kmeans/selection_data.csv:clustering.py ${authors_tf_10k_input_lsi} clustering_base.py kmeans_clustering.py | ||||
| 	$(srun_singularity) -c "source ~/.bashrc; python3 kmeans_clustering_lsi.py --inpath=${authors_tf_10k_input_lsi} --outpath=${authors_tf_10k_output_lsi}/kmeans --savefile=${authors_tf_10k_output_lsi}/kmeans/selection_data.csv $(kmeans_selection_grid)" | ||||
| 
 | ||||
| # $(clustering_data)/subreddit_comment_terms_30k.feather/SUCCESS:selection.py $(similarity_data)/subreddit_comment_terms_30k.feather clustering.py
 | ||||
| # 	$(srun_singularity) python3 selection.py $(similarity_data)/subreddit_comment_terms_30k.feather $(clustering_data)/subreddit_comment_terms_30k $(selection_grid) -J 10 && touch $(clustering_data)/subreddit_comment_terms_30k.feather/SUCCESS
 | ||||
| ${authors_tf_10k_output_lsi}/affinity/selection_data.csv:clustering.py ${authors_tf_10k_input_lsi} clustering_base.py affinity_clustering.py | ||||
| 	$(srun_singularity) -c "source ~/.bashrc; python3 affinity_clustering_lsi.py --inpath=${authors_tf_10k_input_lsi} --outpath=${authors_tf_10k_output_lsi}/affinity --savefile=${authors_tf_10k_output_lsi}/affinity/selection_data.csv $(affinity_selection_grid)" | ||||
| 
 | ||||
| # $(clustering_data)/subreddit_authors-tf_similarities_30k.feather/SUCCESS:clustering.py $(similarity_data)/subreddit_comment_authors-tf_30k.feather
 | ||||
| # 	$(srun_singularity) python3 selection.py $(similarity_data)/subreddit_comment_authors-tf_30k.feather $(clustering_data)/subreddit_comment_authors-tf_30k $(selection_grid) -J 8 && touch $(clustering_data)/subreddit_authors-tf_similarities_30k.feather/SUCCESS
 | ||||
| ${authors_tf_10k_output_lsi}/hdbscan/selection_data.csv:clustering.py ${authors_tf_10k_input_lsi} clustering_base.py hdbscan_clustering.py | ||||
| 	$(srun_singularity) -c "source ~/.bashrc; python3 hdbscan_clustering_lsi.py --inpath=${authors_tf_10k_input_lsi} --outpath=${authors_tf_10k_output_lsi}/hdbscan --savefile=${authors_tf_10k_output_lsi}/hdbscan/selection_data.csv $(hdbscan_selection_grid)" | ||||
| 
 | ||||
| ${authors_tf_10k_output_lsi}/best_hdbscan.feather:${authors_tf_10k_output_lsi}/hdbscan/selection_data.csv pick_best_clustering.py | ||||
| 	$(srun_singularity) -c "source ~/.bashrc; python3 pick_best_clustering.py $< $@ --min_clusters=50 --max_isolates=5000 --min_cluster_size=2" | ||||
| 
 | ||||
| # $(clustering_data)/subreddit_comment_authors_100k.feather:clustering.py $(similarity_data)/subreddit_comment_authors_100k.feather
 | ||||
| # 	 $(srun_singularity) python3 clustering.py $(similarity_data)/subreddit_comment_authors_100k.feather $(clustering_data)/subreddit_comment_authors_100k.feather ---max_iter=400 --convergence_iter=15 --preference_quantile=0.85 --damping=0.85
 | ||||
| ${authors_tf_10k_input_lsi}: | ||||
| 	$(MAKE) -C ../similarities | ||||
| 
 | ||||
| # $(clustering_data)/comment_terms_100k.feather:clustering.py $(similarity_data)/subreddit_comment_terms_100k.feather
 | ||||
| # 	$(srun_singularity) python3 clustering.py $(similarity_data)/comment_terms_10000.feather $(clustering_data)/comment_terms_10000.feather ---max_iter=1000 --convergence_iter=15 --preference_quantile=0.9 --damping=0.5
 | ||||
| clean: | ||||
| 	rm -f ${authors_tf_10k_output_lsi}/affinity/selection_data.csv | ||||
| 	rm -f ${authors_tf_10k_output_lsi}/kmeans/selection_data.csv | ||||
| 	rm -f ${authors_tf_10k_output_lsi}/hdbscan/selection_data.csv | ||||
| 
 | ||||
| # $(clustering_data)/subreddit_comment_author-tf_100k.feather:clustering.py $(similarity_data)/subreddit_comment_author-tf_100k.feather
 | ||||
| # 	$(srun_singularity) python3 clustering.py $(similarity_data)/subreddit_comment_author-tf_100k.parquet $(clustering_data)/subreddit_comment_author-tf_100k.feather ---max_iter=400 --convergence_iter=15 --preference_quantile=0.5 --damping=0.85
 | ||||
| 
 | ||||
| 
 | ||||
| # it's pretty difficult to get a result that isn't one huge megacluster. A sign that it's bullcrap
 | ||||
| # /gscratch/comdata/output/reddit_clustering/wang_similarity_10000.feather:clustering.py /gscratch/comdata/output/reddit_similarity/wang_similarity_10000.feather
 | ||||
| # 	./clustering.py /gscratch/comdata/output/reddit_similarity/wang_similarity_10000.feather /gscratch/comdata/output/reddit_clustering/wang_similarity_10000.feather ---max_iter=400 --convergence_iter=15 --preference_quantile=0.9 --damping=0.85
 | ||||
| 
 | ||||
| # /gscratch/comdata/output/reddit_tsne/subreddit_author_tf_similarities_10000.feather:fit_tsne.py /gscratch/comdata/output/reddit_similarity/subreddit_author_tf_similarities_10000.parquet
 | ||||
| 
 | ||||
| # 	start_spark_and_run.sh 1 fit_tsne.py --similarities=/gscratch/comdata/output/reddit_similarity/subreddit_author_tf_similarities_10000.parquet --output=/gscratch/comdata/output/reddit_tsne/subreddit_author_tf_similarities_10000.feather
 | ||||
| 
 | ||||
| 
 | ||||
| # /gscratch/comdata/output/reddit_tsne/wang_similarity_10000.feather:fit_tsne.py /gscratch/comdata/output/reddit_similarity/wang_similarity_10000.feather
 | ||||
| 
 | ||||
| # 	python3 fit_tsne.py --similarities=/gscratch/comdata/output/reddit_similarity/wang_similarity_10000.feather --output=/gscratch/comdata/output/reddit_tsne/wang_similarity_10000.feather
 | ||||
| 
 | ||||
| # /gscratch/comdata/output/reddit_tsne/comment_authors_10000.feather:clustering.py /gscratch/comdata/output/reddit_similarity/comment_authors_10000.feather
 | ||||
| # #	$srun_cdsc python3
 | ||||
| # 	start_spark_and_run.sh 1 fit_tsne.py --similarities=/gscratch/comdata/output/reddit_similarity/comment_authors_10000.feather --output=/gscratch/comdata/output/reddit_tsne/comment_authors_10000.feather
 | ||||
| PHONY: clean  | ||||
|  | ||||
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										129
									
								
								clustering/affinity_clustering.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										129
									
								
								clustering/affinity_clustering.py
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,129 @@ | ||||
| from sklearn.cluster import AffinityPropagation | ||||
| from dataclasses import dataclass | ||||
| from clustering_base import clustering_result, clustering_job | ||||
| from grid_sweep import grid_sweep | ||||
| from pathlib import Path | ||||
| from itertools import product, starmap | ||||
| import fire | ||||
| import sys | ||||
| import numpy as np | ||||
| 
 | ||||
| # silhouette is the only one that doesn't need the feature matrix. So it's probably the only one that's worth trying.  | ||||
| @dataclass | ||||
| class affinity_clustering_result(clustering_result): | ||||
|     damping:float | ||||
|     convergence_iter:int | ||||
|     preference_quantile:float | ||||
|     preference:float | ||||
|     max_iter:int | ||||
| 
 | ||||
| class affinity_job(clustering_job): | ||||
|     def __init__(self, infile, outpath, name, damping=0.9, max_iter=100000, convergence_iter=30, preference_quantile=0.5, random_state=1968, verbose=True): | ||||
|         super().__init__(infile, | ||||
|                          outpath, | ||||
|                          name, | ||||
|                          call=self._affinity_clustering, | ||||
|                          preference_quantile=preference_quantile, | ||||
|                          damping=damping, | ||||
|                          max_iter=max_iter, | ||||
|                          convergence_iter=convergence_iter, | ||||
|                          random_state=1968, | ||||
|                          verbose=verbose) | ||||
|         self.damping=damping | ||||
|         self.max_iter=max_iter | ||||
|         self.convergence_iter=convergence_iter | ||||
|         self.preference_quantile=preference_quantile | ||||
| 
 | ||||
|     def _affinity_clustering(self, mat, preference_quantile, *args, **kwargs): | ||||
|         mat = 1-mat | ||||
|         preference = np.quantile(mat, preference_quantile) | ||||
|         self.preference = preference | ||||
|         print(f"preference is {preference}") | ||||
|         print("data loaded") | ||||
|         sys.stdout.flush() | ||||
|         clustering = AffinityPropagation(*args, | ||||
|                                          preference=preference, | ||||
|                                          affinity='precomputed', | ||||
|                                          copy=False, | ||||
|                                          **kwargs).fit(mat) | ||||
|         return clustering | ||||
| 
 | ||||
|     def get_info(self): | ||||
|         result = super().get_info() | ||||
|         self.result=affinity_clustering_result(**result.__dict__, | ||||
|                                                damping=self.damping, | ||||
|                                                max_iter=self.max_iter, | ||||
|                                                convergence_iter=self.convergence_iter, | ||||
|                                                preference_quantile=self.preference_quantile, | ||||
|                                                preference=self.preference) | ||||
| 
 | ||||
|         return self.result | ||||
| 
 | ||||
| class affinity_grid_sweep(grid_sweep): | ||||
|     def __init__(self, | ||||
|                  inpath, | ||||
|                  outpath, | ||||
|                  *args, | ||||
|                  **kwargs): | ||||
| 
 | ||||
|         super().__init__(affinity_job, | ||||
|                          _afffinity_grid_sweep, | ||||
|                          inpath, | ||||
|                          outpath, | ||||
|                          self.namer, | ||||
|                          *args, | ||||
|                          **kwargs) | ||||
|     def namer(self, | ||||
|               damping, | ||||
|               max_iter, | ||||
|               convergence_iter, | ||||
|               preference_quantile): | ||||
| 
 | ||||
|         return f"damp-{damping}_maxit-{max_iter}_convit-{convergence_iter}_prefq-{preference_quantile}" | ||||
| 
 | ||||
| def run_affinity_grid_sweep(savefile, inpath, outpath, dampings=[0.8], max_iters=[3000], convergence_iters=[30], preference_quantiles=[0.5],n_cores=10): | ||||
|     """Run affinity clustering once or more with different parameters. | ||||
|      | ||||
|     Usage: | ||||
|     affinity_clustering.py --savefile=SAVEFILE --inpath=INPATH --outpath=OUTPATH --max_iters=<csv> --dampings=<csv> --preference_quantiles=<csv> | ||||
| 
 | ||||
|     Keword arguments: | ||||
|     savefile: path to save the metadata and diagnostics  | ||||
|     inpath: path to feather data containing a labeled matrix of subreddit similarities. | ||||
|     outpath: path to output fit kmeans clusterings. | ||||
|     dampings:one or more numbers in [0.5, 1). damping parameter in affinity propagatin clustering.  | ||||
|     preference_quantiles:one or more numbers in (0,1) for selecting the 'preference' parameter. | ||||
|     convergence_iters:one or more integers of number of iterations without improvement before stopping. | ||||
|     max_iters: one or more numbers of different maximum interations. | ||||
|     """ | ||||
|     obj = affinity_grid_sweep(inpath, | ||||
|                          outpath, | ||||
|                          map(float,dampings), | ||||
|                          map(int,max_iters), | ||||
|                          map(int,convergence_iters), | ||||
|                          map(float,preference_quantiles)) | ||||
|     obj.run(n_cores) | ||||
|     obj.save(savefile) | ||||
|      | ||||
| def test_select_affinity_clustering(): | ||||
|     # select_hdbscan_clustering("/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors-tf_30k_LSI", | ||||
|     #                           "test_hdbscan_author30k", | ||||
|     #                           min_cluster_sizes=[2], | ||||
|     #                           min_samples=[1,2], | ||||
|     #                           cluster_selection_epsilons=[0,0.05,0.1,0.15], | ||||
|     #                           cluster_selection_methods=['eom','leaf'], | ||||
|     #                           lsi_dimensions='all') | ||||
|     inpath = "/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors-tf_10k_LSI/" | ||||
|     outpath = "test_affinity"; | ||||
|     dampings=[0.8,0.9] | ||||
|     max_iters=[100000] | ||||
|     convergence_iters=[15] | ||||
|     preference_quantiles=[0.5,0.7] | ||||
|      | ||||
|     gs = affinity_lsi_grid_sweep(inpath, 'all', outpath, dampings, max_iters, convergence_iters, preference_quantiles) | ||||
|     gs.run(20) | ||||
|     gs.save("test_affinity/lsi_sweep.csv") | ||||
| 
 | ||||
| 
 | ||||
| if __name__ == "__main__": | ||||
|     fire.Fire(run_affinity_grid_sweep) | ||||
							
								
								
									
										99
									
								
								clustering/affinity_clustering_lsi.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										99
									
								
								clustering/affinity_clustering_lsi.py
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,99 @@ | ||||
| import fire | ||||
| from affinity_clustering import affinity_clustering_result, affinity_job, affinity_grid_sweep | ||||
| from grid_sweep import grid_sweep | ||||
| from lsi_base import lsi_result_mixin, lsi_grid_sweep, lsi_mixin | ||||
| from dataclasses import dataclass | ||||
| 
 | ||||
| @dataclass | ||||
| class affinity_clustering_result_lsi(affinity_clustering_result, lsi_result_mixin): | ||||
|     pass | ||||
| 
 | ||||
| 
 | ||||
| class affinity_lsi_job(affinity_job, lsi_mixin): | ||||
|     def __init__(self, infile, outpath, name, lsi_dims, *args, **kwargs): | ||||
|         super().__init__(infile, | ||||
|                          outpath, | ||||
|                          name, | ||||
|                          *args, | ||||
|                          **kwargs) | ||||
|         super().set_lsi_dims(lsi_dims) | ||||
| 
 | ||||
|     def get_info(self): | ||||
|         result = super().get_info() | ||||
|         self.result = affinity_clustering_result_lsi(**result.__dict__, | ||||
|                                                      lsi_dimensions=self.lsi_dims) | ||||
|         return self.result | ||||
|      | ||||
| class affinity_lsi_grid_sweep(lsi_grid_sweep): | ||||
|     def __init__(self, | ||||
|                  inpath, | ||||
|                  lsi_dims, | ||||
|                  outpath, | ||||
|                  dampings=[0.9], | ||||
|                  max_iters=[10000], | ||||
|                  convergence_iters=[30], | ||||
|                  preference_quantiles=[0.5]): | ||||
| 
 | ||||
|         super().__init__(affinity_lsi_job, | ||||
|                          _affinity_lsi_grid_sweep, | ||||
|                          inpath, | ||||
|                          lsi_dims, | ||||
|                          outpath, | ||||
|                          dampings, | ||||
|                          max_iters, | ||||
|                          convergence_iters, | ||||
|                          preference_quantiles) | ||||
|      | ||||
| 
 | ||||
| class _affinity_lsi_grid_sweep(grid_sweep): | ||||
|     def __init__(self, | ||||
|                  inpath, | ||||
|                  outpath, | ||||
|                  lsi_dim, | ||||
|                  *args, | ||||
|                  **kwargs): | ||||
|         self.lsi_dim = lsi_dim | ||||
|         self.jobtype = affinity_lsi_job | ||||
|         super().__init__(self.jobtype, | ||||
|                          inpath, | ||||
|                          outpath, | ||||
|                          self.namer, | ||||
|                          [self.lsi_dim], | ||||
|                          *args, | ||||
|                          **kwargs) | ||||
| 
 | ||||
|     def namer(self, *args, **kwargs): | ||||
|         s = affinity_grid_sweep.namer(self, *args[1:], **kwargs) | ||||
|         s += f"_lsi-{self.lsi_dim}" | ||||
|         return s | ||||
|                           | ||||
| def run_affinity_lsi_grid_sweep(savefile, inpath, outpath, dampings=[0.8], max_iters=[3000], convergence_iters=[30], preference_quantiles=[0.5], lsi_dimensions='all',n_cores=30): | ||||
|     """Run affinity clustering once or more with different parameters. | ||||
|      | ||||
|     Usage: | ||||
|     affinity_clustering.py --savefile=SAVEFILE --inpath=INPATH --outpath=OUTPATH --max_iters=<csv> --dampings=<csv> --preference_quantiles=<csv> --lsi_dimensions: either "all" or one or more available lsi similarity dimensions at INPATH. | ||||
| 
 | ||||
|     Keword arguments: | ||||
|     savefile: path to save the metadata and diagnostics  | ||||
|     inpath: path to folder containing feather files with LSI similarity labeled matrices of subreddit similarities. | ||||
|     outpath: path to output fit kmeans clusterings. | ||||
|     dampings:one or more numbers in [0.5, 1). damping parameter in affinity propagatin clustering.  | ||||
|     preference_quantiles:one or more numbers in (0,1) for selecting the 'preference' parameter. | ||||
|     convergence_iters:one or more integers of number of iterations without improvement before stopping. | ||||
|     max_iters: one or more numbers of different maximum interations. | ||||
|     lsi_dimensions: either "all" or one or more available lsi similarity dimensions at INPATH. | ||||
|     """ | ||||
|      | ||||
|     obj = affinity_lsi_grid_sweep(inpath, | ||||
|                             lsi_dimensions, | ||||
|                             outpath, | ||||
|                             map(float,dampings), | ||||
|                             map(int,max_iters), | ||||
|                             map(int,convergence_iters), | ||||
|                             map(float,preference_quantiles)) | ||||
| 
 | ||||
|     obj.run(n_cores) | ||||
|     obj.save(savefile) | ||||
| 
 | ||||
| if __name__ == "__main__": | ||||
|     fire.Fire(run_affinity_lsi_grid_sweep) | ||||
| @ -6,21 +6,20 @@ import numpy as np | ||||
| from sklearn.cluster import AffinityPropagation | ||||
| import fire | ||||
| from pathlib import Path | ||||
| from multiprocessing import cpu_count | ||||
| from dataclasses import dataclass | ||||
| from clustering_base import sim_to_dist, process_clustering_result, clustering_result, read_similarity_mat | ||||
| 
 | ||||
| def read_similarity_mat(similarities, use_threads=True): | ||||
|     df = pd.read_feather(similarities, use_threads=use_threads) | ||||
|     mat = np.array(df.drop('_subreddit',1)) | ||||
|     n = mat.shape[0] | ||||
|     mat[range(n),range(n)] = 1 | ||||
|     return (df._subreddit,mat) | ||||
| 
 | ||||
| def affinity_clustering(similarities, *args, **kwargs): | ||||
| def affinity_clustering(similarities, output, *args, **kwargs): | ||||
|     subreddits, mat = read_similarity_mat(similarities) | ||||
|     return _affinity_clustering(mat, subreddits, *args, **kwargs) | ||||
|     clustering = _affinity_clustering(mat, *args, **kwargs) | ||||
|     cluster_data = process_clustering_result(clustering, subreddits) | ||||
|     cluster_data['algorithm'] = 'affinity' | ||||
|     return(cluster_data) | ||||
| 
 | ||||
| def _affinity_clustering(mat, subreddits, output, damping=0.9, max_iter=100000, convergence_iter=30, preference_quantile=0.5, random_state=1968, verbose=True): | ||||
|     ''' | ||||
|     similarities: feather file with a dataframe of similarity scores | ||||
|     similarities: matrix of similarity scores | ||||
|     preference_quantile: parameter controlling how many clusters to make. higher values = more clusters. 0.85 is a good value with 3000 subreddits. | ||||
|     damping: parameter controlling how iterations are merged. Higher values make convergence faster and more dependable. 0.85 is a good value for the 10000 subreddits by author.  | ||||
|     ''' | ||||
| @ -40,25 +39,14 @@ def _affinity_clustering(mat, subreddits, output, damping=0.9, max_iter=100000, | ||||
|                                      verbose=verbose, | ||||
|                                      random_state=random_state).fit(mat) | ||||
| 
 | ||||
| 
 | ||||
|     print(f"clustering took {clustering.n_iter_} iterations") | ||||
|     clusters = clustering.labels_ | ||||
| 
 | ||||
|     print(f"found {len(set(clusters))} clusters") | ||||
| 
 | ||||
|     cluster_data = pd.DataFrame({'subreddit': subreddits,'cluster':clustering.labels_}) | ||||
| 
 | ||||
|     cluster_sizes = cluster_data.groupby("cluster").count() | ||||
|     print(f"the largest cluster has {cluster_sizes.subreddit.max()} members") | ||||
| 
 | ||||
|     print(f"the median cluster has {cluster_sizes.subreddit.median()} members") | ||||
| 
 | ||||
|     print(f"{(cluster_sizes.subreddit==1).sum()} clusters have 1 member") | ||||
| 
 | ||||
|     sys.stdout.flush() | ||||
|     cluster_data = process_clustering_result(clustering, subreddits) | ||||
|     output = Path(output) | ||||
|     output.parent.mkdir(parents=True,exist_ok=True) | ||||
|     cluster_data.to_feather(output) | ||||
|     print(f"saved {output}") | ||||
|     return clustering | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| if __name__ == "__main__": | ||||
|     fire.Fire(affinity_clustering) | ||||
|  | ||||
							
								
								
									
										151
									
								
								clustering/clustering_base.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										151
									
								
								clustering/clustering_base.py
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,151 @@ | ||||
| import pickle | ||||
| from pathlib import Path | ||||
| import numpy as np | ||||
| import pandas as pd | ||||
| from dataclasses import dataclass | ||||
| from sklearn.metrics import silhouette_score, silhouette_samples | ||||
| from collections import Counter | ||||
| 
 | ||||
| # this is meant to be an interface, not created directly | ||||
| class clustering_job: | ||||
|     def __init__(self, infile, outpath, name, call, *args, **kwargs): | ||||
|         self.outpath = Path(outpath) | ||||
|         self.call = call | ||||
|         self.args = args | ||||
|         self.kwargs = kwargs | ||||
|         self.infile = Path(infile) | ||||
|         self.name = name | ||||
|         self.hasrun = False | ||||
| 
 | ||||
|     def run(self): | ||||
|         self.subreddits, self.mat = self.read_distance_mat(self.infile) | ||||
|         self.clustering = self.call(self.mat, *self.args, **self.kwargs) | ||||
|         self.cluster_data = self.process_clustering(self.clustering, self.subreddits) | ||||
|         self.outpath.mkdir(parents=True, exist_ok=True) | ||||
|         self.cluster_data.to_feather(self.outpath/(self.name + ".feather")) | ||||
| 
 | ||||
|         self.hasrun = True | ||||
|         self.cleanup() | ||||
| 
 | ||||
|     def cleanup(self): | ||||
|         self.cluster_data = None | ||||
|         self.mat = None | ||||
|         self.clustering=None | ||||
|         self.subreddits=None | ||||
|          | ||||
|     def get_info(self): | ||||
|         if not self.hasrun: | ||||
|             self.run() | ||||
| 
 | ||||
|         self.result = clustering_result(outpath=str(self.outpath.resolve()), | ||||
|                                         silhouette_score=self.score, | ||||
|                                         name=self.name, | ||||
|                                         n_clusters=self.n_clusters, | ||||
|                                         n_isolates=self.n_isolates, | ||||
|                                         silhouette_samples = self.silsampout | ||||
|                                         ) | ||||
|         return self.result | ||||
| 
 | ||||
|     def silhouette(self): | ||||
|         counts = Counter(self.clustering.labels_) | ||||
|         singletons = [key for key, value in counts.items() if value == 1] | ||||
|         isolates = (self.clustering.labels_ == -1) | (np.isin(self.clustering.labels_,np.array(singletons))) | ||||
|         scoremat = self.mat[~isolates][:,~isolates] | ||||
|         if self.n_clusters > 1: | ||||
|             score = silhouette_score(scoremat, self.clustering.labels_[~isolates], metric='precomputed') | ||||
|             silhouette_samp = silhouette_samples(self.mat, self.clustering.labels_, metric='precomputed') | ||||
|             silhouette_samp = pd.DataFrame({'subreddit':self.subreddits,'score':silhouette_samp}) | ||||
|             self.outpath.mkdir(parents=True, exist_ok=True) | ||||
|             silsampout = self.outpath / ("silhouette_samples-" + self.name +  ".feather") | ||||
|             self.silsampout = silsampout.resolve() | ||||
|             silhouette_samp.to_feather(self.silsampout) | ||||
|         else: | ||||
|             score = None | ||||
|             self.silsampout = None | ||||
| 
 | ||||
|         return score | ||||
| 
 | ||||
|     def read_distance_mat(self, similarities, use_threads=True): | ||||
|         print(similarities) | ||||
|         df = pd.read_feather(similarities, use_threads=use_threads) | ||||
|         mat = np.array(df.drop('_subreddit',axis=1)) | ||||
|         n = mat.shape[0] | ||||
|         mat[range(n),range(n)] = 1 | ||||
|         return (df._subreddit,1-mat) | ||||
| 
 | ||||
|     def process_clustering(self, clustering, subreddits): | ||||
| 
 | ||||
|         if hasattr(clustering,'n_iter_'): | ||||
|             print(f"clustering took {clustering.n_iter_} iterations") | ||||
| 
 | ||||
|         clusters = clustering.labels_ | ||||
|         self.n_clusters = len(set(clusters)) | ||||
| 
 | ||||
|         print(f"found {self.n_clusters} clusters") | ||||
|         cluster_data = pd.DataFrame({'subreddit': subreddits,'cluster':clustering.labels_}) | ||||
| 
 | ||||
| 
 | ||||
|         self.score = self.silhouette() | ||||
|         print(f"silhouette_score:{self.score}") | ||||
| 
 | ||||
| 
 | ||||
|         cluster_sizes = cluster_data.groupby("cluster").count().reset_index() | ||||
|         print(f"the largest cluster has {cluster_sizes.loc[cluster_sizes.cluster!=-1].subreddit.max()} members") | ||||
| 
 | ||||
|         print(f"the median cluster has {cluster_sizes.subreddit.median()} members") | ||||
|         n_isolates1 = (cluster_sizes.subreddit==1).sum() | ||||
| 
 | ||||
|         print(f"{n_isolates1} clusters have 1 member") | ||||
| 
 | ||||
|         n_isolates2 = cluster_sizes.loc[cluster_sizes.cluster==-1,:]['subreddit'].to_list() | ||||
|         if len(n_isolates2) > 0: | ||||
|             n_isloates2 = n_isolates2[0] | ||||
|         print(f"{n_isolates2} subreddits are in cluster -1",flush=True) | ||||
| 
 | ||||
|         if n_isolates1 == 0: | ||||
|             self.n_isolates = n_isolates2 | ||||
|         else: | ||||
|             self.n_isolates = n_isolates1 | ||||
| 
 | ||||
|         return cluster_data | ||||
| 
 | ||||
| class twoway_clustering_job(clustering_job): | ||||
|     def __init__(self, infile, outpath, name, call1, call2, args1, args2): | ||||
|         self.outpath = Path(outpath) | ||||
|         self.call1 = call1 | ||||
|         self.args1 = args1 | ||||
|         self.call2 = call2 | ||||
|         self.args2 = args2 | ||||
|         self.infile = Path(infile) | ||||
|         self.name = name | ||||
|         self.hasrun = False | ||||
|         self.args = args1|args2 | ||||
| 
 | ||||
|     def run(self): | ||||
|         self.subreddits, self.mat = self.read_distance_mat(self.infile) | ||||
|         self.step1 = self.call1(self.mat, **self.args1) | ||||
|         self.clustering = self.call2(self.mat, self.step1, **self.args2) | ||||
|         self.cluster_data = self.process_clustering(self.clustering, self.subreddits) | ||||
|         self.hasrun = True | ||||
|         self.after_run() | ||||
|         self.cleanup() | ||||
| 
 | ||||
|     def after_run(self): | ||||
|         self.score = self.silhouette() | ||||
|         self.outpath.mkdir(parents=True, exist_ok=True) | ||||
|         print(self.outpath/(self.name+".feather")) | ||||
|         self.cluster_data.to_feather(self.outpath/(self.name + ".feather")) | ||||
| 
 | ||||
| 
 | ||||
|     def cleanup(self): | ||||
|         super().cleanup() | ||||
|         self.step1 = None | ||||
| 
 | ||||
| @dataclass | ||||
| class clustering_result: | ||||
|     outpath:Path | ||||
|     silhouette_score:float | ||||
|     name:str | ||||
|     n_clusters:int | ||||
|     n_isolates:int | ||||
|     silhouette_samples:str | ||||
| @ -1,34 +0,0 @@ | ||||
| import fire | ||||
| import pyarrow | ||||
| import pandas as pd | ||||
| from numpy import random | ||||
| import numpy as np | ||||
| from sklearn.manifold import TSNE | ||||
| 
 | ||||
| similarities = "/gscratch/comdata/output/reddit_similarity/subreddit_author_tf_similarities_10000.parquet" | ||||
| 
 | ||||
| def fit_tsne(similarities, output, learning_rate=750, perplexity=50, n_iter=10000, early_exaggeration=20): | ||||
|     ''' | ||||
|     similarities: feather file with a dataframe of similarity scores | ||||
|     learning_rate: parameter controlling how fast the model converges. Too low and you get outliers. Too high and you get a ball. | ||||
|     perplexity: number of neighbors to use. the default of 50 is often good. | ||||
| 
 | ||||
|     ''' | ||||
|     df = pd.read_feather(similarities) | ||||
| 
 | ||||
|     n = df.shape[0] | ||||
|     mat = np.array(df.drop('subreddit',1),dtype=np.float64) | ||||
|     mat[range(n),range(n)] = 1 | ||||
|     mat[mat > 1] = 1 | ||||
|     dist = 2*np.arccos(mat)/np.pi | ||||
|     tsne_model = TSNE(2,learning_rate=750,perplexity=50,n_iter=10000,metric='precomputed',early_exaggeration=20,n_jobs=-1) | ||||
|     tsne_fit_model = tsne_model.fit(dist) | ||||
| 
 | ||||
|     tsne_fit_whole = tsne_fit_model.fit_transform(dist) | ||||
| 
 | ||||
|     plot_data = pd.DataFrame({'x':tsne_fit_whole[:,0],'y':tsne_fit_whole[:,1], 'subreddit':df.subreddit}) | ||||
| 
 | ||||
|     plot_data.to_feather(output) | ||||
| 
 | ||||
| if __name__ == "__main__": | ||||
|     fire.Fire(fit_tsne) | ||||
							
								
								
									
										49
									
								
								clustering/grid_sweep.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										49
									
								
								clustering/grid_sweep.py
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,49 @@ | ||||
| from pathlib import Path | ||||
| from multiprocessing import Pool, cpu_count | ||||
| from itertools import product, chain | ||||
| import pandas as pd | ||||
| 
 | ||||
| class grid_sweep: | ||||
|     def __init__(self, jobtype, inpath, outpath, namer, *args): | ||||
|         self.jobtype = jobtype | ||||
|         self.namer = namer | ||||
|         print(*args) | ||||
|         grid = list(product(*args)) | ||||
|         inpath = Path(inpath) | ||||
|         outpath = Path(outpath) | ||||
|         self.hasrun = False | ||||
|         self.grid = [(inpath,outpath,namer(*g)) + g for g in grid] | ||||
|         self.jobs = [jobtype(*g) for g in self.grid] | ||||
| 
 | ||||
|     def run(self, cores=20): | ||||
|         if cores is not None and cores > 1: | ||||
|             with Pool(cores) as pool: | ||||
|                 infos = pool.map(self.jobtype.get_info, self.jobs) | ||||
|         else: | ||||
|             infos = map(self.jobtype.get_info, self.jobs) | ||||
| 
 | ||||
|         self.infos = pd.DataFrame(infos) | ||||
|         self.hasrun = True | ||||
| 
 | ||||
|     def save(self, outcsv): | ||||
|         if not self.hasrun: | ||||
|             self.run() | ||||
|         outcsv = Path(outcsv) | ||||
|         outcsv.parent.mkdir(parents=True, exist_ok=True) | ||||
|         self.infos.to_csv(outcsv) | ||||
| 
 | ||||
| 
 | ||||
| class twoway_grid_sweep(grid_sweep): | ||||
|     def __init__(self, jobtype, inpath, outpath, namer, args1, args2, *args, **kwargs): | ||||
|         self.jobtype = jobtype | ||||
|         self.namer = namer | ||||
|         prod1 = product(* args1.values()) | ||||
|         prod2 = product(* args2.values()) | ||||
|         grid1 = [dict(zip(args1.keys(), pargs)) for pargs in prod1] | ||||
|         grid2 = [dict(zip(args2.keys(), pargs)) for pargs in prod2] | ||||
|         grid = product(grid1, grid2) | ||||
|         inpath = Path(inpath) | ||||
|         outpath = Path(outpath) | ||||
|         self.hasrun = False | ||||
|         self.grid = [(inpath,outpath,namer(**(g[0] | g[1])), g[0], g[1], *args) for g in grid] | ||||
|         self.jobs = [jobtype(*g) for g in self.grid] | ||||
							
								
								
									
										159
									
								
								clustering/hdbscan_clustering.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										159
									
								
								clustering/hdbscan_clustering.py
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,159 @@ | ||||
| from clustering_base import clustering_result, clustering_job | ||||
| from grid_sweep import grid_sweep | ||||
| from dataclasses import dataclass | ||||
| import hdbscan | ||||
| from sklearn.neighbors import NearestNeighbors | ||||
| import plotnine as pn | ||||
| import numpy as np | ||||
| from itertools import product, starmap, chain | ||||
| import pandas as pd | ||||
| from multiprocessing import cpu_count | ||||
| import fire | ||||
| 
 | ||||
| def test_select_hdbscan_clustering(): | ||||
|     # select_hdbscan_clustering("/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors-tf_30k_LSI", | ||||
|     #                           "test_hdbscan_author30k", | ||||
|     #                           min_cluster_sizes=[2], | ||||
|     #                           min_samples=[1,2], | ||||
|     #                           cluster_selection_epsilons=[0,0.05,0.1,0.15], | ||||
|     #                           cluster_selection_methods=['eom','leaf'], | ||||
|     #                           lsi_dimensions='all') | ||||
|     inpath = "/gscratch/comdata/users/nathante/competitive_exclusion_reddit/data/similarity/comment_authors_compex_LSI" | ||||
|     outpath = "test_hdbscan"; | ||||
|     min_cluster_sizes=[2,3,4]; | ||||
|     min_samples=[1,2,3]; | ||||
|     cluster_selection_epsilons=[0,0.1,0.3,0.5]; | ||||
|     cluster_selection_methods=[1]; | ||||
|     lsi_dimensions='all' | ||||
|     gs = hdbscan_lsi_grid_sweep(inpath, "all", outpath, min_cluster_sizes, min_samples, cluster_selection_epsilons, cluster_selection_methods) | ||||
|     gs.run(20) | ||||
|     gs.save("test_hdbscan/lsi_sweep.csv") | ||||
|     # job1 = hdbscan_lsi_job(infile=inpath, outpath=outpath, name="test", lsi_dims=500, min_cluster_size=2, min_samples=1,cluster_selection_epsilon=0,cluster_selection_method='eom') | ||||
|     # job1.run() | ||||
|     # print(job1.get_info()) | ||||
| 
 | ||||
|     # df = pd.read_csv("test_hdbscan/selection_data.csv") | ||||
|     # test_select_hdbscan_clustering() | ||||
|     # check_clusters = pd.read_feather("test_hdbscan/500_2_2_0.1_eom.feather") | ||||
|     # silscores = pd.read_feather("test_hdbscan/silhouette_samples500_2_2_0.1_eom.feather") | ||||
|     # c = check_clusters.merge(silscores,on='subreddit')#    fire.Fire(select_hdbscan_clustering) | ||||
| class hdbscan_grid_sweep(grid_sweep): | ||||
|     def __init__(self, | ||||
|                  inpath, | ||||
|                  outpath, | ||||
|                  *args, | ||||
|                  **kwargs): | ||||
| 
 | ||||
|         super().__init__(hdbscan_job, inpath, outpath, self.namer, *args, **kwargs) | ||||
| 
 | ||||
|     def namer(self, | ||||
|               min_cluster_size, | ||||
|               min_samples, | ||||
|               cluster_selection_epsilon, | ||||
|               cluster_selection_method): | ||||
|         return f"mcs-{min_cluster_size}_ms-{min_samples}_cse-{cluster_selection_epsilon}_csm-{cluster_selection_method}" | ||||
| 
 | ||||
| @dataclass | ||||
| class hdbscan_clustering_result(clustering_result): | ||||
|     min_cluster_size:int | ||||
|     min_samples:int | ||||
|     cluster_selection_epsilon:float | ||||
|     cluster_selection_method:str | ||||
| 
 | ||||
| class hdbscan_job(clustering_job): | ||||
|     def __init__(self, infile, outpath, name, min_cluster_size=2, min_samples=1, cluster_selection_epsilon=0, cluster_selection_method='eom'): | ||||
|         super().__init__(infile, | ||||
|                          outpath, | ||||
|                          name, | ||||
|                          call=hdbscan_job._hdbscan_clustering, | ||||
|                          min_cluster_size=min_cluster_size, | ||||
|                          min_samples=min_samples, | ||||
|                          cluster_selection_epsilon=cluster_selection_epsilon, | ||||
|                          cluster_selection_method=cluster_selection_method | ||||
|                          ) | ||||
| 
 | ||||
|         self.min_cluster_size = min_cluster_size | ||||
|         self.min_samples = min_samples | ||||
|         self.cluster_selection_epsilon = cluster_selection_epsilon | ||||
|         self.cluster_selection_method = cluster_selection_method | ||||
| #        self.mat = 1 - self.mat | ||||
| 
 | ||||
|     def _hdbscan_clustering(mat, *args, **kwargs): | ||||
|         print(f"running hdbscan clustering. args:{args}. kwargs:{kwargs}") | ||||
|         print(mat) | ||||
|         clusterer = hdbscan.HDBSCAN(metric='precomputed', | ||||
|                                     core_dist_n_jobs=cpu_count(), | ||||
|                                     *args, | ||||
|                                     **kwargs, | ||||
|                                     ) | ||||
|      | ||||
|         clustering = clusterer.fit(mat.astype('double')) | ||||
|      | ||||
|         return(clustering) | ||||
| 
 | ||||
|     def get_info(self): | ||||
|         result = super().get_info() | ||||
|         self.result = hdbscan_clustering_result(**result.__dict__, | ||||
|                                                 min_cluster_size=self.min_cluster_size, | ||||
|                                                 min_samples=self.min_samples, | ||||
|                                                 cluster_selection_epsilon=self.cluster_selection_epsilon, | ||||
|                                                 cluster_selection_method=self.cluster_selection_method) | ||||
|         return self.result | ||||
| 
 | ||||
| def run_hdbscan_grid_sweep(savefile, inpath, outpath,  min_cluster_sizes=[2], min_samples=[1], cluster_selection_epsilons=[0], cluster_selection_methods=['eom']): | ||||
|     """Run hdbscan clustering once or more with different parameters. | ||||
|      | ||||
|     Usage: | ||||
|     hdbscan_clustering.py --savefile=SAVEFILE --inpath=INPATH --outpath=OUTPATH --min_cluster_sizes=<csv> --min_samples=<csv> --cluster_selection_epsilons=<csv> --cluster_selection_methods=<csv "eom"|"leaf"> | ||||
| 
 | ||||
|     Keword arguments: | ||||
|     savefile: path to save the metadata and diagnostics  | ||||
|     inpath: path to feather data containing a labeled matrix of subreddit similarities. | ||||
|     outpath: path to output fit kmeans clusterings. | ||||
|     min_cluster_sizes: one or more integers indicating the minumum cluster size | ||||
|     min_samples: one ore more integers indicating the minimum number of samples used in the algorithm | ||||
|     cluster_selection_epsilon: one or more similarity thresholds for transition from dbscan to hdbscan | ||||
|     cluster_selection_method: "eom" or "leaf" eom gives larger clusters.  | ||||
|     """     | ||||
|     obj = hdbscan_grid_sweep(inpath, | ||||
|                              outpath, | ||||
|                              map(int,min_cluster_sizes), | ||||
|                              map(int,min_samples), | ||||
|                              map(float,cluster_selection_epsilons), | ||||
|                              cluster_selection_methods) | ||||
|     obj.run() | ||||
|     obj.save(savefile) | ||||
| 
 | ||||
| def KNN_distances_plot(mat,outname,k=2): | ||||
|     nbrs = NearestNeighbors(n_neighbors=k,algorithm='auto',metric='precomputed').fit(mat) | ||||
|     distances, indices = nbrs.kneighbors(mat) | ||||
|     d2 = distances[:,-1] | ||||
|     df = pd.DataFrame({'dist':d2}) | ||||
|     df = df.sort_values("dist",ascending=False) | ||||
|     df['idx'] = np.arange(0,d2.shape[0]) + 1 | ||||
|     p = pn.qplot(x='idx',y='dist',data=df,geom='line') + pn.scales.scale_y_continuous(minor_breaks = np.arange(0,50)/50, | ||||
|                                                                                       breaks = np.arange(0,10)/10) | ||||
|     p.save(outname,width=16,height=10) | ||||
|      | ||||
| def make_KNN_plots(): | ||||
|     similarities = "/gscratch/comdata/output/reddit_similarity/subreddit_comment_terms_10k.feather" | ||||
|     subreddits, mat = read_similarity_mat(similarities) | ||||
|     mat = sim_to_dist(mat) | ||||
| 
 | ||||
|     KNN_distances_plot(mat,k=2,outname='terms_knn_dist2.png') | ||||
| 
 | ||||
|     similarities = "/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors_10k.feather" | ||||
|     subreddits, mat = read_similarity_mat(similarities) | ||||
|     mat = sim_to_dist(mat) | ||||
|     KNN_distances_plot(mat,k=2,outname='authors_knn_dist2.png') | ||||
| 
 | ||||
|     similarities = "/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors-tf_10k.feather" | ||||
|     subreddits, mat = read_similarity_mat(similarities) | ||||
|     mat = sim_to_dist(mat) | ||||
|     KNN_distances_plot(mat,k=2,outname='authors-tf_knn_dist2.png') | ||||
| 
 | ||||
| if __name__ == "__main__": | ||||
|     fire.Fire(run_hdbscan_grid_sweep) | ||||
|      | ||||
| #    test_select_hdbscan_clustering() | ||||
|     #fire.Fire(select_hdbscan_clustering)   | ||||
							
								
								
									
										101
									
								
								clustering/hdbscan_clustering_lsi.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										101
									
								
								clustering/hdbscan_clustering_lsi.py
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,101 @@ | ||||
| from hdbscan_clustering import hdbscan_job, hdbscan_grid_sweep, hdbscan_clustering_result | ||||
| from lsi_base import lsi_grid_sweep, lsi_mixin, lsi_result_mixin | ||||
| from grid_sweep import grid_sweep | ||||
| import fire | ||||
| from dataclasses import dataclass | ||||
| 
 | ||||
| @dataclass | ||||
| class hdbscan_clustering_result_lsi(hdbscan_clustering_result, lsi_result_mixin): | ||||
|     pass  | ||||
| 
 | ||||
| class hdbscan_lsi_job(hdbscan_job, lsi_mixin): | ||||
|     def __init__(self, infile, outpath, name, lsi_dims, *args, **kwargs): | ||||
|         super().__init__( | ||||
|                          infile, | ||||
|                          outpath, | ||||
|                          name, | ||||
|                          *args, | ||||
|                          **kwargs) | ||||
|         super().set_lsi_dims(lsi_dims) | ||||
| 
 | ||||
|     def get_info(self): | ||||
|         partial_result = super().get_info() | ||||
|         self.result = hdbscan_clustering_result_lsi(**partial_result.__dict__, | ||||
|                                                     lsi_dimensions=self.lsi_dims) | ||||
|         return self.result | ||||
| 
 | ||||
| class hdbscan_lsi_grid_sweep(lsi_grid_sweep): | ||||
|     def __init__(self, | ||||
|                  inpath, | ||||
|                  lsi_dims, | ||||
|                  outpath, | ||||
|                  min_cluster_sizes, | ||||
|                  min_samples, | ||||
|                  cluster_selection_epsilons, | ||||
|                  cluster_selection_methods | ||||
|                  ): | ||||
| 
 | ||||
|         super().__init__(hdbscan_lsi_job, | ||||
|                          _hdbscan_lsi_grid_sweep, | ||||
|                          inpath, | ||||
|                          lsi_dims, | ||||
|                          outpath, | ||||
|                          min_cluster_sizes, | ||||
|                          min_samples, | ||||
|                          cluster_selection_epsilons, | ||||
|                          cluster_selection_methods) | ||||
|          | ||||
| 
 | ||||
| 
 | ||||
| class _hdbscan_lsi_grid_sweep(grid_sweep): | ||||
|     def __init__(self, | ||||
|                  inpath, | ||||
|                  outpath, | ||||
|                  lsi_dim, | ||||
|                  *args, | ||||
|                  **kwargs): | ||||
|         print(args) | ||||
|         print(kwargs) | ||||
| 
 | ||||
|         self.lsi_dim = lsi_dim | ||||
|         self.jobtype = hdbscan_lsi_job | ||||
|         super().__init__(self.jobtype, inpath, outpath, self.namer, [self.lsi_dim], *args, **kwargs) | ||||
| 
 | ||||
| 
 | ||||
|     def namer(self, *args, **kwargs): | ||||
|         s = hdbscan_grid_sweep.namer(self, *args[1:], **kwargs) | ||||
|         s += f"_lsi-{self.lsi_dim}" | ||||
|         return s | ||||
| 
 | ||||
| def run_hdbscan_lsi_grid_sweep(savefile, inpath, outpath,  min_cluster_sizes=[2], min_samples=[1], cluster_selection_epsilons=[0], cluster_selection_methods=[1],lsi_dimensions='all'): | ||||
|     """Run hdbscan clustering once or more with different parameters. | ||||
|      | ||||
|     Usage: | ||||
|     hdbscan_clustering_lsi --savefile=SAVEFILE --inpath=INPATH --outpath=OUTPATH --min_cluster_sizes=<csv> --min_samples=<csv> --cluster_selection_epsilons=<csv> --cluster_selection_methods=[eom]> --lsi_dimensions: either "all" or one or more available lsi similarity dimensions at INPATH. | ||||
| 
 | ||||
|     Keword arguments: | ||||
|     savefile: path to save the metadata and diagnostics  | ||||
|     inpath: path to folder containing feather files with LSI similarity labeled matrices of subreddit similarities. | ||||
|     outpath: path to output fit clusterings. | ||||
|     min_cluster_sizes: one or more integers indicating the minumum cluster size | ||||
|     min_samples: one ore more integers indicating the minimum number of samples used in the algorithm | ||||
|     cluster_selection_epsilons: one or more similarity thresholds for transition from dbscan to hdbscan | ||||
|     cluster_selection_methods: one or more of "eom" or "leaf" eom gives larger clusters.  | ||||
|     lsi_dimensions: either "all" or one or more available lsi similarity dimensions at INPATH. | ||||
|     """     | ||||
| 
 | ||||
|     obj = hdbscan_lsi_grid_sweep(inpath, | ||||
|                                  lsi_dimensions, | ||||
|                                  outpath, | ||||
|                                  list(map(int,min_cluster_sizes)), | ||||
|                                  list(map(int,min_samples)), | ||||
|                                  list(map(float,cluster_selection_epsilons)), | ||||
|                                  cluster_selection_methods) | ||||
|                                   | ||||
| 
 | ||||
|     obj.run(10) | ||||
|     obj.save(savefile) | ||||
| 
 | ||||
| 
 | ||||
| if __name__ == "__main__": | ||||
|     fire.Fire(run_hdbscan_lsi_grid_sweep) | ||||
							
								
								
									
										105
									
								
								clustering/kmeans_clustering.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										105
									
								
								clustering/kmeans_clustering.py
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,105 @@ | ||||
| from sklearn.cluster import KMeans | ||||
| import fire | ||||
| from pathlib import Path | ||||
| from dataclasses import dataclass | ||||
| from clustering_base import clustering_result, clustering_job | ||||
| from grid_sweep import grid_sweep | ||||
| 
 | ||||
| @dataclass | ||||
| class kmeans_clustering_result(clustering_result): | ||||
|     n_clusters:int | ||||
|     n_init:int | ||||
|     max_iter:int | ||||
| 
 | ||||
| class kmeans_job(clustering_job): | ||||
|     def __init__(self, infile, outpath, name, n_clusters, n_init=10, max_iter=100000, random_state=1968, verbose=True): | ||||
|         super().__init__(infile, | ||||
|                          outpath, | ||||
|                          name, | ||||
|                          call=kmeans_job._kmeans_clustering, | ||||
|                          n_clusters=n_clusters, | ||||
|                          n_init=n_init, | ||||
|                          max_iter=max_iter, | ||||
|                          random_state=random_state, | ||||
|                          verbose=verbose) | ||||
| 
 | ||||
|         self.n_clusters=n_clusters | ||||
|         self.n_init=n_init | ||||
|         self.max_iter=max_iter | ||||
| 
 | ||||
|     def _kmeans_clustering(mat, *args, **kwargs): | ||||
| 
 | ||||
|         clustering = KMeans(*args, | ||||
|                             **kwargs, | ||||
|                             ).fit(mat) | ||||
| 
 | ||||
|         return clustering | ||||
| 
 | ||||
| 
 | ||||
|     def get_info(self): | ||||
|         result = super().get_info() | ||||
|         self.result = kmeans_clustering_result(**result.__dict__, | ||||
|                                                n_init=self.n_init, | ||||
|                                                max_iter=self.max_iter) | ||||
|         return self.result | ||||
| 
 | ||||
| 
 | ||||
| class kmeans_grid_sweep(grid_sweep): | ||||
|         | ||||
|     def __init__(self, | ||||
|                  inpath, | ||||
|                  outpath, | ||||
|                  *args, | ||||
|                  **kwargs): | ||||
|         super().__init__(kmeans_job, inpath, outpath, self.namer, *args, **kwargs) | ||||
| 
 | ||||
|     def namer(self, | ||||
|              n_clusters, | ||||
|              n_init, | ||||
|              max_iter): | ||||
|         return f"nclusters-{n_clusters}_nit-{n_init}_maxit-{max_iter}" | ||||
| 
 | ||||
| def test_select_kmeans_clustering(): | ||||
|     inpath = "/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors-tf_10k_LSI/" | ||||
|     outpath = "test_kmeans"; | ||||
|     n_clusters=[200,300,400]; | ||||
|     n_init=[1,2,3]; | ||||
|     max_iter=[100000] | ||||
| 
 | ||||
|     gs = kmeans_lsi_grid_sweep(inpath, 'all', outpath, n_clusters, n_init, max_iter) | ||||
|     gs.run(1) | ||||
| 
 | ||||
|     cluster_selection_epsilons=[0,0.1,0.3,0.5]; | ||||
|     cluster_selection_methods=['eom']; | ||||
|     lsi_dimensions='all' | ||||
|     gs = hdbscan_lsi_grid_sweep(inpath, "all", outpath, min_cluster_sizes, min_samples, cluster_selection_epsilons, cluster_selection_methods) | ||||
|     gs.run(20) | ||||
|     gs.save("test_hdbscan/lsi_sweep.csv") | ||||
| 
 | ||||
| def run_kmeans_grid_sweep(savefile, inpath, outpath,  n_clusters=[500], n_inits=[1], max_iters=[3000]): | ||||
|     """Run kmeans clustering once or more with different parameters. | ||||
|      | ||||
|     Usage: | ||||
|     kmeans_clustering.py --savefile=SAVEFILE --inpath=INPATH --outpath=OUTPATH --n_clusters=<csv number of clusters> --n_inits=<csv> --max_iters=<csv> | ||||
| 
 | ||||
|     Keword arguments: | ||||
|     savefile: path to save the metadata and diagnostics  | ||||
|     inpath: path to feather data containing a labeled matrix of subreddit similarities. | ||||
|     outpath: path to output fit kmeans clusterings. | ||||
|     n_clusters: one or more numbers of kmeans clusters to select. | ||||
|     n_inits: one or more numbers of different initializations to use for each clustering. | ||||
|     max_iters: one or more numbers of different maximum interations.  | ||||
|     """     | ||||
| 
 | ||||
|     obj = kmeans_grid_sweep(inpath, | ||||
|                             outpath, | ||||
|                             map(int,n_clusters), | ||||
|                             map(int,n_inits), | ||||
|                             map(int,max_iters)) | ||||
| 
 | ||||
| 
 | ||||
|     obj.run(1) | ||||
|     obj.save(savefile) | ||||
| 
 | ||||
| if __name__ == "__main__": | ||||
|     fire.Fire(run_kmeans_grid_sweep) | ||||
							
								
								
									
										93
									
								
								clustering/kmeans_clustering_lsi.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										93
									
								
								clustering/kmeans_clustering_lsi.py
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,93 @@ | ||||
| import fire | ||||
| from dataclasses import dataclass | ||||
| from kmeans_clustering import kmeans_job, kmeans_clustering_result, kmeans_grid_sweep | ||||
| from lsi_base import lsi_mixin, lsi_result_mixin, lsi_grid_sweep | ||||
| from grid_sweep import grid_sweep | ||||
| 
 | ||||
| @dataclass | ||||
| class kmeans_clustering_result_lsi(kmeans_clustering_result, lsi_result_mixin): | ||||
|     pass | ||||
| 
 | ||||
| class kmeans_lsi_job(kmeans_job, lsi_mixin): | ||||
|     def __init__(self, infile, outpath, name, lsi_dims, *args, **kwargs): | ||||
|         super().__init__(infile, | ||||
|                          outpath, | ||||
|                          name, | ||||
|                          *args, | ||||
|                          **kwargs) | ||||
|         super().set_lsi_dims(lsi_dims) | ||||
| 
 | ||||
|     def get_info(self): | ||||
|         result = super().get_info() | ||||
|         self.result = kmeans_clustering_result_lsi(**result.__dict__, | ||||
|                                                    lsi_dimensions=self.lsi_dims) | ||||
|         return self.result | ||||
| 
 | ||||
| class _kmeans_lsi_grid_sweep(grid_sweep): | ||||
|     def __init__(self, | ||||
|                  inpath, | ||||
|                  outpath, | ||||
|                  lsi_dim, | ||||
|                  *args, | ||||
|                  **kwargs): | ||||
|         print(args) | ||||
|         print(kwargs) | ||||
|         self.lsi_dim = lsi_dim | ||||
|         self.jobtype = kmeans_lsi_job | ||||
|         super().__init__(self.jobtype, inpath, outpath, self.namer, [self.lsi_dim], *args, **kwargs) | ||||
| 
 | ||||
|     def namer(self, *args, **kwargs): | ||||
|         s = kmeans_grid_sweep.namer(self, *args[1:], **kwargs) | ||||
|         s += f"_lsi-{self.lsi_dim}" | ||||
|         return s | ||||
| 
 | ||||
| class kmeans_lsi_grid_sweep(lsi_grid_sweep): | ||||
| 
 | ||||
|     def __init__(self, | ||||
|                  inpath, | ||||
|                  lsi_dims, | ||||
|                  outpath, | ||||
|                  n_clusters, | ||||
|                  n_inits, | ||||
|                  max_iters | ||||
|                  ): | ||||
| 
 | ||||
|         super().__init__(kmeans_lsi_job, | ||||
|                          _kmeans_lsi_grid_sweep, | ||||
|                          inpath, | ||||
|                          lsi_dims, | ||||
|                          outpath, | ||||
|                          n_clusters, | ||||
|                          n_inits, | ||||
|                          max_iters) | ||||
| 
 | ||||
| def run_kmeans_lsi_grid_sweep(savefile, inpath, outpath,  n_clusters=[500], n_inits=[1], max_iters=[3000], lsi_dimensions="all"): | ||||
|     """Run kmeans clustering once or more with different parameters. | ||||
|      | ||||
|     Usage: | ||||
|     kmeans_clustering_lsi.py --savefile=SAVEFILE --inpath=INPATH --outpath=OUTPATH d--lsi_dimensions=<"all"|csv number of LSI dimensions to use> --n_clusters=<csv number of clusters> --n_inits=<csv> --max_iters=<csv> | ||||
| 
 | ||||
|     Keword arguments: | ||||
|     savefile: path to save the metadata and diagnostics  | ||||
|     inpath: path to folder containing feather files with LSI similarity labeled matrices of subreddit similarities. | ||||
|     outpath: path to output fit kmeans clusterings. | ||||
|     lsi_dimensions: either "all" or one or more available lsi similarity dimensions at INPATH. | ||||
|     n_clusters: one or more numbers of kmeans clusters to select. | ||||
|     n_inits: one or more numbers of different initializations to use for each clustering. | ||||
|     max_iters: one or more numbers of different maximum interations.  | ||||
|     """     | ||||
| 
 | ||||
|     obj = kmeans_lsi_grid_sweep(inpath, | ||||
|                                 lsi_dimensions, | ||||
|                                 outpath, | ||||
|                                 list(map(int,n_clusters)), | ||||
|                                 list(map(int,n_inits)), | ||||
|                                 list(map(int,max_iters)) | ||||
|                                 ) | ||||
| 
 | ||||
|     obj.run(1) | ||||
|     obj.save(savefile) | ||||
| 
 | ||||
| 
 | ||||
| if __name__ == "__main__": | ||||
|     fire.Fire(run_kmeans_lsi_grid_sweep) | ||||
							
								
								
									
										44
									
								
								clustering/lsi_base.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										44
									
								
								clustering/lsi_base.py
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,44 @@ | ||||
| from clustering_base import clustering_job, clustering_result | ||||
| from grid_sweep import grid_sweep, twoway_grid_sweep | ||||
| from dataclasses import dataclass | ||||
| from itertools import chain | ||||
| from pathlib import Path | ||||
| 
 | ||||
| class lsi_mixin(): | ||||
|     def set_lsi_dims(self, lsi_dims): | ||||
|         self.lsi_dims = lsi_dims | ||||
| 
 | ||||
| @dataclass | ||||
| class lsi_result_mixin: | ||||
|     lsi_dimensions:int | ||||
| 
 | ||||
| class lsi_grid_sweep(grid_sweep): | ||||
|     def __init__(self, jobtype, subsweep, inpath, lsi_dimensions, outpath, *args, **kwargs): | ||||
|         self.jobtype = jobtype | ||||
|         self.subsweep = subsweep | ||||
|         inpath = Path(inpath) | ||||
|         if lsi_dimensions == 'all': | ||||
|             lsi_paths = list(inpath.glob("*.feather")) | ||||
|         else: | ||||
|             lsi_paths = [inpath / (str(dim) + '.feather') for dim in lsi_dimensions] | ||||
| 
 | ||||
|         print(lsi_paths) | ||||
|         lsi_nums = [int(p.stem) for p in lsi_paths] | ||||
|         self.hasrun = False | ||||
|         self.subgrids = [self.subsweep(lsi_path, outpath,  lsi_dim, *args, **kwargs) for lsi_dim, lsi_path in zip(lsi_nums, lsi_paths)] | ||||
|         self.jobs = list(chain(*map(lambda gs: gs.jobs, self.subgrids))) | ||||
| 
 | ||||
| class twoway_lsi_grid_sweep(twoway_grid_sweep): | ||||
|     def __init__(self, jobtype, subsweep, inpath, lsi_dimensions, outpath, args1, args2): | ||||
|         self.jobtype = jobtype | ||||
|         self.subsweep = subsweep | ||||
|         inpath = Path(inpath) | ||||
|         if lsi_dimensions == 'all': | ||||
|             lsi_paths = list(inpath.glob("*.feather")) | ||||
|         else: | ||||
|             lsi_paths = [inpath / (str(dim) + '.feather') for dim in lsi_dimensions] | ||||
| 
 | ||||
|         lsi_nums = [int(p.stem) for p in lsi_paths] | ||||
|         self.hasrun = False | ||||
|         self.subgrids = [self.subsweep(lsi_path, outpath, lsi_dim, args1, args2) for lsi_dim, lsi_path in zip(lsi_nums, lsi_paths)] | ||||
|         self.jobs = list(chain(*map(lambda gs: gs.jobs, self.subgrids))) | ||||
							
								
								
									
										33
									
								
								clustering/pick_best_clustering.py
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										33
									
								
								clustering/pick_best_clustering.py
									
									
									
									
									
										Executable file
									
								
							| @ -0,0 +1,33 @@ | ||||
| #!/usr/bin/env python3 | ||||
| import fire | ||||
| import pandas as pd | ||||
| from pathlib import Path | ||||
| import shutil | ||||
| selection_data="/gscratch/comdata/users/nathante/competitive_exclusion_reddit/data/clustering/comment_authors_compex_LSI/selection_data.csv" | ||||
| 
 | ||||
| outpath = 'test_best.feather' | ||||
| min_clusters=50; max_isolates=7500; min_cluster_size=2 | ||||
| 
 | ||||
| # pick the best clustering according to silhouette score subject to contraints | ||||
| def pick_best_clustering(selection_data, output, min_clusters, max_isolates, min_cluster_size): | ||||
|     df = pd.read_csv(selection_data,index_col=0) | ||||
|     df = df.sort_values("silhouette_score",ascending=False) | ||||
| 
 | ||||
|     # not sure I fixed the bug underlying this fully or not. | ||||
|     df['n_isolates_str'] = df.n_isolates.str.strip("[]") | ||||
|     df['n_isolates_0'] = df['n_isolates_str'].apply(lambda l: len(l) == 0) | ||||
|     df.loc[df.n_isolates_0,'n_isolates'] = 0 | ||||
|     df.loc[~df.n_isolates_0,'n_isolates'] = df.loc[~df.n_isolates_0].n_isolates_str.apply(lambda l: int(l)) | ||||
|      | ||||
|     best_cluster = df[(df.n_isolates <= max_isolates)&(df.n_clusters >= min_clusters)&(df.min_cluster_size==min_cluster_size)] | ||||
| 
 | ||||
|     best_cluster = best_cluster.iloc[0] | ||||
| 
 | ||||
|     best_lsi_dimensions = best_cluster.lsi_dimensions | ||||
|     print(best_cluster.to_dict()) | ||||
|     best_path = Path(best_cluster.outpath) / (str(best_cluster['name']) + ".feather") | ||||
|     shutil.copy(best_path,output) | ||||
|     print(f"lsi dimensions:{best_lsi_dimensions}") | ||||
|      | ||||
| if __name__ == "__main__": | ||||
|     fire.Fire(pick_best_clustering) | ||||
| @ -1,101 +1,38 @@ | ||||
| from sklearn.metrics import silhouette_score | ||||
| from sklearn.cluster import AffinityPropagation | ||||
| from functools import partial | ||||
| from clustering import _affinity_clustering, read_similarity_mat | ||||
| from dataclasses import dataclass | ||||
| from multiprocessing  import Pool, cpu_count, Array, Process | ||||
| from pathlib import Path | ||||
| from itertools import product, starmap | ||||
| import numpy as np | ||||
| import pandas as pd | ||||
| import fire | ||||
| import sys | ||||
| import plotnine as pn | ||||
| from pathlib import Path | ||||
| from clustering.fit_tsne import fit_tsne | ||||
| from visualization.tsne_vis import build_visualization | ||||
| 
 | ||||
| # silhouette is the only one that doesn't need the feature matrix. So it's probably the only one that's worth trying.  | ||||
| df = pd.read_csv("/gscratch/comdata/output/reddit_clustering/subreddit_comment_authors-tf_10k_LSI/hdbscan/selection_data.csv",index_col=0) | ||||
| 
 | ||||
| @dataclass | ||||
| class clustering_result: | ||||
|     outpath:Path | ||||
|     damping:float | ||||
|     max_iter:int | ||||
|     convergence_iter:int | ||||
|     preference_quantile:float | ||||
|     silhouette_score:float | ||||
|     alt_silhouette_score:float | ||||
|     name:str | ||||
| # plot silhouette_score as a function of isolates | ||||
| df = df.sort_values("silhouette_score") | ||||
| 
 | ||||
| df['n_isolates'] = df.n_isolates.str.split("\n0").apply(lambda rg: int(rg[1])) | ||||
| p = pn.ggplot(df,pn.aes(x='n_isolates',y='silhouette_score')) + pn.geom_point() | ||||
| p.save("isolates_x_score.png") | ||||
| 
 | ||||
| def sim_to_dist(mat): | ||||
|     dist = 1-mat | ||||
|     dist[dist < 0] = 0 | ||||
|     np.fill_diagonal(dist,0) | ||||
|     return dist | ||||
| p = pn.ggplot(df,pn.aes(y='n_clusters',x='n_isolates',color='silhouette_score')) + pn.geom_point() | ||||
| p.save("clusters_x_isolates.png") | ||||
| 
 | ||||
| def do_clustering(damping, convergence_iter, preference_quantile, name, mat, subreddits,  max_iter,  outdir:Path, random_state, verbose, alt_mat, overwrite=False): | ||||
|     if name is None: | ||||
|         name = f"damping-{damping}_convergenceIter-{convergence_iter}_preferenceQuantile-{preference_quantile}" | ||||
|     print(name) | ||||
|     sys.stdout.flush() | ||||
|     outpath = outdir / (str(name) + ".feather") | ||||
|     print(outpath) | ||||
|     clustering = _affinity_clustering(mat, subreddits, outpath, damping, max_iter, convergence_iter, preference_quantile, random_state, verbose) | ||||
|     mat = sim_to_dist(clustering.affinity_matrix_) | ||||
| # the best result for hdbscan seems like this one: it has a decent number of  | ||||
| # i think I prefer the 'eom' clustering style because larger clusters are less likely to suffer from ommitted variables | ||||
| best_eom = df[(df.n_isolates <5000)&(df.silhouette_score>0.4)&(df.cluster_selection_method=='eom')&(df.min_cluster_size==2)].iloc[df.shape[1]] | ||||
| 
 | ||||
|     score = silhouette_score(mat, clustering.labels_, metric='precomputed') | ||||
| best_lsi = df[(df.n_isolates <5000)&(df.silhouette_score>0.4)&(df.cluster_selection_method=='leaf')&(df.min_cluster_size==2)].iloc[df.shape[1]] | ||||
| 
 | ||||
|     if alt_mat is not None: | ||||
|         alt_distances = sim_to_dist(alt_mat) | ||||
|         alt_score = silhouette_score(alt_mat, clustering.labels_, metric='precomputed') | ||||
| tsne_data = Path("./clustering/authors-tf_lsi850_tsne.feather") | ||||
| 
 | ||||
|     res = clustering_result(outpath=outpath, | ||||
|                             damping=damping, | ||||
|                             max_iter=max_iter, | ||||
|                             convergence_iter=convergence_iter, | ||||
|                             preference_quantile=preference_quantile, | ||||
|                             silhouette_score=score, | ||||
|                             alt_silhouette_score=score, | ||||
|                             name=str(name)) | ||||
| if not tnse_data.exists(): | ||||
|     fit_tsne("/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors-tf_10k_LSI/850.feather", | ||||
|              tnse_data) | ||||
| 
 | ||||
|     return res | ||||
| build_visualization("./clustering/authors-tf_lsi850_tsne.feather", | ||||
|                     Path(best_eom.outpath)/(best_eom['name']+'.feather'), | ||||
|                     "./authors-tf_lsi850_best_eom.html") | ||||
| 
 | ||||
| # alt similiarities is for checking the silhouette coefficient of an alternative measure of similarity (e.g., topic similarities for user clustering). | ||||
| build_visualization("./clustering/authors-tf_lsi850_tsne.feather", | ||||
|                     Path(best_leaf.outpath)/(best_leaf['name']+'.feather'), | ||||
|                     "./authors-tf_lsi850_best_leaf.html") | ||||
| 
 | ||||
| def select_affinity_clustering(similarities, outdir, outinfo, damping=[0.9], max_iter=100000, convergence_iter=[30], preference_quantile=[0.5], random_state=1968, verbose=True, alt_similarities=None, J=None): | ||||
| 
 | ||||
|     damping = list(map(float,damping)) | ||||
|     convergence_iter = convergence_iter = list(map(int,convergence_iter)) | ||||
|     preference_quantile = list(map(float,preference_quantile)) | ||||
| 
 | ||||
|     if type(outdir) is str: | ||||
|         outdir = Path(outdir) | ||||
| 
 | ||||
|     outdir.mkdir(parents=True,exist_ok=True) | ||||
| 
 | ||||
|     subreddits, mat = read_similarity_mat(similarities,use_threads=True) | ||||
| 
 | ||||
|     if alt_similarities is not None: | ||||
|         alt_mat = read_similarity_mat(alt_similarities,use_threads=True) | ||||
|     else: | ||||
|         alt_mat = None | ||||
| 
 | ||||
|     if J is None: | ||||
|         J = cpu_count() | ||||
|     pool = Pool(J) | ||||
| 
 | ||||
|     # get list of tuples: the combinations of hyperparameters | ||||
|     hyper_grid = product(damping, convergence_iter, preference_quantile) | ||||
|     hyper_grid = (t + (str(i),) for i, t in enumerate(hyper_grid)) | ||||
| 
 | ||||
|     _do_clustering = partial(do_clustering,  mat=mat, subreddits=subreddits, outdir=outdir, max_iter=max_iter, random_state=random_state, verbose=verbose, alt_mat=alt_mat) | ||||
| 
 | ||||
|     #    similarities = Array('d', mat) | ||||
|     # call pool.starmap | ||||
|     print("running clustering selection") | ||||
|     clustering_data = pool.starmap(_do_clustering, hyper_grid) | ||||
|     clustering_data = pd.DataFrame(list(clustering_data)) | ||||
|     clustering_data.to_csv(outinfo) | ||||
|      | ||||
|     return clustering_data | ||||
| 
 | ||||
| if __name__ == "__main__": | ||||
|     x = fire.Fire(select_affinity_clustering) | ||||
|  | ||||
							
								
								
									
										4
									
								
								clustering/validation.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										4
									
								
								clustering/validation.py
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,4 @@ | ||||
| from sklearn import metrics | ||||
| from sklearn.cluster import AffinityPropagation | ||||
| from functools import partial | ||||
| # sillouette is the only one that doesn't need the feature matrix. So it's probably the only one that's worth trying.  | ||||
							
								
								
									
										28
									
								
								datasets/Makefile
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										28
									
								
								datasets/Makefile
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,28 @@ | ||||
| all: ../../data/reddit_comments_by_subreddit.parquet ../../data/reddit_submissions_by_subreddit.parquet | ||||
| 
 | ||||
| ../../data/reddit_comments_by_subreddit.parquet:../../data/temp/reddit_comments.parquet | ||||
| 	../start_spark_and_run.sh 4 comments_2_parquet_part2.py | ||||
| 
 | ||||
| ../../data/temp/reddit_comments.parquet: comments_task_list.sh run_comments_jobs.sbatch | ||||
| 	mkdir -p comments_jobs | ||||
| 	mkdir -p ../../data/temp/ | ||||
| 	sbatch --wait --array=1-$(shell cat comments_task_list.sh | wc -l) run_comments_jobs.sbatch 0 | ||||
| 
 | ||||
| temp_reddit_comments.parquet: ../../data/temp/reddit_comments.parquet | ||||
| 
 | ||||
| comments_task_list.sh: comments_2_parquet_part1.py | ||||
| 	srun -p compute-bigmem -A comdata --nodes=1 --mem-per-cpu=9g -c 40 --time=120:00:00 bash -c "source ~/.bashrc && python3 comments_2_parquet_part1.py gen_task_list --overwrite=False" | ||||
| 
 | ||||
| submissions_task_list.sh: submissions_2_parquet_part1.py | ||||
| 	srun -p compute-bigmem -A comdata --nodes=1 --mem-per-cpu=9g -c 40 --time=120:00:00 python3 submissions_2_parquet_part1.py gen_task_list | ||||
| 
 | ||||
| ../../data/reddit_submissions_by_subreddit.parquet:../../data/temp/reddit_submissions.parquet | ||||
| 	../start_spark_and_run.sh 4 submissions_2_parquet_part2.py | ||||
| 
 | ||||
| ../../data/temp/reddit_submissions.parquet: submissions_task_list.sh run_submissions_jobs.sbatch | ||||
| 	mkdir -p submissions_jobs | ||||
| 	rm -rf ../../data/temp/reddit_submissions.parquet | ||||
| 	mkdir -p ../../data/temp/ | ||||
| 	sbatch --wait --array=1-$(shell cat submissions_task_list.sh | wc -l) run_submissions_jobs.sbatch 0 | ||||
| 
 | ||||
| temp_reddit_submissions.parquet: ../../data/temp/reddit_submissions.parquet | ||||
| @ -1,26 +0,0 @@ | ||||
| #!/bin/bash | ||||
| ## parallel_sql_job.sh | ||||
| #SBATCH --job-name=tf_subreddit_comments | ||||
| ## Allocation Definition | ||||
| #SBATCH --account=comdata-ckpt | ||||
| #SBATCH --partition=ckpt | ||||
| ## Resources | ||||
| ## Nodes. This should always be 1 for parallel-sql. | ||||
| #SBATCH --nodes=1     | ||||
| ## Walltime (12 hours) | ||||
| #SBATCH --time=12:00:00 | ||||
| ## Memory per node | ||||
| #SBATCH --mem=32G | ||||
| #SBATCH --cpus-per-task=4 | ||||
| #SBATCH --ntasks=1 | ||||
| #SBATCH -D /gscratch/comdata/users/nathante/cdsc-reddit | ||||
| source ./bin/activate | ||||
| module load parallel_sql | ||||
| echo $(which perl) | ||||
| conda list pyarrow | ||||
| which python3 | ||||
| #Put here commands to load other modules (e.g. matlab etc.) | ||||
| #Below command means that parallel_sql will get tasks from the database | ||||
| #and run them on the node (in parallel). So a 16 core node will have | ||||
| #16 tasks running at one time. | ||||
| parallel-sql --sql -a parallel --exit-on-term --jobs 4 | ||||
| @ -1,10 +1,10 @@ | ||||
| #!/usr/bin/env bash | ||||
| ## needs to be run by hand since i don't have a nice way of waiting on a parallel-sql job to complete  | ||||
| 
 | ||||
| #!/usr/bin/env bash | ||||
| echo "#!/usr/bin/bash" > job_script.sh | ||||
| #echo "source $(pwd)/../bin/activate" >> job_script.sh | ||||
| echo "python3 $(pwd)/comments_2_parquet_part1.py" >> job_script.sh | ||||
| 
 | ||||
| srun -p comdata -A comdata --nodes=1 --mem=120G --time=48:00:00 --pty job_script.sh | ||||
| srun -p compute-bigmem -A comdata --nodes=1 --mem-per-cpu=9g -c 40 --time=120:00:00 --pty job_script.sh | ||||
| 
 | ||||
| start_spark_and_run.sh 1 $(pwd)/comments_2_parquet_part2.py | ||||
|  | ||||
| @ -1,12 +1,15 @@ | ||||
| #!/usr/bin/env python3 | ||||
| import os | ||||
| import json | ||||
| from datetime import datetime | ||||
| from multiprocessing import Pool | ||||
| from itertools import islice | ||||
| from helper import find_dumps, open_fileset | ||||
| from helper import open_input_file, find_dumps | ||||
| import pandas as pd | ||||
| import pyarrow as pa | ||||
| import pyarrow.parquet as pq | ||||
| from pathlib import Path | ||||
| import fire | ||||
| 
 | ||||
| def parse_comment(comment, names= None): | ||||
|     if names is None: | ||||
| @ -44,19 +47,14 @@ def parse_comment(comment, names= None): | ||||
|     return tuple(row) | ||||
| 
 | ||||
| 
 | ||||
| #    conf = sc._conf.setAll([('spark.executor.memory', '20g'), ('spark.app.name', 'extract_reddit_timeline'), ('spark.executor.cores', '26'), ('spark.cores.max', '26'), ('spark.driver.memory','84g'),('spark.driver.maxResultSize','0'),('spark.local.dir','/gscratch/comdata/spark_tmp')]) | ||||
| #    conf = sc._conf.setAll([('spark.executor.memory', '20g'), ('spark.app.name', 'extract_reddit_timeline'), ('spark.executor.cores', '26'), ('spark.cores.max', '26'), ('spark.driver.memory','84g'),('spark.driver.maxResultSize','0'),('spark.local.dir','../../data/spark_tmp')]) | ||||
| 
 | ||||
| dumpdir = "/gscratch/comdata/raw_data/reddit_dumps/comments/" | ||||
| def parse_dump(partition): | ||||
| 
 | ||||
| files = list(find_dumps(dumpdir, base_pattern="RC_20*")) | ||||
|     dumpdir = f"../../data/reddit_dumps/comments/{partition}" | ||||
| 
 | ||||
| pool = Pool(28) | ||||
| 
 | ||||
| stream = open_fileset(files) | ||||
| 
 | ||||
| N = int(1e4) | ||||
| 
 | ||||
| rows = pool.imap_unordered(parse_comment, stream, chunksize=int(N/28)) | ||||
|     stream = open_input_file(dumpdir) | ||||
|     rows = map(parse_comment, stream) | ||||
| 
 | ||||
|     schema = pa.schema([ | ||||
|         pa.field('id', pa.string(), nullable=True), | ||||
| @ -78,33 +76,16 @@ schema = pa.schema([ | ||||
|         pa.field('error', pa.string(), nullable=True), | ||||
|     ]) | ||||
| 
 | ||||
| from pathlib import Path | ||||
| p = Path("/gscratch/comdata/output/reddit_comments.parquet_temp2") | ||||
|     p = Path("../../data/temp/reddit_comments.parquet") | ||||
|     p.mkdir(exist_ok=True,parents=True) | ||||
| 
 | ||||
| if not p.is_dir(): | ||||
|     if p.exists(): | ||||
|         p.unlink() | ||||
|     p.mkdir() | ||||
| 
 | ||||
| else: | ||||
|     list(map(Path.unlink,p.glob('*'))) | ||||
| 
 | ||||
| part_size = int(1e7) | ||||
| part = 1 | ||||
| n_output = 0 | ||||
| writer = pq.ParquetWriter(f"/gscratch/comdata/output/reddit_comments.parquet_temp2/part_{part}.parquet",schema=schema,compression='snappy',flavor='spark') | ||||
|     N=10000 | ||||
|     with pq.ParquetWriter(f"../../data/temp/reddit_comments.parquet/{partition}.parquet", | ||||
|                           schema=schema, | ||||
|                           compression='snappy', | ||||
|                           flavor='spark') as writer: | ||||
| 
 | ||||
|         while True: | ||||
|     if n_output > part_size: | ||||
|         if part > 1: | ||||
|             writer.close() | ||||
| 
 | ||||
|         part = part + 1 | ||||
|         n_output = 0 | ||||
|      | ||||
|         writer = pq.ParquetWriter(f"/gscratch/comdata/output/reddit_comments.parquet_temp2/part_{part}.parquet",schema=schema,compression='snappy',flavor='spark') | ||||
| 
 | ||||
|     n_output += N | ||||
|             chunk = islice(rows,N) | ||||
|             pddf = pd.DataFrame(chunk, columns=schema.names) | ||||
|             table = pa.Table.from_pandas(pddf,schema=schema) | ||||
| @ -112,4 +93,19 @@ while True: | ||||
|                 break | ||||
|             writer.write_table(table) | ||||
| 
 | ||||
|         writer.close() | ||||
| 
 | ||||
| 
 | ||||
| def gen_task_list(dumpdir="../../data/raw_data/reddit_dumps/comments", overwrite=True): | ||||
|     files = list(find_dumps(dumpdir,base_pattern="RC_20*.*")) | ||||
|     with open("comments_task_list.sh",'w') as of: | ||||
|         for fpath in files: | ||||
|             partition = os.path.split(fpath)[1] | ||||
|             if (not Path(f"../../data/temp/reddit_comments.parquet/{partition}.parquet").exists()) or (overwrite is True): | ||||
|                 of.write(f'python3 comments_2_parquet_part1.py parse_dump {partition}\n') | ||||
| 
 | ||||
| 
 | ||||
| if __name__ == '__main__': | ||||
|     fire.Fire({'parse_dump':parse_dump, | ||||
|               'gen_task_list':gen_task_list}) | ||||
| 
 | ||||
|  | ||||
| @ -2,12 +2,19 @@ | ||||
| 
 | ||||
| # spark script to make sorted, and partitioned parquet files  | ||||
| 
 | ||||
| import pyspark | ||||
| from pyspark.sql import functions as f | ||||
| from pyspark.sql import SparkSession | ||||
| 
 | ||||
| spark = SparkSession.builder.getOrCreate() | ||||
| 
 | ||||
| df = spark.read.parquet("/gscratch/comdata/output/reddit_comments.parquet_temp2",compression='snappy') | ||||
| conf = pyspark.SparkConf().setAppName("Reddit submissions to parquet") | ||||
| conf = conf.set("spark.sql.shuffle.partitions",2400) | ||||
| conf = conf.set('spark.sql.crossJoin.enabled',"true") | ||||
| conf = conf.set('spark.debug.maxToStringFields',200) | ||||
| sc = spark.sparkContext | ||||
| 
 | ||||
| df = spark.read.parquet("/gscratch/comdata/output/temp/reddit_comments.parquet",compression='snappy') | ||||
| 
 | ||||
| df = df.withColumn("subreddit_2", f.lower(f.col('subreddit'))) | ||||
| df = df.drop('subreddit') | ||||
| @ -18,12 +25,13 @@ df = df.withColumn("Month",f.month(f.col("CreatedAt"))) | ||||
| df = df.withColumn("Year",f.year(f.col("CreatedAt"))) | ||||
| df = df.withColumn("Day",f.dayofmonth(f.col("CreatedAt"))) | ||||
| 
 | ||||
| df = df.repartition('subreddit') | ||||
| df2 = df.sort(["subreddit","CreatedAt","link_id","parent_id","Year","Month","Day"],ascending=True) | ||||
| df2 = df2.sortWithinPartitions(["subreddit","CreatedAt","link_id","parent_id","Year","Month","Day"],ascending=True) | ||||
| df2.write.parquet("/gscratch/comdata/users/nathante/reddit_comments_by_subreddit.parquet_new", mode='overwrite', compression='snappy') | ||||
| # df = df.repartition(1200,'subreddit') | ||||
| # df2 = df.sort(["subreddit","CreatedAt","link_id","parent_id","Year","Month","Day"],ascending=True) | ||||
| # df2 = df2.sortWithinPartitions(["subreddit","CreatedAt","link_id","parent_id","Year","Month","Day"],ascending=True) | ||||
| # df2.write.parquet("/gscratch/scrubbed/comdata/reddit_comments_by_subreddit.parquet", mode='overwrite', compression='snappy') | ||||
| 
 | ||||
| df = df.repartition('author') | ||||
| df3 = df.sort(["author","CreatedAt","subreddit","link_id","parent_id","Year","Month","Day"],ascending=True) | ||||
| df3 = df3.sortWithinPartitions(["author","CreatedAt","subreddit","link_id","parent_id","Year","Month","Day"],ascending=True) | ||||
| df3.write.parquet("/gscratch/comdata/users/nathante/reddit_comments_by_author.parquet_new", mode='overwrite',compression='snappy') | ||||
| #df = spark.read.parquet("/gscratch/scrubbed/comdata/reddit_comments_by_subreddit.parquet") | ||||
| df = df.repartition(2400,'author','subreddit',"Year","Month","Day") | ||||
| df3 = df.sort(["author","subreddit","Year","Month","Day","CreatedAt","link_id","parent_id"],ascending=True) | ||||
| df3 = df3.sortWithinPartitions(["author","subreddit","Year","Month","Day","CreatedAt","link_id","parent_id"],ascending=True) | ||||
| df3.write.parquet("/gscratch/scrubbed/comdata/reddit_comments_by_author.parquet", mode='overwrite',compression='snappy') | ||||
|  | ||||
| @ -24,8 +24,7 @@ def open_fileset(files): | ||||
|     for fh in files: | ||||
|         print(fh) | ||||
|         lines = open_input_file(fh) | ||||
|         for line in lines: | ||||
|             yield line | ||||
|         yield from lines | ||||
| 
 | ||||
| def open_input_file(input_filename): | ||||
|     if re.match(r'.*\.7z$', input_filename): | ||||
| @ -39,7 +38,7 @@ def open_input_file(input_filename): | ||||
|     elif re.match(r'.*\.xz', input_filename): | ||||
|         cmd = ["xzcat",'-dk', '-T 20',input_filename] | ||||
|     elif re.match(r'.*\.zst',input_filename): | ||||
|         cmd = ['zstd','-dck', input_filename] | ||||
|         cmd = ['/kloneusr/bin/zstd','-dck', input_filename,  '--memory=2048MB --stdout'] | ||||
|     elif re.match(r'.*\.gz',input_filename): | ||||
|         cmd = ['gzip','-dc', input_filename] | ||||
|     try: | ||||
|  | ||||
| @ -1,4 +0,0 @@ | ||||
| #!/usr/bin/bash | ||||
| start_spark_cluster.sh | ||||
| spark-submit --master spark://$(hostname):18899 weekly_cosine_similarities.py term --outfile=/gscratch/comdata/users/nathante/subreddit_term_similarity_weekly_5000.parquet --topN=5000 | ||||
| stop-all.sh | ||||
							
								
								
									
										24
									
								
								datasets/run_comments_jobs.sbatch
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										24
									
								
								datasets/run_comments_jobs.sbatch
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,24 @@ | ||||
| #!/bin/bash | ||||
| ## tf reddit comments | ||||
| #SBATCH --job-name="cdsc_reddit; parse comment dumps" | ||||
| ## Allocation Definition | ||||
| #SBATCH --account=comdata | ||||
| #SBATCH --partition=compute-bigmem | ||||
| ## Resources | ||||
| ## Nodes. This should always be 1 for parallel-sql. | ||||
| #SBATCH --nodes=1     | ||||
| ## Walltime (12 hours) | ||||
| #SBATCH --time=24:00:00 | ||||
| ## Memory per node | ||||
| #SBATCH --mem=8G | ||||
| #SBATCH --cpus-per-task=1 | ||||
| #SBATCH --ntasks=1 | ||||
| #SBATCH  | ||||
| #SBATCH --chdir /gscratch/comdata/users/nathante/partitioning_reddit/dataverse/cdsc_reddit/datasets | ||||
| #SBATCH --output=comments_jobs/%A_%a.out | ||||
| #SBATCH --error=comments_jobs/%A_%a.out | ||||
| . /opt/ohpc/admin/lmod/lmod/init/profile | ||||
| source ~/.bashrc | ||||
| TASK_NUM=$(( SLURM_ARRAY_TASK_ID + $1)) | ||||
| TASK_CALL=$(sed -n ${TASK_NUM}p ./comments_task_list.sh) | ||||
| ${TASK_CALL} | ||||
							
								
								
									
										23
									
								
								datasets/run_submissions_jobs.sbatch
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										23
									
								
								datasets/run_submissions_jobs.sbatch
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,23 @@ | ||||
| #!/bin/bash | ||||
| ## tf reddit comments | ||||
| #SBATCH --job-name="cdsc_reddit; parse submission dumps" | ||||
| ## Allocation Definition | ||||
| #SBATCH --account=comdata-ckpt | ||||
| #SBATCH --partition=ckpt | ||||
| ## Resources | ||||
| ## Nodes. This should always be 1 for parallel-sql. | ||||
| #SBATCH --nodes=1     | ||||
| ## Walltime (12 hours) | ||||
| #SBATCH --time=24:00:00 | ||||
| ## Memory per node | ||||
| #SBATCH --mem=8G | ||||
| #SBATCH --cpus-per-task=1 | ||||
| #SBATCH --ntasks=1 | ||||
| #SBATCH  | ||||
| #SBATCH --chdir /gscratch/comdata/users/nathante/cdsc_reddit/datasets | ||||
| #SBATCH --output=submissions_jobs/%A_%a.out | ||||
| #SBATCH --error=submissions_jobs/%A_%a.out | ||||
| 
 | ||||
| TASK_NUM=$(( SLURM_ARRAY_TASK_ID + $1)) | ||||
| TASK_CALL=$(sed -n ${TASK_NUM}p ./submissions_task_list.sh) | ||||
| ${TASK_CALL} | ||||
							
								
								
									
										4
									
								
								datasets/submissions_2_parquet.sh
									
									
									
									
									
										
										
										Normal file → Executable file
									
								
							
							
						
						
									
										4
									
								
								datasets/submissions_2_parquet.sh
									
									
									
									
									
										
										
										Normal file → Executable file
									
								
							| @ -1,8 +1,8 @@ | ||||
| #!/usr/bin/env bash | ||||
| ## this should be run manually since we don't have a nice way to wait on parallel_sql jobs | ||||
| 
 | ||||
| #!/usr/bin/env bash | ||||
| 
 | ||||
| ./parse_submissions.sh | ||||
| srun -p compute-bigmem -A comdata --nodes=1 --mem-per-cpu=9g -c 40 --time=120:00:00 python3 $(pwd)/submissions_2_parquet_part1.py gen_task_list | ||||
| 
 | ||||
| start_spark_and_run.sh 1 $(pwd)/submissions_2_parquet_part2.py | ||||
| 
 | ||||
|  | ||||
| @ -3,26 +3,23 @@ | ||||
| # two stages: | ||||
| # 1. from gz to arrow parquet (this script)  | ||||
| # 2. from arrow parquet to spark parquet (submissions_2_parquet_part2.py) | ||||
| 
 | ||||
| from datetime import datetime | ||||
| from multiprocessing import Pool | ||||
| from pathlib import Path | ||||
| from itertools import islice | ||||
| from helper import find_dumps, open_fileset | ||||
| import pandas as pd | ||||
| import pyarrow as pa | ||||
| import pyarrow.parquet as pq | ||||
| import simdjson | ||||
| import fire | ||||
| import os | ||||
| 
 | ||||
| parser = simdjson.Parser() | ||||
| import json | ||||
| 
 | ||||
| def parse_submission(post, names = None): | ||||
|     if names is None: | ||||
|         names = ['id','author','subreddit','title','created_utc','permalink','url','domain','score','ups','downs','over_18','has_media','selftext','retrieved_on','num_comments','gilded','edited','time_edited','subreddit_type','subreddit_id','subreddit_subscribers','name','is_self','stickied','quarantine','error'] | ||||
| 
 | ||||
|     try: | ||||
|         post = parser.parse(post) | ||||
|         post = json.loads(post) | ||||
|     except (ValueError) as e: | ||||
|         #        print(e) | ||||
|         #        print(post) | ||||
| @ -61,7 +58,7 @@ def parse_submission(post, names = None): | ||||
| def parse_dump(partition): | ||||
| 
 | ||||
|     N=10000 | ||||
|     stream = open_fileset([f"/gscratch/comdata/raw_data/reddit_dumps/submissions/{partition}"]) | ||||
|     stream = open_fileset([f"/gscratch/comdata/raw_data/submissions/{partition}"]) | ||||
|     rows = map(parse_submission,stream) | ||||
|     schema = pa.schema([ | ||||
|         pa.field('id', pa.string(),nullable=True), | ||||
| @ -92,8 +89,7 @@ def parse_dump(partition): | ||||
|         pa.field('quarantine',pa.bool_(),nullable=True), | ||||
|         pa.field('error',pa.string(),nullable=True)]) | ||||
| 
 | ||||
|     if not os.path.exists("/gscratch/comdata/output/temp/reddit_submissions.parquet/"): | ||||
|         os.mkdir("/gscratch/comdata/output/temp/reddit_submissions.parquet/") | ||||
|     Path("/gscratch/comdata/output/temp/reddit_submissions.parquet/").mkdir(exist_ok=True,parents=True) | ||||
| 
 | ||||
|     with pq.ParquetWriter(f"/gscratch/comdata/output/temp/reddit_submissions.parquet/{partition}",schema=schema,compression='snappy',flavor='spark') as writer: | ||||
|         while True: | ||||
| @ -106,9 +102,9 @@ def parse_dump(partition): | ||||
| 
 | ||||
|         writer.close() | ||||
| 
 | ||||
| def gen_task_list(dumpdir="/gscratch/comdata/raw_data/reddit_dumps/submissions"): | ||||
| def gen_task_list(dumpdir="/gscratch/comdata/raw_data/submissions"): | ||||
|     files = list(find_dumps(dumpdir,base_pattern="RS_20*.*")) | ||||
|     with open("parse_submissions_task_list",'w') as of: | ||||
|     with open("submissions_task_list.sh",'w') as of: | ||||
|         for fpath in files: | ||||
|             partition = os.path.split(fpath)[1] | ||||
|             of.write(f'python3 submissions_2_parquet_part1.py parse_dump {partition}\n') | ||||
|  | ||||
| @ -29,14 +29,14 @@ df = df.withColumn("Day",f.dayofmonth(f.col("CreatedAt"))) | ||||
| df = df.withColumn("subreddit_hash",f.sha2(f.col("subreddit"), 256)[0:3]) | ||||
| 
 | ||||
| # next we gotta resort it all. | ||||
| df = df.repartition("subreddit") | ||||
| df2 = df.sort(["subreddit","CreatedAt","id"],ascending=True) | ||||
| df = df.repartition(800,"subreddit","Year","Month") | ||||
| df2 = df.sort(["subreddit","Year","Month","CreatedAt","id"],ascending=True) | ||||
| df2 = df.sortWithinPartitions(["subreddit","CreatedAt","id"],ascending=True) | ||||
| df2.write.parquet("/gscratch/comdata/output/temp/reddit_submissions_by_subreddit.parquet2", mode='overwrite',compression='snappy') | ||||
| 
 | ||||
| 
 | ||||
| # # we also want to have parquet files sorted by author then reddit.  | ||||
| df = df.repartition("author") | ||||
| df3 = df.sort(["author","CreatedAt","id"],ascending=True) | ||||
| df = df.repartition(800,"author","subreddit","Year","Month") | ||||
| df3 = df.sort(["author","Year","Month","CreatedAt","id"],ascending=True) | ||||
| df3 = df.sortWithinPartitions(["author","CreatedAt","id"],ascending=True) | ||||
| df3.write.parquet("/gscratch/comdata/output/temp/reddit_submissions_by_author.parquet2", mode='overwrite',compression='snappy') | ||||
|  | ||||
| @ -1,10 +1,7 @@ | ||||
| all: /gscratch/comdata/output/reddit_density/comment_terms_10000.feather /gscratch/comdata/output/reddit_density/comment_authors_10000.feather /gscratch/comdata/output/reddit_density/subreddit_author_tf_similarities_10000.feather | ||||
| all: ../../data/reddit_density/subreddit_author_tf_similarities_10K_LSI/600.feather | ||||
| 
 | ||||
| /gscratch/comdata/output/reddit_density/comment_terms_10000.feather:overlap_density.py /gscratch/comdata/output/reddit_similarity/comment_terms_10000.feather /gscratch/comdata/output/reddit_similarity/comment_terms_10000.feather | ||||
| 	start_spark_and_run.sh 1 overlap_density.py terms --inpath="/gscratch/comdata/output/reddit_similarity/comment_terms_10000.feather" --outpath="/gscratch/comdata/output/reddit_density/comment_terms_10000.feather" --agg=pd.DataFrame.sum | ||||
| ../../data/reddit_density/subreddit_author_tf_similarities_10K_LSI/600.feather: overlap_density.py ../../data/reddit_similarity/subreddit_comment_authors-tf_10k_LSI/600.feather | ||||
| 	../start_spark_and_run.sh 1 overlap_density.py authors --inpath="../../data/reddit_similarity/subreddit_comment_authors-tf_10k_LSI/600.feather" --outpath="../../data/reddit_density/subreddit_author_tf_similarities_10K_LSI/600.feather" --agg=pd.DataFrame.sum | ||||
| 
 | ||||
| /gscratch/comdata/output/reddit_density/comment_authors_10000.feather:overlap_density.py /gscratch/comdata/output/reddit_similarity/comment_authors_10000.feather | ||||
| 	start_spark_and_run.sh 1 overlap_density.py authors --inpath="/gscratch/comdata/output/reddit_similarity/comment_authors_10000.feather" --outpath="/gscratch/comdata/output/reddit_density/comment_authors_10000.feather" --agg=pd.DataFrame.sum | ||||
| 
 | ||||
| /gscratch/comdata/output/reddit_density/subreddit_author_tf_similarities_10000.feather: overlap_density.py /gscratch/comdata/output/reddit_similarity/subreddit_author_tf_similarities_10000.parquet | ||||
| 	start_spark_and_run.sh 1 overlap_density.py authors --inpath="/gscratch/comdata/output/reddit_similarity/subreddit_author_tf_similarities_10000.parquet" --outpath="/gscratch/comdata/output/reddit_density/subreddit_author_tf_similarities_10000.feather" --agg=pd.DataFrame.sum | ||||
| ../../data/reddit_similarity/subreddit_comment_authors-tf_10k_LSI/600.feather: | ||||
| 	$(MAKE) -C ../similarities | ||||
|  | ||||
| @ -1,4 +1,6 @@ | ||||
| #!/usr/bin/bash | ||||
| source ~/.bashrc | ||||
| echo $(hostname) | ||||
| start_spark_cluster.sh | ||||
| spark-submit --master spark://$(hostname):18899 overlap_density.py authors --inpath=/gscratch/comdata/output/reddit_similarity/comment_authors_10000.feather --outpath=/gscratch/comdata/output/reddit_density/comment_authors_10000.feather --agg=pd.DataFrame.sum | ||||
| spark-submit --verbose --master spark://$(hostname):43015 overlap_density.py authors --inpath=../../data/reddit_similarity/subreddit_comment_authors-tf_10k_LSI/600.feather --outpath=../../data/reddit_density/subreddit_author_tf_similarities_10K_LSI/600.feather --agg=pd.DataFrame.sum | ||||
| stop-all.sh | ||||
|  | ||||
| @ -1,11 +1,12 @@ | ||||
| import pandas as pd | ||||
| from pandas.core.groupby import DataFrameGroupBy as GroupBy | ||||
| from pathlib import Path | ||||
| import fire | ||||
| import numpy as np | ||||
| import sys | ||||
| sys.path.append("..") | ||||
| sys.path.append("../similarities") | ||||
| from similarities.similarities_helper import reindex_tfidf, reindex_tfidf_time_interval | ||||
| # sys.path.append("..") | ||||
| # sys.path.append("../similarities") | ||||
| # from similarities.similarities_helper import pull_tfidf | ||||
| 
 | ||||
| # this is the mean of the ratio of the overlap to the focal size. | ||||
| # mean shared membership per focal community member | ||||
| @ -13,10 +14,12 @@ from similarities.similarities_helper import reindex_tfidf, reindex_tfidf_time_i | ||||
| 
 | ||||
| def overlap_density(inpath, outpath, agg = pd.DataFrame.sum): | ||||
|     df = pd.read_feather(inpath) | ||||
|     df = df.drop('subreddit',1) | ||||
|     df = df.drop('_subreddit',1) | ||||
|     np.fill_diagonal(df.values,0) | ||||
|     df = agg(df, 0).reset_index() | ||||
|     df = df.rename({0:'overlap_density'},axis='columns') | ||||
|     outpath = Path(outpath) | ||||
|     outpath.parent.mkdir(parents=True, exist_ok = True) | ||||
|     df.to_feather(outpath) | ||||
|     return df | ||||
| 
 | ||||
| @ -25,6 +28,8 @@ def overlap_density_weekly(inpath, outpath, agg = GroupBy.sum): | ||||
|     # exclude the diagonal | ||||
|     df = df.loc[df.subreddit != df.variable] | ||||
|     res = agg(df.groupby(['subreddit','week'])).reset_index() | ||||
|     outpath = Path(outpath) | ||||
|     outpath.parent.mkdir(parents=True, exist_ok = True) | ||||
|     res.to_feather(outpath) | ||||
|     return res | ||||
| 
 | ||||
|  | ||||
| @ -6,9 +6,9 @@ from os import path | ||||
| import hashlib | ||||
| 
 | ||||
| shasums1 = requests.get("https://files.pushshift.io/reddit/comments/sha256sum.txt").text | ||||
| shasums2 = requests.get("https://files.pushshift.io/reddit/comments/daily/sha256sum.txt").text | ||||
| #shasums2 = requests.get("https://files.pushshift.io/reddit/comments/daily/sha256sum.txt").text | ||||
| 
 | ||||
| shasums = shasums1 + shasums2 | ||||
| shasums = shasums1  | ||||
| dumpdir = "/gscratch/comdata/raw_data/reddit_dumps/comments" | ||||
| 
 | ||||
| for l in shasums.strip().split('\n'): | ||||
|  | ||||
| @ -1,12 +1,12 @@ | ||||
| #!/bin/bash | ||||
| 
 | ||||
| user_agent='nathante teblunthuis <nathante@uw.edu>' | ||||
| user_agent='"nathante teblunthuis <nathante@uw.edu>"' | ||||
| output_dir='/gscratch/comdata/raw_data/reddit_dumps/comments' | ||||
| base_url='https://files.pushshift.io/reddit/comments/' | ||||
| 
 | ||||
| wget -r --no-parent -A 'RC_201*.bz2' -U $user_agent -P $output_dir -nd -nc $base_url | ||||
| wget -r --no-parent -A 'RC_201*.xz' -U $user_agent -P $output_dir -nd -nc $base_url | ||||
| wget -r --no-parent -A 'RC_201*.zst' -U $user_agent -P $output_dir -nd -nc $base_url | ||||
| wget -r --no-parent -A 'RC_20*.bz2' -U $user_agent -P $output_dir -nd -nc $base_url | ||||
| wget -r --no-parent -A 'RC_20*.xz' -U $user_agent -P $output_dir -nd -nc $base_url | ||||
| wget -r --no-parent -A 'RC_20*.zst' -U $user_agent -P $output_dir -nd -nc $base_url | ||||
| 
 | ||||
| 
 | ||||
| ./check_comments_shas.py | ||||
|  | ||||
| @ -1,14 +1,14 @@ | ||||
| #!/bin/bash | ||||
| 
 | ||||
| user_agent='nathante teblunthuis <nathante@uw.edu>' | ||||
| user_agent='"nathante teblunthuis <nathante@uw.edu>"' | ||||
| output_dir='/gscratch/comdata/raw_data/reddit_dumps/submissions' | ||||
| base_url='https://files.pushshift.io/reddit/submissions/' | ||||
| 
 | ||||
| wget -r --no-parent -A 'RS_20*.bz2' -U $user_agent -P $output_dir -nd -nc $base_url | ||||
| wget -r --no-parent -A 'RS_20*.xz' -U $user_agent -P $output_dir -nd -nc $base_url | ||||
| wget -r --no-parent -A 'RS_20*.zst' -U $user_agent -P $output_dir -nd -nc $base_url | ||||
| wget -r --no-parent -A 'RS_20*.bz2' -U $user_agent -P $output_dir -nd -nc $base_url/old_v1_data/ | ||||
| wget -r --no-parent -A 'RS_20*.xz' -U $user_agent -P $output_dir -nd -nc $base_url/old_v1_data/ | ||||
| wget -r --no-parent -A 'RS_20*.zst' -U $user_agent -P $output_dir -nd -nc $base_url/old_v1_data/ | ||||
| wget -r --no-parent -A 'RS_20*.bz2' --user-agent=$user_agent -P $output_dir -nd -nc $base_url | ||||
| wget -r --no-parent -A 'RS_20*.xz' --user-agent=$user_agent -P $output_dir -nd -nc $base_url | ||||
| wget -r --no-parent -A 'RS_20*.zst' --user-agent=$user_agent -P $output_dir -nd -nc $base_url | ||||
| wget -r --no-parent -A 'RS_20*.bz2' --user-agent=$user_agent -P $output_dir -nd -nc $base_url/old_v1_data/ | ||||
| wget -r --no-parent -A 'RS_20*.xz' --user-agent=$user_agent -P $output_dir -nd -nc $base_url/old_v1_data/ | ||||
| wget -r --no-parent -A 'RS_20*.zst' --user-agent=$user_agent -P $output_dir -nd -nc $base_url/old_v1_data/ | ||||
| 
 | ||||
| ./check_submission_shas.py | ||||
|  | ||||
							
								
								
									
										34
									
								
								dumps/remove_duplicate_comments.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										34
									
								
								dumps/remove_duplicate_comments.py
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,34 @@ | ||||
| from pathlib import Path | ||||
| from itertools import chain, groupby | ||||
| 
 | ||||
| dumpdir = Path("/gscratch/comdata/raw_data/reddit_dumps/comments") | ||||
| 
 | ||||
| zst_files = dumpdir.glob("*.zst") | ||||
| bz2_files = dumpdir.glob("*.bz2") | ||||
| xz_files = dumpdir.glob("*.xz") | ||||
| all_files = sorted(list(chain(zst_files, bz2_files, xz_files))) | ||||
| groups = groupby(all_files, key = lambda p: p.stem) | ||||
| 
 | ||||
| kept_paths = [] | ||||
| removed_paths = [] | ||||
| 
 | ||||
| priority = ['.zst','.xz','.bz2'] | ||||
| 
 | ||||
| for stem, files in groups: | ||||
|     keep_file = None | ||||
|     remove_files = [] | ||||
|     for f in files: | ||||
|         if keep_file is None: | ||||
|             keep_file = f | ||||
|         elif priority.index(keep_file.suffix) > priority.index(f.suffix): | ||||
|             remove_files.append(keep_file) | ||||
|             keep_file = f | ||||
|         else: | ||||
|             remove_files.append(f) | ||||
|     kept_paths.append(keep_file) | ||||
|     removed_paths.extend(remove_files) | ||||
| 
 | ||||
| (dumpdir / "to_remove").mkdir() | ||||
| 
 | ||||
| for f in removed_paths: | ||||
|     f.rename(f.parent / "to_remove" / f.name) | ||||
							
								
								
									
										34
									
								
								dumps/remove_duplicate_submissions.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										34
									
								
								dumps/remove_duplicate_submissions.py
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,34 @@ | ||||
| from pathlib import Path | ||||
| from itertools import chain, groupby | ||||
| 
 | ||||
| dumpdir = Path("/gscratch/comdata/raw_data/reddit_dumps/submissions") | ||||
| 
 | ||||
| zst_files = dumpdir.glob("*.zst") | ||||
| bz2_files = dumpdir.glob("*.bz2") | ||||
| xz_files = dumpdir.glob("*.xz") | ||||
| all_files = sorted(list(chain(zst_files, bz2_files, xz_files))) | ||||
| groups = groupby(all_files, key = lambda p: p.stem) | ||||
| 
 | ||||
| kept_paths = [] | ||||
| removed_paths = [] | ||||
| 
 | ||||
| priority = ['.zst','.xz','.bz2'] | ||||
| 
 | ||||
| for stem, files in groups: | ||||
|     keep_file = None | ||||
|     remove_files = [] | ||||
|     for f in files: | ||||
|         if keep_file is None: | ||||
|             keep_file = f | ||||
|         elif priority.index(keep_file.suffix) > priority.index(f.suffix): | ||||
|             remove_files.append(keep_file) | ||||
|             keep_file = f | ||||
|         else: | ||||
|             remove_files.append(f) | ||||
|     kept_paths.append(keep_file) | ||||
|     removed_paths.extend(remove_files) | ||||
| 
 | ||||
| (dumpdir / "to_remove").mkdir() | ||||
| 
 | ||||
| for f in removed_paths: | ||||
|     f.rename(f.parent / "to_remove" / f.name) | ||||
| @ -1,17 +0,0 @@ | ||||
| import pyarrow.dataset as ds | ||||
| 
 | ||||
| # A pyarrow dataset abstracts reading, writing, or filtering a parquet file. It does not read dataa into memory.  | ||||
| #dataset = ds.dataset(pathlib.Path('/gscratch/comdata/output/reddit_submissions_by_subreddit.parquet/'), format='parquet', partitioning='hive') | ||||
| dataset = ds.dataset('/gscratch/comdata/output/reddit_comments_by_subreddit.parquet/', format='parquet') | ||||
| 
 | ||||
| # let's get all the comments to two subreddits: | ||||
| subreddits_to_pull = ['seattle','seattlewa'] | ||||
| 
 | ||||
| # a table is a low-level structured data format.  This line pulls data into memory. Setting metadata_n_threads > 1 gives a little speed boost. | ||||
| table = dataset.to_table(filter = ds.field('subreddit').isin(subreddits_to_pull), columns=['id','subreddit','CreatedAt','author','ups','downs','score','subreddit_id','stickied','title','url','is_self','selftext']) | ||||
| 
 | ||||
| # Since data from just these 2 subreddits fits in memory we can just turn our table into a pandas dataframe. | ||||
| df = table.to_pandas() | ||||
| 
 | ||||
| # We should save this smaller dataset so we don't have to wait 15 min to pull from parquet next time. | ||||
| df.to_csv("mydataset.csv") | ||||
| @ -1,38 +0,0 @@ | ||||
| import pyarrow.dataset as ds | ||||
| from itertools import groupby | ||||
| 
 | ||||
| # A pyarrow dataset abstracts reading, writing, or filtering a parquet file. It does not read dataa into memory.  | ||||
| 
 | ||||
| dataset = ds.dataset('/gscratch/comdata/output/reddit_submissions_by_author.parquet', format='parquet') | ||||
| 
 | ||||
| # let's get all the comments to two subreddits: | ||||
| subreddits_to_pull = ['seattlewa','seattle'] | ||||
| 
 | ||||
| # instead of loading the data into a pandas dataframe all at once we can stream it. | ||||
| scan_tasks = dataset.scan(filter = ds.field('subreddit').isin(subreddits_to_pull), columns=['id','subreddit','CreatedAt','author','ups','downs','score','subreddit_id','stickied','title','url','is_self','selftext']) | ||||
| 
 | ||||
| # simple function to execute scantasks and generate rows | ||||
| def iterate_rows(scan_tasks): | ||||
|     for st in scan_tasks: | ||||
|         for rb in st.execute(): | ||||
|             df = rb.to_pandas() | ||||
|             for t in df.itertuples(): | ||||
|                 yield t | ||||
| 
 | ||||
| row_iter = iterate_rows(scan_tasks) | ||||
| 
 | ||||
| # now we can use python's groupby function to read one author at a time | ||||
| # note that the same author can appear more than once since the record batches may not be in the correct order. | ||||
| author_submissions = groupby(row_iter, lambda row: row.author) | ||||
| 
 | ||||
| count_dict = {} | ||||
| 
 | ||||
| for auth, posts in author_submissions: | ||||
|     if auth in count_dict: | ||||
|         count_dict[auth] = count_dict[auth] + 1 | ||||
|     else: | ||||
|         count_dict[auth] = 1 | ||||
| 
 | ||||
| # since it's partitioned and sorted by author, we get one group for each author  | ||||
| any([ v != 1 for k,v in count_dict.items()]) | ||||
| 
 | ||||
							
								
								
									
										25
									
								
								ngrams/Makefile
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										25
									
								
								ngrams/Makefile
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,25 @@ | ||||
| outputdir=../../data/reddit_ngrams/ | ||||
| inputdir=../../data/reddit_comments_by_subreddit.parquet | ||||
| authors_tfdir=${outputdir}/comment_authors.parquet | ||||
| srun=sbatch --wait --verbose run_job.sbatch | ||||
| 
 | ||||
| all: ${outputdir}/comment_authors_sorted.parquet/_SUCCESS  | ||||
| 
 | ||||
| tf_task_list_1: tf_comments.py | ||||
| 	${srun} bash -c "python3 tf_comments.py gen_task_list --mwe_pass='first' --outputdir=${outputdir} --tf_task_list=$@ --inputdir=${inputdir}" | ||||
| 
 | ||||
| ${outputdir}/comment_terms.parquet:tf_task_list_1 | ||||
| 	mkdir -p sbatch_log | ||||
| 	sbatch --wait --verbose --array=1-$(shell cat $< | wc -l) run_array.sbatch 0 $< | ||||
| 
 | ||||
| ${outputdir}/comment_authors.parquet:${outputdir}/comment_terms.parquet | ||||
| 	- | ||||
| 
 | ||||
| ${outputdir}/comment_authors_sorted.parquet:${outputdir}/comment_authors.parquet sort_tf_comments.py | ||||
| 	../start_spark_and_run.sh 3 sort_tf_comments.py --inparquet=$< --outparquet=$@ --colname=author | ||||
| 
 | ||||
| ${outputdir}/comment_authors_sorted.parquet/_SUCCESS:${outputdir}/comment_authors_sorted.parquet | ||||
| 
 | ||||
| 
 | ||||
| ${inputdir}: | ||||
| 	$(MAKE) -C ../datasets | ||||
							
								
								
									
										19
									
								
								ngrams/run_array.sbatch
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										19
									
								
								ngrams/run_array.sbatch
									
									
									
									
									
										Executable file
									
								
							| @ -0,0 +1,19 @@ | ||||
| #!/bin/bash | ||||
| #SBATCH --job-name=reddit_comment_term_frequencies | ||||
| #SBATCH --account=comdata | ||||
| #SBATCH --partition=compute-bigmem | ||||
| #SBATCH --nodes=1 | ||||
| #SBATCH --ntasks-per-node=1 | ||||
| #SBATCH --cpus-per-task=1 | ||||
| #SBATCH --mem-per-cpu=9g | ||||
| #SBATCH --ntasks=1 | ||||
| #SBATCH --export=ALL | ||||
| #SBATCH --time=48:00:00 | ||||
| #SBATCH --chdir=/gscratch/comdata/users/nathante/partitioning_reddit/dataverse/cdsc_reddit/ngrams | ||||
| #SBATCH --error="sbatch_log/%A_%a.out" | ||||
| #SBATCH --output="sbatch_log/%A_%a.out" | ||||
| 
 | ||||
| TASK_NUM=$(($SLURM_ARRAY_TASK_ID + $1)) | ||||
| TASK_CALL=$(sed -n ${TASK_NUM}p $2) | ||||
| ${TASK_CALL} | ||||
| 
 | ||||
							
								
								
									
										18
									
								
								ngrams/run_job.sbatch
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										18
									
								
								ngrams/run_job.sbatch
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,18 @@ | ||||
| #!/bin/bash | ||||
| #SBATCH --job-name="simulate measurement error models" | ||||
| ## Allocation Definition | ||||
| #SBATCH --account=comdata | ||||
| #SBATCH --partition=compute-bigmem | ||||
| ## Resources | ||||
| #SBATCH --nodes=1     | ||||
| ## Walltime (4 hours) | ||||
| #SBATCH --time=4:00:00 | ||||
| ## Memory per node | ||||
| #SBATCH --mem=4G | ||||
| #SBATCH --cpus-per-task=1 | ||||
| #SBATCH --ntasks-per-node=1 | ||||
| #SBATCH --chdir /gscratch/comdata/users/nathante/partitioning_reddit/dataverse/cdsc_reddit/ngrams/ | ||||
| #SBATCH --output=sbatch_log/%A_%a.out | ||||
| #SBATCH --error=sbatch_log/%A_%a.err | ||||
| echo "$@" | ||||
| "$@" | ||||
| @ -1,8 +1,6 @@ | ||||
| #!/usr/bin/env bash | ||||
| module load parallel_sql | ||||
| 
 | ||||
| source ./bin/activate | ||||
| python3 tf_comments.py gen_task_list | ||||
| psu --del --Y | ||||
| cat tf_task_list | psu --load | ||||
| 
 | ||||
| for job in $(seq 1 50); do sbatch checkpoint_parallelsql.sbatch; done; | ||||
|  | ||||
| @ -2,12 +2,17 @@ | ||||
| 
 | ||||
| from pyspark.sql import functions as f | ||||
| from pyspark.sql import SparkSession | ||||
| import fire | ||||
| 
 | ||||
| def main(inparquet, outparquet, colname): | ||||
|     spark = SparkSession.builder.getOrCreate() | ||||
| df = spark.read.parquet("/gscratch/comdata/users/nathante/reddit_tfidf_test.parquet_temp/") | ||||
|     df = spark.read.parquet(inparquet) | ||||
| 
 | ||||
| df = df.repartition(2000,'term') | ||||
| df = df.sort(['term','week','subreddit']) | ||||
| df = df.sortWithinPartitions(['term','week','subreddit']) | ||||
|     df = df.repartition(2000,colname) | ||||
|     df = df.sort([colname,'week','subreddit']) | ||||
|     df = df.sortWithinPartitions([colname,'week','subreddit']) | ||||
| 
 | ||||
| df.write.parquet("/gscratch/comdata/users/nathante/reddit_tfidf_test_sorted_tf.parquet_temp",mode='overwrite',compression='snappy') | ||||
|     df.write.parquet(outparquet,mode='overwrite',compression='snappy') | ||||
| 
 | ||||
| if __name__ == '__main__': | ||||
|     fire.Fire(main) | ||||
|  | ||||
							
								
								
									
										211
									
								
								ngrams/tf_comments.py
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										211
									
								
								ngrams/tf_comments.py
									
									
									
									
									
										Executable file
									
								
							| @ -0,0 +1,211 @@ | ||||
| #!/usr/bin/env python3 | ||||
| import pandas as pd | ||||
| import pyarrow as pa | ||||
| import pyarrow.dataset as ds | ||||
| import pyarrow.parquet as pq | ||||
| import pyarrow.compute as pc | ||||
| from itertools import groupby, islice, chain | ||||
| import fire | ||||
| from collections import Counter | ||||
| import os | ||||
| import re | ||||
| from nltk import wordpunct_tokenize, MWETokenizer, sent_tokenize | ||||
| from nltk.corpus import stopwords | ||||
| from nltk.util import ngrams | ||||
| import string | ||||
| from random import random | ||||
| from redditcleaner import clean | ||||
| from pathlib import Path | ||||
| from datetime import datetime | ||||
| 
 | ||||
| # compute term frequencies for comments in each subreddit by week | ||||
| def weekly_tf(partition, outputdir = '/gscratch/comdata/output/reddit_ngrams/', inputdir="/gscratch/comdata/output/reddit_comments_by_subreddit.parquet/", mwe_pass = 'first', excluded_users=None): | ||||
| 
 | ||||
|     dataset = ds.dataset(Path(inputdir)/partition, format='parquet') | ||||
|     outputdir = Path(outputdir) | ||||
|     samppath = outputdir / "reddit_comment_ngrams_10p_sample" | ||||
| 
 | ||||
|     if not samppath.exists(): | ||||
|         samppath.mkdir(parents=True, exist_ok=True) | ||||
| 
 | ||||
|     ngram_output = partition.replace("parquet","txt") | ||||
| 
 | ||||
|     if excluded_users is not None: | ||||
|         excluded_users = set(map(str.strip,open(excluded_users))) | ||||
|         df = df.filter(~ (f.col("author").isin(excluded_users))) | ||||
| 
 | ||||
| 
 | ||||
|     ngram_path = samppath / ngram_output | ||||
|     if mwe_pass == 'first': | ||||
|         if ngram_path.exists(): | ||||
|             ngram_path.unlink() | ||||
| 
 | ||||
|     dataset = dataset.filter(pc.field("CreatedAt") <= pa.scalar(datetime(2020,4,13))) | ||||
|     batches = dataset.to_batches(columns=['CreatedAt','subreddit','body','author']) | ||||
| 
 | ||||
| 
 | ||||
|     schema = pa.schema([pa.field('subreddit', pa.string(), nullable=False), | ||||
|                         pa.field('term', pa.string(), nullable=False), | ||||
|                         pa.field('week', pa.date32(), nullable=False), | ||||
|                         pa.field('tf', pa.int64(), nullable=False)] | ||||
|     ) | ||||
| 
 | ||||
|     author_schema = pa.schema([pa.field('subreddit', pa.string(), nullable=False), | ||||
|                                pa.field('author', pa.string(), nullable=False), | ||||
|                                pa.field('week', pa.date32(), nullable=False), | ||||
|                                pa.field('tf', pa.int64(), nullable=False)] | ||||
|     ) | ||||
| 
 | ||||
|     dfs = (b.to_pandas() for b in batches) | ||||
| 
 | ||||
|     def add_week(df): | ||||
|         df['week'] = (df.CreatedAt - pd.to_timedelta(df.CreatedAt.dt.dayofweek, unit='d')).dt.date | ||||
|         return(df) | ||||
| 
 | ||||
|     dfs = (add_week(df) for df in dfs) | ||||
| 
 | ||||
|     def iterate_rows(dfs): | ||||
|         for df in dfs: | ||||
|             for row in df.itertuples(): | ||||
|                 yield row | ||||
| 
 | ||||
|     rows = iterate_rows(dfs) | ||||
| 
 | ||||
|     subreddit_weeks = groupby(rows, lambda r: (r.subreddit, r.week)) | ||||
| 
 | ||||
|     mwe_path = outputdir / "multiword_expressions.feather" | ||||
| 
 | ||||
|     if mwe_pass != 'first': | ||||
|         mwe_dataset = pd.read_feather(mwe_path) | ||||
|         mwe_dataset = mwe_dataset.sort_values(['phrasePWMI'],ascending=False) | ||||
|         mwe_phrases = list(mwe_dataset.phrase) | ||||
|         mwe_phrases = [tuple(s.split(' ')) for s in mwe_phrases] | ||||
|         mwe_tokenizer = MWETokenizer(mwe_phrases) | ||||
|         mwe_tokenize = mwe_tokenizer.tokenize | ||||
|      | ||||
|     else: | ||||
|         mwe_tokenize = MWETokenizer().tokenize | ||||
| 
 | ||||
|     def remove_punct(sentence): | ||||
|         new_sentence = [] | ||||
|         for token in sentence: | ||||
|             new_token = '' | ||||
|             for c in token: | ||||
|                 if c not in string.punctuation: | ||||
|                     new_token += c | ||||
|             if len(new_token) > 0: | ||||
|                 new_sentence.append(new_token) | ||||
|         return new_sentence | ||||
| 
 | ||||
|     stopWords = set(stopwords.words('english')) | ||||
| 
 | ||||
|     # we follow the approach described in datta, phelan, adar 2017 | ||||
|     def my_tokenizer(text): | ||||
|         # remove stopwords, punctuation, urls, lower case | ||||
|         # lowercase         | ||||
|         text = text.lower() | ||||
| 
 | ||||
|         # redditcleaner removes reddit markdown(newlines, quotes, bullet points, links, strikethrough, spoiler, code, superscript, table, headings) | ||||
|         text = clean(text) | ||||
| 
 | ||||
|         # sentence tokenize | ||||
|         sentences = sent_tokenize(text) | ||||
| 
 | ||||
|         # wordpunct_tokenize | ||||
|         sentences = map(wordpunct_tokenize, sentences) | ||||
| 
 | ||||
|         # remove punctuation | ||||
|                          | ||||
|         sentences = map(remove_punct, sentences) | ||||
|         # datta et al. select relatively common phrases from the reddit corpus, but they don't really explain how. We'll try that in a second phase. | ||||
|         # they say that the extract 1-4 grams from 10% of the sentences and then find phrases that appear often relative to the original terms | ||||
|         # here we take a 10 percent sample of sentences  | ||||
|         if mwe_pass == 'first': | ||||
| 
 | ||||
|             # remove sentences with less than 2 words | ||||
|             sentences = filter(lambda sentence: len(sentence) > 2, sentences) | ||||
|             sentences = list(sentences) | ||||
|             for sentence in sentences: | ||||
|                 if random() <= 0.1: | ||||
|                     grams = list(chain(*map(lambda i : ngrams(sentence,i),range(4)))) | ||||
|                     with open(ngram_path,'a') as gram_file: | ||||
|                         for ng in grams: | ||||
|                             gram_file.write(' '.join(ng) + '\n') | ||||
|                 for token in sentence: | ||||
|                     if token not in stopWords: | ||||
|                         yield token | ||||
| 
 | ||||
|         else: | ||||
|             # remove stopWords | ||||
|             sentences = map(mwe_tokenize, sentences) | ||||
|             sentences = map(lambda s: filter(lambda token: token not in stopWords, s), sentences) | ||||
|             for sentence in sentences: | ||||
|                 for token in sentence: | ||||
|                     yield token | ||||
| 
 | ||||
|     def tf_comments(subreddit_weeks): | ||||
|         for key, posts in subreddit_weeks: | ||||
|             subreddit, week = key | ||||
|             tfs = Counter([]) | ||||
|             authors = Counter([]) | ||||
|             for post in posts: | ||||
|                 tokens = my_tokenizer(post.body) | ||||
|                 tfs.update(tokens) | ||||
|                 authors.update([post.author]) | ||||
| 
 | ||||
|             for term, tf in tfs.items(): | ||||
|                 yield [True, subreddit, term, week, tf] | ||||
| 
 | ||||
|             for author, tf in authors.items(): | ||||
|                 yield [False, subreddit, author, week, tf] | ||||
| 
 | ||||
|     outrows = tf_comments(subreddit_weeks) | ||||
| 
 | ||||
|     outchunksize = 10000 | ||||
|      | ||||
|     termtf_outputdir = (outputdir / "comment_terms.parquet") | ||||
|     termtf_outputdir.mkdir(parents=True, exist_ok=True) | ||||
|     authortf_outputdir = (outputdir / "comment_authors.parquet") | ||||
|     authortf_outputdir.mkdir(parents=True, exist_ok=True)     | ||||
|     termtf_path = termtf_outputdir / partition | ||||
|     authortf_path = authortf_outputdir / partition | ||||
|     with pq.ParquetWriter(termtf_path, schema=schema, compression='snappy', flavor='spark') as writer, \ | ||||
|          pq.ParquetWriter(authortf_path, schema=author_schema, compression='snappy', flavor='spark') as author_writer: | ||||
|      | ||||
|         while True: | ||||
| 
 | ||||
|             chunk = islice(outrows,outchunksize) | ||||
|             chunk = (c for c in chunk if c[1] is not None) | ||||
|             pddf = pd.DataFrame(chunk, columns=["is_token"] + schema.names) | ||||
|             author_pddf = pddf.loc[pddf.is_token == False, schema.names] | ||||
|             pddf = pddf.loc[pddf.is_token == True, schema.names] | ||||
|             author_pddf = author_pddf.rename({'term':'author'}, axis='columns') | ||||
|             author_pddf = author_pddf.loc[:,author_schema.names] | ||||
|             table = pa.Table.from_pandas(pddf,schema=schema) | ||||
|             author_table = pa.Table.from_pandas(author_pddf,schema=author_schema) | ||||
|             do_break = True | ||||
| 
 | ||||
|             if table.shape[0] != 0: | ||||
|                 writer.write_table(table) | ||||
|                 do_break = False | ||||
|             if author_table.shape[0] != 0: | ||||
|                 author_writer.write_table(author_table) | ||||
|                 do_break = False | ||||
| 
 | ||||
|             if do_break: | ||||
|                 break | ||||
| 
 | ||||
|         writer.close() | ||||
|         author_writer.close() | ||||
| 
 | ||||
| 
 | ||||
| def gen_task_list(mwe_pass='first', inputdir="/gscratch/comdata/output/reddit_comments_by_subreddit.parquet/", outputdir='/gscratch/comdata/output/reddit_ngrams/', tf_task_list='tf_task_list', excluded_users_file=None): | ||||
|     files = os.listdir(inputdir) | ||||
|     with open(tf_task_list,'w') as outfile: | ||||
|         for f in files: | ||||
|             if f.endswith(".parquet"): | ||||
|                 outfile.write(f"./tf_comments.py weekly_tf --mwe-pass {mwe_pass} --inputdir {inputdir} --outputdir {outputdir} --excluded_users {excluded_users_file} {f}\n") | ||||
| 
 | ||||
| if __name__ == "__main__": | ||||
|     fire.Fire({"gen_task_list":gen_task_list, | ||||
|                "weekly_tf":weekly_tf}) | ||||
							
								
								
									
										22
									
								
								run_array.sbatch
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										22
									
								
								run_array.sbatch
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,22 @@ | ||||
| #!/bin/bash | ||||
| ## tf reddit comments | ||||
| #SBATCH --job-name="wikia ecology; fit var models" | ||||
| ## Allocation Definition | ||||
| #SBATCH --account=comdata-ckpt | ||||
| #SBATCH --partition=ckpt | ||||
| ## Resources | ||||
| ## Nodes. This should always be 1 for parallel-sql. | ||||
| #SBATCH --nodes=1     | ||||
| ## Walltime (12 hours) | ||||
| #SBATCH --time=24:00:00 | ||||
| ## Memory per node | ||||
| #SBATCH --mem=8G | ||||
| #SBATCH --cpus-per-task=1 | ||||
| #SBATCH --ntasks=1 | ||||
| #SBATCH  | ||||
| #SBATCH --chdir /gscratch/comdata/users/nathante/wikia_ecology | ||||
| #SBATCH --output=var_jobs/%A_%a.out | ||||
| #SBATCH --error=var_jobs/%A_%a.out | ||||
| TASK_NUM=$(( SLURM_ARRAY_TASK_ID + $1)) | ||||
| TASK_CALL=$(sed -n ${TASK_NUM}p ./var_jobs.sh) | ||||
| ${TASK_CALL} | ||||
| @ -1,25 +1,28 @@ | ||||
| all: /gscratch/comdata/output/reddit_similarity/subreddit_comment_authors_10000.parquet /gscratch/comdata/output/reddit_similarity/subreddit_comment_authors_10000.parquet /gscratch/comdata/output/reddit_similarity/subreddit_author_tf_similarities_10000.parquet /gscratch/comdata/output/reddit_similarity/subreddit_comment_authors_10000.parquet /gscratch/comdata/output/reddit_similarity/comment_terms.parquet | ||||
| srun=srun -p compute-bigmem -A comdata --mem-per-cpu=9g --time=200:00:00 -c 40 | ||||
| srun_huge=srun -p compute-hugemem -A comdata --mem=724g --time=200:00:00 -c 40 | ||||
| 
 | ||||
| # all: /gscratch/comdata/output/reddit_similarity/subreddit_comment_terms_25000.parquet /gscratch/comdata/output/reddit_similarity/subreddit_comment_authors_25000.parquet /gscratch/comdata/output/reddit_similarity/subreddit_comment_authors_10000.parquet /gscratch/comdata/output/reddit_similarity/comment_terms_10000_weekly.parquet
 | ||||
| similarity_data=../../data/reddit_similarity | ||||
| tfidf_data=${similarity_data}/tfidf | ||||
| lsi_components=[10,50,100,200,300,400,500,600,700,850] | ||||
| 
 | ||||
| lsi_similarities: ${similarity_data}/subreddit_comment_authors-tf_10k_LSI | ||||
| 
 | ||||
| # /gscratch/comdata/output/reddit_similarity/subreddit_comment_authors_25000.parquet: cosine_similarities.py /gscratch/comdata/output/reddit_similarity/tfidf/comment_authors.parquet
 | ||||
| # 	start_spark_and_run.sh 1 cosine_similarities.py author --outfile=/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors_25000.feather
 | ||||
| all: ${similarity_data}/subreddit_comment_authors-tf_10k.feather | ||||
| 
 | ||||
| /gscratch/comdata/output/reddit_similarity/tfidf/comment_terms.parquet: tfidf.py similarities_helper.py /gscratch/comdata/output/reddit_ngrams/comment_terms.parquet /gscratch/comdata/output/reddit_similarity/subreddits_by_num_comments.csv | ||||
| 	start_spark_and_run.sh 1 tfidf.py terms --topN=10000 | ||||
| ${similarity_data}/subreddit_comment_authors-tf_10k_LSI: ${tfidf_data}/comment_authors_100k.parquet similarities_helper.py ${similarity_data}/subreddits_by_num_comments_nonsfw.csv | ||||
| 	 ${srun_huge} /bin/bash -c "source ~/.bashrc; python3 lsi_similarities.py author-tf --outfile=${similarity_data}/subreddit_comment_authors-tf_10k_LSI --topN=10000 --n_components=${lsi_components} --min_df=10 --inpath=$<" | ||||
| 
 | ||||
| /gscratch/comdata/output/reddit_similarity/tfidf/comment_authors.parquet: tfidf.py similarities_helper.py /gscratch/comdata/output/reddit_ngrams/comment_authors.parquet /gscratch/comdata/output/reddit_similarity/subreddits_by_num_comments.csv | ||||
| 	start_spark_and_run.sh 1 tfidf.py authors --topN=10000 | ||||
| ${similarity_data}/subreddits_by_num_comments_nonsfw.csv: ../../data/reddit_submissions_by_subreddit.parquet ../../data/reddit_comments_by_subreddit.parquet | ||||
| 	../start_spark_and_run.sh 3 top_subreddits_by_comments.py | ||||
| 
 | ||||
| /gscratch/comdata/output/reddit_similarity/comment_authors_10000.parquet: cosine_similarities.py similarities_helper.py /gscratch/comdata/output/reddit_similarity/tfidf/comment_authors.parquet /gscratch/comdata/output/reddit_similarity/tfidf/comment_authors.parquet  | ||||
| 	start_spark_and_run.sh 1 cosine_similarities.py author --outfile=/gscratch/comdata/output/reddit_similarity/comment_authors_10000.feather | ||||
| ${tfidf_data}/comment_authors_100k.parquet: ../../data/reddit_ngrams/comment_authors_sorted.parquet ${similarity_data}/subreddits_by_num_comments_nonsfw.csv | ||||
| 	../start_spark_and_run.sh 3 tfidf.py authors --topN=100000 --inpath=$< --outpath=${tfidf_data}/comment_authors_100k.parquet | ||||
| 
 | ||||
| /gscratch/comdata/output/reddit_similarity/comment_terms.parquet: cosine_similarities.py similarities_helper.py /gscratch/comdata/output/reddit_similarity/tfidf/comment_terms.parquet | ||||
| 	start_spark_and_run.sh 1 cosine_similarities.py term --outfile=/gscratch/comdata/output/reddit_similarity/comment_terms_10000.feather | ||||
| ../../data/reddit_ngrams/comment_authors_sorted.parquet: | ||||
| 	$(MAKE) -C ../ngrams | ||||
| 
 | ||||
| # /gscratch/comdata/output/reddit_similarity/comment_terms_10000_weekly.parquet: cosine_similarities.py /gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_authors.parquet
 | ||||
| # 	start_spark_and_run.sh 1 weekly_cosine_similarities.py term --outfile=/gscratch/comdata/output/reddit_similarity/subreddit_comment_terms_10000_weely.parquet
 | ||||
| ../../data/reddit_submissions_by_subreddit.parquet: | ||||
| 	$(MAKE) -C ../datasets | ||||
| 
 | ||||
| /gscratch/comdata/output/reddit_similarity/subreddit_author_tf_similarities_10000.parquet: cosine_similarities.py similarities_helper.py /gscratch/comdata/output/reddit_similarity/tfidf/comment_authors.parquet /gscratch/comdata/output/reddit_similarity/tfidf/comment_authors.parquet | ||||
| 	start_spark_and_run.sh 1 cosine_similarities.py author-tf --outfile=/gscratch/comdata/output/reddit_similarity/subreddit_author_tf_similarities_10000.parquet | ||||
| ../../data/reddit_comments_by_subreddit.parquet: | ||||
| 	$(MAKE) -C ../datasets | ||||
|  | ||||
										
											Binary file not shown.
										
									
								
							| @ -2,11 +2,14 @@ import pandas as pd | ||||
| import fire | ||||
| from pathlib import Path | ||||
| from similarities_helper import similarities, column_similarities | ||||
| from functools import partial | ||||
| 
 | ||||
| def cosine_similarities(infile, term_colname, outfile, min_df=None, max_df=None, included_subreddits=None, topN=500, exclude_phrases=False, from_date=None, to_date=None, tfidf_colname='tf_idf'): | ||||
| 
 | ||||
|     return similarities(infile=infile, simfunc=column_similarities, term_colname=term_colname, outfile=outfile, min_df=min_df, max_df=max_df, included_subreddits=included_subreddits, topN=topN, exclude_phrases=exclude_phrases,from_date=from_date, to_date=to_date, tfidf_colname=tfidf_colname) | ||||
| 
 | ||||
| # change so that these take in an input as an optional argument (for speed, but also for idf). | ||||
| def term_cosine_similarities(outfile, min_df=None, max_df=None, included_subreddits=None, topN=500, exclude_phrases=False, from_date=None, to_date=None): | ||||
| 
 | ||||
| def term_cosine_similarities(outfile, infile='/gscratch/comdata/output/reddit_similarity/tfidf/comment_terms_100k.parquet', min_df=None, max_df=None, included_subreddits=None, topN=500, exclude_phrases=False, from_date=None, to_date=None): | ||||
| 
 | ||||
|  | ||||
| @ -1,4 +1,6 @@ | ||||
| #!/usr/bin/bash | ||||
| source ~/.bashrc | ||||
| echo $(hostname) | ||||
| start_spark_cluster.sh | ||||
| spark-submit --master spark://$(hostname):18899 cosine_similarities.py term --outfile=/gscratch/comdata/output/reddit_similarity/comment_terms_10000.feather | ||||
| spark-submit --verbose --master spark://$(hostname):43015 tfidf.py authors --topN=100000 --inpath=../../data/reddit_ngrams/comment_authors_sorted.parquet --outpath=../../data/reddit_similarity/tfidf/comment_authors_100k.parquet | ||||
| stop-all.sh | ||||
|  | ||||
							
								
								
									
										86
									
								
								similarities/lsi_similarities.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										86
									
								
								similarities/lsi_similarities.py
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,86 @@ | ||||
| import pandas as pd | ||||
| import fire | ||||
| from pathlib import Path | ||||
| from similarities_helper import * | ||||
| #from similarities_helper import similarities, lsi_column_similarities | ||||
| from functools import partial | ||||
| 
 | ||||
| # inpath = "/gscratch/comdata/users/nathante/competitive_exclusion_reddit/data/tfidf/comment_authors_compex.parquet" | ||||
| # term_colname='authors' | ||||
| # outfile='/gscratch/comdata/users/nathante/competitive_exclusion_reddit/data/similarity/comment_test_compex_LSI' | ||||
| # n_components=[10,50,100] | ||||
| # included_subreddits="/gscratch/comdata/users/nathante/competitive_exclusion_reddit/data/included_subreddits.txt" | ||||
| # n_iter=5 | ||||
| # random_state=1968 | ||||
| # algorithm='randomized' | ||||
| # topN = None | ||||
| # from_date=None | ||||
| # to_date=None | ||||
| # min_df=None | ||||
| # max_df=None | ||||
| 
 | ||||
| def lsi_similarities(inpath, term_colname, outfile, min_df=None, max_df=None, included_subreddits=None, topN=None, from_date=None, to_date=None, tfidf_colname='tf_idf',n_components=100,n_iter=5,random_state=1968,algorithm='arpack',lsi_model=None): | ||||
|     print(n_components,flush=True) | ||||
| 
 | ||||
|          | ||||
|     if lsi_model is None: | ||||
|         if type(n_components) == list: | ||||
|             lsi_model = Path(outfile) / f'{max(n_components)}_{term_colname}_LSIMOD.pkl' | ||||
|         else: | ||||
|             lsi_model = Path(outfile) / f'{n_components}_{term_colname}_LSIMOD.pkl' | ||||
| 
 | ||||
|     simfunc = partial(lsi_column_similarities,n_components=n_components,n_iter=n_iter,random_state=random_state,algorithm=algorithm,lsi_model_save=lsi_model) | ||||
| 
 | ||||
|     return similarities(inpath=inpath, simfunc=simfunc, term_colname=term_colname, outfile=outfile, min_df=min_df, max_df=max_df, included_subreddits=included_subreddits, topN=topN, from_date=from_date, to_date=to_date, tfidf_colname=tfidf_colname) | ||||
| 
 | ||||
| # change so that these take in an input as an optional argument (for speed, but also for idf). | ||||
| def term_lsi_similarities(inpath='/gscratch/comdata/output/reddit_similarity/tfidf/comment_terms_100k.parquet',outfile=None, min_df=None, max_df=None, included_subreddits=None, topN=None, from_date=None, to_date=None, algorithm='arpack', n_components=300,n_iter=5,random_state=1968): | ||||
| 
 | ||||
|     res =  lsi_similarities(inpath, | ||||
|                             'term', | ||||
|                             outfile, | ||||
|                             min_df, | ||||
|                             max_df, | ||||
|                             included_subreddits, | ||||
|                             topN, | ||||
|                             from_date, | ||||
|                             to_date, | ||||
|                             n_components=n_components, | ||||
|                             algorithm = algorithm | ||||
|                             ) | ||||
|     return res | ||||
| 
 | ||||
| def author_lsi_similarities(inpath='/gscratch/comdata/output/reddit_similarity/tfidf/comment_authors_100k.parquet',outfile=None, min_df=2, max_df=None, included_subreddits=None, topN=None, from_date=None, to_date=None,algorithm='arpack',n_components=300,n_iter=5,random_state=1968): | ||||
|     return lsi_similarities(inpath, | ||||
|                             'author', | ||||
|                             outfile, | ||||
|                             min_df, | ||||
|                             max_df, | ||||
|                             included_subreddits, | ||||
|                             topN, | ||||
|                             from_date=from_date, | ||||
|                             to_date=to_date, | ||||
|                             n_components=n_components | ||||
|                                ) | ||||
| 
 | ||||
| def author_tf_similarities(inpath='/gscratch/comdata/output/reddit_similarity/tfidf/comment_authors_100k.parquet',outfile=None, min_df=2, max_df=None, included_subreddits=None, topN=None, from_date=None, to_date=None,algorithm='arpack',n_components=300,n_iter=5,random_state=1968): | ||||
|     return lsi_similarities(inpath, | ||||
|                             'author', | ||||
|                             outfile, | ||||
|                             min_df, | ||||
|                             max_df, | ||||
|                             included_subreddits, | ||||
|                             topN, | ||||
|                             from_date=from_date, | ||||
|                             to_date=to_date, | ||||
|                             tfidf_colname='relative_tf', | ||||
|                             n_components=n_components, | ||||
|                             algorithm=algorithm | ||||
|                             ) | ||||
| 
 | ||||
| 
 | ||||
| if __name__ == "__main__": | ||||
|     fire.Fire({'term':term_lsi_similarities, | ||||
|                'author':author_lsi_similarities, | ||||
|                'author-tf':author_tf_similarities}) | ||||
| 
 | ||||
| @ -2,143 +2,190 @@ from pyspark.sql import SparkSession | ||||
| from pyspark.sql import Window | ||||
| from pyspark.sql import functions as f | ||||
| from enum import Enum | ||||
| from multiprocessing import cpu_count, Pool | ||||
| from pyspark.mllib.linalg.distributed import CoordinateMatrix | ||||
| from tempfile import TemporaryDirectory | ||||
| import pyarrow | ||||
| import pyarrow.dataset as ds | ||||
| from sklearn.metrics import pairwise_distances | ||||
| from scipy.sparse import csr_matrix, issparse | ||||
| from sklearn.decomposition import TruncatedSVD | ||||
| import pandas as pd | ||||
| import numpy as np | ||||
| import pathlib | ||||
| from datetime import datetime | ||||
| from pathlib import Path | ||||
| import pickle | ||||
| 
 | ||||
| class tf_weight(Enum): | ||||
|     MaxTF = 1 | ||||
|     Norm05 = 2 | ||||
| 
 | ||||
| infile = "/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_authors.parquet" | ||||
| # infile = "/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_terms.parquet" | ||||
| # cache_file = "/gscratch/comdata/users/nathante/cdsc_reddit/similarities/term_tfidf_entries_bak.parquet" | ||||
| 
 | ||||
| def reindex_tfidf_time_interval(infile, term_colname, min_df=None, max_df=None, included_subreddits=None, topN=500, exclude_phrases=False, from_date=None, to_date=None): | ||||
|     term = term_colname | ||||
|     term_id = term + '_id' | ||||
|     term_id_new = term + '_id_new' | ||||
| # subreddits missing after this step don't have any terms that have a high enough idf | ||||
| # try rewriting without merges | ||||
| 
 | ||||
|     spark = SparkSession.builder.getOrCreate() | ||||
|     conf = spark.sparkContext.getConf() | ||||
|     print(exclude_phrases) | ||||
|     tfidf_weekly = spark.read.parquet(infile) | ||||
| # does reindex_tfidf, but without reindexing. | ||||
| def reindex_tfidf(*args, **kwargs): | ||||
|     df, tfidf_ds, ds_filter = _pull_or_reindex_tfidf(*args, **kwargs, reindex=True) | ||||
| 
 | ||||
|     # create the time interval | ||||
|     if from_date is not None: | ||||
|         if type(from_date) is str: | ||||
|             from_date = datetime.fromisoformat(from_date) | ||||
|     print("assigning names") | ||||
|     subreddit_names = tfidf_ds.to_table(filter=ds_filter,columns=['subreddit','subreddit_id']) | ||||
|     batches = subreddit_names.to_batches() | ||||
|      | ||||
|         tfidf_weekly = tfidf_weekly.filter(tfidf_weekly.week >= from_date) | ||||
|     with Pool(cpu_count()) as pool: | ||||
|         chunks = pool.imap_unordered(pull_names,batches)  | ||||
|         subreddit_names = pd.concat(chunks,copy=False).drop_duplicates() | ||||
|         subreddit_names = subreddit_names.set_index("subreddit_id") | ||||
| 
 | ||||
|     if to_date is not None: | ||||
|         if type(to_date) is str: | ||||
|             to_date = datetime.fromisoformat(to_date) | ||||
|         tfidf_weekly = tfidf_weekly.filter(tfidf_weekly.week < to_date) | ||||
| 
 | ||||
|     tfidf = tfidf_weekly.groupBy(["subreddit","week", term_id, term]).agg(f.sum("tf").alias("tf")) | ||||
|     tfidf = _calc_tfidf(tfidf, term_colname, tf_weight.Norm05) | ||||
|     tempdir = prep_tfidf_entries(tfidf, term_colname, min_df, max_df, included_subreddits) | ||||
|     tfidf = spark.read_parquet(tempdir.name) | ||||
|     subreddit_names = tfidf.select(['subreddit','subreddit_id_new']).distinct().toPandas() | ||||
|     new_ids = df.loc[:,['subreddit_id','subreddit_id_new']].drop_duplicates() | ||||
|     new_ids = new_ids.set_index('subreddit_id') | ||||
|     subreddit_names = subreddit_names.join(new_ids,on='subreddit_id').reset_index() | ||||
|     subreddit_names = subreddit_names.drop("subreddit_id",axis=1) | ||||
|     subreddit_names = subreddit_names.sort_values("subreddit_id_new") | ||||
|     subreddit_names['subreddit_id_new'] = subreddit_names['subreddit_id_new'] - 1 | ||||
|     return(tempdir, subreddit_names) | ||||
|     return(df, subreddit_names) | ||||
| 
 | ||||
| def reindex_tfidf(infile, term_colname, min_df=None, max_df=None, included_subreddits=None, topN=500, exclude_phrases=False): | ||||
|     spark = SparkSession.builder.getOrCreate() | ||||
|     conf = spark.sparkContext.getConf() | ||||
|     print(exclude_phrases) | ||||
| def pull_tfidf(*args, **kwargs): | ||||
|     df, _, _ =  _pull_or_reindex_tfidf(*args, **kwargs, reindex=False) | ||||
|     return df | ||||
| 
 | ||||
|     tfidf = spark.read.parquet(infile) | ||||
| def _pull_or_reindex_tfidf(infile, term_colname, min_df=None, max_df=None, included_subreddits=None, topN=None, week=None, from_date=None, to_date=None, rescale_idf=True, tf_family=tf_weight.MaxTF, reindex=True): | ||||
|     print(f"loading tfidf {infile}, week {week}, min_df {min_df}, max_df {max_df}", flush=True) | ||||
| 
 | ||||
|     if week is not None: | ||||
|         tfidf_ds = ds.dataset(infile, partitioning='hive') | ||||
|     else:  | ||||
|         tfidf_ds = ds.dataset(infile) | ||||
| 
 | ||||
|     if included_subreddits is None: | ||||
|         included_subreddits = select_topN_subreddits(topN) | ||||
|     else: | ||||
|         included_subreddits = set(map(str.strip,map(str.lower,open(included_subreddits)))) | ||||
|         included_subreddits = set(map(str.strip,open(included_subreddits))) | ||||
| 
 | ||||
|     if exclude_phrases == True: | ||||
|         tfidf = tfidf.filter(~f.col(term_colname).contains("_")) | ||||
|     ds_filter = ds.field("subreddit").isin(included_subreddits) | ||||
| 
 | ||||
|     print("creating temporary parquet with matrix indicies") | ||||
|     tempdir = prep_tfidf_entries(tfidf, term_colname, min_df, max_df, included_subreddits) | ||||
|     if min_df is not None: | ||||
|         ds_filter &= ds.field("count") >= min_df | ||||
| 
 | ||||
|     tfidf = spark.read.parquet(tempdir.name) | ||||
|     subreddit_names = tfidf.select(['subreddit','subreddit_id_new']).distinct().toPandas() | ||||
|     subreddit_names = subreddit_names.sort_values("subreddit_id_new") | ||||
|     subreddit_names['subreddit_id_new'] = subreddit_names['subreddit_id_new'] - 1 | ||||
|     spark.stop() | ||||
|     return (tempdir, subreddit_names) | ||||
|     if max_df is not None: | ||||
|         ds_filter &= ds.field("count") <= max_df | ||||
| 
 | ||||
|     if week is not None: | ||||
|         ds_filter &= ds.field("week") == week | ||||
| 
 | ||||
|     if from_date is not None: | ||||
|         ds_filter &= ds.field("week") >= from_date | ||||
| 
 | ||||
|     if to_date is not None: | ||||
|         ds_filter &= ds.field("week") <= to_date | ||||
| 
 | ||||
|     term = term_colname | ||||
|     term_id = term + '_id' | ||||
|     term_id_new = term + '_id_new' | ||||
|      | ||||
|     projection = { | ||||
|         'subreddit_id':ds.field('subreddit_id'), | ||||
|         term_id:ds.field(term_id), | ||||
|         'relative_tf':ds.field("relative_tf").cast('float32') | ||||
|         } | ||||
| 
 | ||||
|     if not rescale_idf: | ||||
|         projection = { | ||||
|             'subreddit_id':ds.field('subreddit_id'), | ||||
|             term_id:ds.field(term_id), | ||||
|             'relative_tf':ds.field('relative_tf').cast('float32'), | ||||
|             'tf_idf':ds.field('tf_idf').cast('float32')} | ||||
| 
 | ||||
|     print(projection, flush=True) | ||||
|     print(ds_filter, flush=True) | ||||
|     df = tfidf_ds.to_table(filter=ds_filter,columns=projection) | ||||
| 
 | ||||
|     df = df.to_pandas(split_blocks=True,self_destruct=True) | ||||
|     print("assigning indexes",flush=True) | ||||
|     if reindex: | ||||
|         print("assigning indexes",flush=True) | ||||
|         df['subreddit_id_new'] = df.groupby("subreddit_id").ngroup() + 1 | ||||
|     else: | ||||
|         df['subreddit_id_new'] = df['subreddit_id'] | ||||
| 
 | ||||
|     if reindex: | ||||
|         grouped = df.groupby(term_id) | ||||
|         df[term_id_new] = grouped.ngroup() + 1  | ||||
|     else: | ||||
|         df[term_id_new] = df[term_id] | ||||
| 
 | ||||
|     if rescale_idf: | ||||
|         print("computing idf", flush=True) | ||||
|         df['new_count'] = grouped[term_id].transform('count') | ||||
|         N_docs = df.subreddit_id_new.max() + 1 | ||||
|         df['idf'] = np.log(N_docs/(1+df.new_count),dtype='float32') + 1 | ||||
|         if tf_family == tf_weight.MaxTF: | ||||
|             df["tf_idf"] = df.relative_tf * df.idf | ||||
|         else: # tf_fam = tf_weight.Norm05 | ||||
|             df["tf_idf"] = (0.5 + 0.5 * df.relative_tf) * df.idf | ||||
| 
 | ||||
|     return (df, tfidf_ds, ds_filter) | ||||
| 
 | ||||
| 
 | ||||
| def similarities(infile, simfunc, term_colname, outfile, min_df=None, max_df=None, included_subreddits=None, topN=500, exclude_phrases=False, from_date=None, to_date=None, tfidf_colname='tf_idf'): | ||||
| def pull_names(batch): | ||||
|     return(batch.to_pandas().drop_duplicates()) | ||||
| 
 | ||||
| def similarities(inpath, simfunc, term_colname, outfile, min_df=None, max_df=None, included_subreddits=None, topN=500, from_date=None, to_date=None, tfidf_colname='tf_idf'): | ||||
|     ''' | ||||
|     tfidf_colname: set to 'relative_tf' to use normalized term frequency instead of tf-idf, which can be useful for author-based similarities. | ||||
|     ''' | ||||
|     if from_date is not None or to_date is not None: | ||||
|         tempdir, subreddit_names = reindex_tfidf_time_interval(infile, term_colname=term_colname, min_df=min_df, max_df=max_df, included_subreddits=included_subreddits, topN=topN, exclude_phrases=False, from_date=from_date, to_date=to_date) | ||||
|          | ||||
|     else: | ||||
|         tempdir, subreddit_names = reindex_tfidf(infile, term_colname=term_colname, min_df=min_df, max_df=max_df, included_subreddits=included_subreddits, topN=topN, exclude_phrases=False) | ||||
| 
 | ||||
|     print("loading matrix") | ||||
|     #    mat = read_tfidf_matrix("term_tfidf_entries7ejhvnvl.parquet", term_colname) | ||||
|     mat = read_tfidf_matrix(tempdir.name, term_colname, tfidf_colname) | ||||
|     print(f'computing similarities on mat. mat.shape:{mat.shape}') | ||||
|     print(f"size of mat is:{mat.data.nbytes}") | ||||
|     sims = simfunc(mat) | ||||
|     del mat | ||||
| 
 | ||||
|     def proc_sims(sims, outfile): | ||||
|         if issparse(sims): | ||||
|             sims = sims.todense() | ||||
| 
 | ||||
|         print(f"shape of sims:{sims.shape}") | ||||
|     print(f"len(subreddit_names.subreddit.values):{len(subreddit_names.subreddit.values)}") | ||||
|         print(f"len(subreddit_names.subreddit.values):{len(subreddit_names.subreddit.values)}",flush=True) | ||||
|         sims = pd.DataFrame(sims) | ||||
|         sims = sims.rename({i:sr for i, sr in enumerate(subreddit_names.subreddit.values)}, axis=1) | ||||
|     sims['subreddit'] = subreddit_names.subreddit.values | ||||
|         sims['_subreddit'] = subreddit_names.subreddit.values | ||||
| 
 | ||||
|         p = Path(outfile) | ||||
| 
 | ||||
|         output_feather =  Path(str(p).replace("".join(p.suffixes), ".feather")) | ||||
|         output_csv =  Path(str(p).replace("".join(p.suffixes), ".csv")) | ||||
|         output_parquet =  Path(str(p).replace("".join(p.suffixes), ".parquet")) | ||||
|         p.parent.mkdir(exist_ok=True, parents=True) | ||||
| 
 | ||||
|         sims.to_feather(outfile) | ||||
|     tempdir.cleanup() | ||||
| 
 | ||||
| def read_tfidf_matrix_weekly(path, term_colname, week, tfidf_colname='tf_idf'): | ||||
|     term = term_colname | ||||
|     term_id = term + '_id' | ||||
|     term_id_new = term + '_id_new' | ||||
| 
 | ||||
|     dataset = ds.dataset(path,format='parquet') | ||||
|     entries = dataset.to_table(columns=[tfidf_colname,'subreddit_id_new', term_id_new],filter=ds.field('week')==week).to_pandas() | ||||
|     return(csr_matrix((entries[tfidf_colname], (entries[term_id_new]-1, entries.subreddit_id_new-1)))) | ||||
|     entries, subreddit_names = reindex_tfidf(inpath, term_colname=term_colname, min_df=min_df, max_df=max_df, included_subreddits=included_subreddits, topN=topN,from_date=from_date,to_date=to_date) | ||||
|     mat = csr_matrix((entries[tfidf_colname],(entries[term_id_new]-1, entries.subreddit_id_new-1))) | ||||
| 
 | ||||
| def read_tfidf_matrix(path, term_colname, tfidf_colname='tf_idf'): | ||||
|     term = term_colname | ||||
|     term_id = term + '_id' | ||||
|     term_id_new = term + '_id_new' | ||||
|     dataset = ds.dataset(path,format='parquet') | ||||
|     print(f"tfidf_colname:{tfidf_colname}") | ||||
|     entries = dataset.to_table(columns=[tfidf_colname, 'subreddit_id_new',term_id_new]).to_pandas() | ||||
|     return(csr_matrix((entries[tfidf_colname],(entries[term_id_new]-1, entries.subreddit_id_new-1)))) | ||||
|     print("loading matrix")         | ||||
| 
 | ||||
|     #    mat = read_tfidf_matrix("term_tfidf_entries7ejhvnvl.parquet", term_colname) | ||||
| 
 | ||||
|     print(f'computing similarities on mat. mat.shape:{mat.shape}') | ||||
|     print(f"size of mat is:{mat.data.nbytes}",flush=True) | ||||
|     sims = simfunc(mat) | ||||
|     del mat | ||||
| 
 | ||||
|     if hasattr(sims,'__next__'): | ||||
|         for simmat, name in sims: | ||||
|             proc_sims(simmat, Path(outfile)/(str(name) + ".feather")) | ||||
|     else: | ||||
|         proc_sims(sims, outfile) | ||||
| 
 | ||||
| def write_weekly_similarities(path, sims, week, names): | ||||
|     sims['week'] = week | ||||
|     p = pathlib.Path(path) | ||||
|     if not p.is_dir(): | ||||
|         p.mkdir() | ||||
|         p.mkdir(exist_ok=True,parents=True) | ||||
|          | ||||
|     # reformat as a pairwise list | ||||
|     sims = sims.melt(id_vars=['subreddit','week'],value_vars=names.subreddit.values) | ||||
|     sims = sims.melt(id_vars=['_subreddit','week'],value_vars=names.subreddit.values) | ||||
|     sims.to_parquet(p / week.isoformat()) | ||||
| 
 | ||||
| def column_overlaps(mat): | ||||
| @ -150,136 +197,74 @@ def column_overlaps(mat): | ||||
| 
 | ||||
|     return intersection / den | ||||
|      | ||||
| def test_lsi_sims(): | ||||
|     term = "term" | ||||
|     term_id = term + '_id' | ||||
|     term_id_new = term + '_id_new' | ||||
| 
 | ||||
|     t1 = time.perf_counter() | ||||
|     entries, subreddit_names = reindex_tfidf("/gscratch/comdata/output/reddit_similarity/tfidf/comment_terms_100k_repartitioned.parquet", | ||||
|                                              term_colname='term', | ||||
|                                              min_df=2000, | ||||
|                                              topN=10000 | ||||
|                                              ) | ||||
|     t2 = time.perf_counter() | ||||
|     print(f"first load took:{t2 - t1}s") | ||||
| 
 | ||||
|     entries, subreddit_names = reindex_tfidf("/gscratch/comdata/output/reddit_similarity/tfidf/comment_terms_100k.parquet", | ||||
|                                              term_colname='term', | ||||
|                                              min_df=2000, | ||||
|                                              topN=10000 | ||||
|                                              ) | ||||
|     t3=time.perf_counter() | ||||
| 
 | ||||
|     print(f"second load took:{t3 - t2}s") | ||||
| 
 | ||||
|     mat = csr_matrix((entries['tf_idf'],(entries[term_id_new], entries.subreddit_id_new))) | ||||
|     sims = list(lsi_column_similarities(mat, [10,50])) | ||||
|     sims_og = sims | ||||
|     sims_test = list(lsi_column_similarities(mat,[10,50],algorithm='randomized',n_iter=10)) | ||||
| 
 | ||||
| # n_components is the latent dimensionality. sklearn recommends 100. More might be better | ||||
| # if n_components is a list we'll return a list of similarities with different latent dimensionalities | ||||
| # if algorithm is 'randomized' instead of 'arpack' then n_iter gives the number of iterations. | ||||
| # this function takes the svd and then the column similarities of it | ||||
| def lsi_column_similarities(tfidfmat,n_components=300,n_iter=10,random_state=1968,algorithm='randomized',lsi_model_save=None,lsi_model_load=None): | ||||
|     # first compute the lsi of the matrix | ||||
|     # then take the column similarities | ||||
| 
 | ||||
|     if type(n_components) is int: | ||||
|         n_components = [n_components] | ||||
| 
 | ||||
|     n_components = sorted(n_components,reverse=True) | ||||
|      | ||||
|     svd_components = n_components[0] | ||||
|      | ||||
|     if lsi_model_load is not None and Path(lsi_model_load).exists(): | ||||
|         print("loading LSI") | ||||
|         mod = pickle.load(open(lsi_model_load ,'rb')) | ||||
|         lsi_model_save = lsi_model_load | ||||
| 
 | ||||
|     else: | ||||
|         print("running LSI",flush=True) | ||||
|         svd = TruncatedSVD(n_components=svd_components,random_state=random_state,algorithm=algorithm,n_iter=n_iter) | ||||
|         mod = svd.fit(tfidfmat.T) | ||||
| 
 | ||||
|     if lsi_model_save is not None: | ||||
|         Path(lsi_model_save).parent.mkdir(exist_ok=True, parents=True) | ||||
|         pickle.dump(mod, open(lsi_model_save,'wb')) | ||||
| 
 | ||||
|     print(n_components, flush=True) | ||||
|     lsimat = mod.transform(tfidfmat.T) | ||||
|     for n_dims in n_components: | ||||
|         print("computing similarities", flush=True) | ||||
|         sims = column_similarities(lsimat[:,np.arange(n_dims)]) | ||||
|         yield (sims, n_dims) | ||||
| 
 | ||||
|      | ||||
| 
 | ||||
| def column_similarities(mat): | ||||
|     norm = np.matrix(np.power(mat.power(2).sum(axis=0),0.5,dtype=np.float32)) | ||||
|     mat = mat.multiply(1/norm) | ||||
|     sims = mat.T @ mat | ||||
|     return(sims) | ||||
| 
 | ||||
| 
 | ||||
| def prep_tfidf_entries_weekly(tfidf, term_colname, min_df, max_df, included_subreddits): | ||||
|     term = term_colname | ||||
|     term_id = term + '_id' | ||||
|     term_id_new = term + '_id_new' | ||||
| 
 | ||||
|     if min_df is None: | ||||
|         min_df = 0.1 * len(included_subreddits) | ||||
|         tfidf = tfidf.filter(f.col('count') >= min_df) | ||||
|     if max_df is not None: | ||||
|         tfidf = tfidf.filter(f.col('count') <= max_df) | ||||
| 
 | ||||
|     tfidf = tfidf.filter(f.col("subreddit").isin(included_subreddits)) | ||||
| 
 | ||||
|     # we might not have the same terms or subreddits each week, so we need to make unique ids for each week. | ||||
|     sub_ids = tfidf.select(['subreddit_id','week']).distinct() | ||||
|     sub_ids = sub_ids.withColumn("subreddit_id_new",f.row_number().over(Window.partitionBy('week').orderBy("subreddit_id"))) | ||||
|     tfidf = tfidf.join(sub_ids,['subreddit_id','week']) | ||||
| 
 | ||||
|     # only use terms in at least min_df included subreddits in a given week | ||||
|     new_count = tfidf.groupBy([term_id,'week']).agg(f.count(term_id).alias('new_count')) | ||||
|     tfidf = tfidf.join(new_count,[term_id,'week'],how='inner') | ||||
| 
 | ||||
|     # reset the term ids | ||||
|     term_ids = tfidf.select([term_id,'week']).distinct() | ||||
|     term_ids = term_ids.withColumn(term_id_new,f.row_number().over(Window.partitionBy('week').orderBy(term_id))) | ||||
|     tfidf = tfidf.join(term_ids,[term_id,'week']) | ||||
| 
 | ||||
|     tfidf = tfidf.withColumnRenamed("tf_idf","tf_idf_old") | ||||
|     tfidf = tfidf.withColumn("tf_idf", (tfidf.relative_tf * tfidf.idf).cast('float')) | ||||
| 
 | ||||
|     tempdir =TemporaryDirectory(suffix='.parquet',prefix='term_tfidf_entries',dir='.') | ||||
| 
 | ||||
|     tfidf = tfidf.repartition('week') | ||||
| 
 | ||||
|     tfidf.write.parquet(tempdir.name,mode='overwrite',compression='snappy') | ||||
|     return(tempdir) | ||||
|      | ||||
| 
 | ||||
| def prep_tfidf_entries(tfidf, term_colname, min_df, max_df, included_subreddits): | ||||
|     term = term_colname | ||||
|     term_id = term + '_id' | ||||
|     term_id_new = term + '_id_new' | ||||
| 
 | ||||
|     if min_df is None: | ||||
|         min_df = 0.1 * len(included_subreddits) | ||||
|         tfidf = tfidf.filter(f.col('count') >= min_df) | ||||
|     if max_df is not None: | ||||
|         tfidf = tfidf.filter(f.col('count') <= max_df) | ||||
| 
 | ||||
|     tfidf = tfidf.filter(f.col("subreddit").isin(included_subreddits)) | ||||
| 
 | ||||
|     # reset the subreddit ids | ||||
|     sub_ids = tfidf.select('subreddit_id').distinct() | ||||
|     sub_ids = sub_ids.withColumn("subreddit_id_new", f.row_number().over(Window.orderBy("subreddit_id"))) | ||||
|     tfidf = tfidf.join(sub_ids,'subreddit_id') | ||||
| 
 | ||||
|     # only use terms in at least min_df included subreddits | ||||
|     new_count = tfidf.groupBy(term_id).agg(f.count(term_id).alias('new_count')) | ||||
|     tfidf = tfidf.join(new_count,term_id,how='inner') | ||||
|      | ||||
|     # reset the term ids | ||||
|     term_ids = tfidf.select([term_id]).distinct() | ||||
|     term_ids = term_ids.withColumn(term_id_new,f.row_number().over(Window.orderBy(term_id))) | ||||
|     tfidf = tfidf.join(term_ids,term_id) | ||||
| 
 | ||||
|     tfidf = tfidf.withColumnRenamed("tf_idf","tf_idf_old") | ||||
|     tfidf = tfidf.withColumn("tf_idf", (tfidf.relative_tf * tfidf.idf).cast('float')) | ||||
|      | ||||
|     tempdir =TemporaryDirectory(suffix='.parquet',prefix='term_tfidf_entries',dir='.') | ||||
|      | ||||
|     tfidf.write.parquet(tempdir.name,mode='overwrite',compression='snappy') | ||||
|     return tempdir | ||||
| 
 | ||||
| 
 | ||||
| # try computing cosine similarities using spark | ||||
| def spark_cosine_similarities(tfidf, term_colname, min_df, included_subreddits, similarity_threshold): | ||||
|     term = term_colname | ||||
|     term_id = term + '_id' | ||||
|     term_id_new = term + '_id_new' | ||||
| 
 | ||||
|     if min_df is None: | ||||
|         min_df = 0.1 * len(included_subreddits) | ||||
| 
 | ||||
|     tfidf = tfidf.filter(f.col("subreddit").isin(included_subreddits)) | ||||
|     tfidf = tfidf.cache() | ||||
| 
 | ||||
|     # reset the subreddit ids | ||||
|     sub_ids = tfidf.select('subreddit_id').distinct() | ||||
|     sub_ids = sub_ids.withColumn("subreddit_id_new",f.row_number().over(Window.orderBy("subreddit_id"))) | ||||
|     tfidf = tfidf.join(sub_ids,'subreddit_id') | ||||
| 
 | ||||
|     # only use terms in at least min_df included subreddits | ||||
|     new_count = tfidf.groupBy(term_id).agg(f.count(term_id).alias('new_count')) | ||||
|     tfidf = tfidf.join(new_count,term_id,how='inner') | ||||
|      | ||||
|     # reset the term ids | ||||
|     term_ids = tfidf.select([term_id]).distinct() | ||||
|     term_ids = term_ids.withColumn(term_id_new,f.row_number().over(Window.orderBy(term_id))) | ||||
|     tfidf = tfidf.join(term_ids,term_id) | ||||
| 
 | ||||
|     tfidf = tfidf.withColumnRenamed("tf_idf","tf_idf_old") | ||||
|     tfidf = tfidf.withColumn("tf_idf", tfidf.relative_tf * tfidf.idf) | ||||
| 
 | ||||
|     # step 1 make an rdd of entires | ||||
|     # sorted by (dense) spark subreddit id | ||||
|     n_partitions = int(len(included_subreddits)*2 / 5) | ||||
| 
 | ||||
|     entries = tfidf.select(f.col(term_id_new)-1,f.col("subreddit_id_new")-1,"tf_idf").rdd.repartition(n_partitions) | ||||
| 
 | ||||
|     # put like 10 subredis in each partition | ||||
| 
 | ||||
|     # step 2 make it into a distributed.RowMatrix | ||||
|     coordMat = CoordinateMatrix(entries) | ||||
| 
 | ||||
|     coordMat = CoordinateMatrix(coordMat.entries.repartition(n_partitions)) | ||||
| 
 | ||||
|     # this needs to be an IndexedRowMatrix() | ||||
|     mat = coordMat.toRowMatrix() | ||||
| 
 | ||||
|     #goal: build a matrix of subreddit columns and tf-idfs rows | ||||
|     sim_dist = mat.columnSimilarities(threshold=similarity_threshold) | ||||
| 
 | ||||
|     return (sim_dist, tfidf) | ||||
|     return 1 - pairwise_distances(mat,metric='cosine') | ||||
| 
 | ||||
| 
 | ||||
| def build_weekly_tfidf_dataset(df, include_subs, term_colname, tf_family=tf_weight.Norm05): | ||||
| @ -306,20 +291,20 @@ def build_weekly_tfidf_dataset(df, include_subs, term_colname, tf_family=tf_weig | ||||
|     idf = idf.withColumn('idf',f.log(idf.subreddits_in_week) / (1+f.col('count'))+1) | ||||
| 
 | ||||
|     # collect the dictionary to make a pydict of terms to indexes | ||||
|     terms = idf.select([term,'week']).distinct() # terms are distinct | ||||
|     terms = idf.select([term]).distinct() # terms are distinct | ||||
| 
 | ||||
|     terms = terms.withColumn(term_id,f.row_number().over(Window.partitionBy('week').orderBy(term))) # term ids are distinct | ||||
|     terms = terms.withColumn(term_id,f.row_number().over(Window.orderBy(term))) # term ids are distinct | ||||
| 
 | ||||
|     # make subreddit ids | ||||
|     subreddits = df.select(['subreddit','week']).distinct() | ||||
|     subreddits = subreddits.withColumn('subreddit_id',f.row_number().over(Window.partitionBy("week").orderBy("subreddit"))) | ||||
|     subreddits = df.select(['subreddit']).distinct() | ||||
|     subreddits = subreddits.withColumn('subreddit_id',f.row_number().over(Window.orderBy("subreddit"))) | ||||
| 
 | ||||
|     df = df.join(subreddits,on=['subreddit','week']) | ||||
|     df = df.join(subreddits,on=['subreddit']) | ||||
| 
 | ||||
|     # map terms to indexes in the tfs and the idfs | ||||
|     df = df.join(terms,on=[term,'week']) # subreddit-term-id is unique | ||||
|     df = df.join(terms,on=[term]) # subreddit-term-id is unique | ||||
| 
 | ||||
|     idf = idf.join(terms,on=[term,'week']) | ||||
|     idf = idf.join(terms,on=[term]) | ||||
| 
 | ||||
|     # join on subreddit/term to create tf/dfs indexed by term | ||||
|     df = df.join(idf, on=[term_id, term,'week']) | ||||
| @ -331,9 +316,11 @@ def build_weekly_tfidf_dataset(df, include_subs, term_colname, tf_family=tf_weig | ||||
|     else: # tf_fam = tf_weight.Norm05 | ||||
|         df = df.withColumn("tf_idf",  (0.5 + 0.5 * df.relative_tf) * df.idf) | ||||
| 
 | ||||
|     return df | ||||
|     df = df.repartition('week') | ||||
|     dfwriter = df.write.partitionBy("week") | ||||
|     return dfwriter | ||||
| 
 | ||||
| def _calc_tfidf(df, term_colname, tf_family): | ||||
| def _calc_tfidf(df, term_colname, tf_family, min_df=None, max_df=None): | ||||
|     term = term_colname | ||||
|     term_id = term + '_id' | ||||
| 
 | ||||
| @ -342,7 +329,7 @@ def _calc_tfidf(df, term_colname, tf_family): | ||||
| 
 | ||||
|     df = df.join(max_subreddit_terms, on='subreddit') | ||||
| 
 | ||||
|     df = df.withColumn("relative_tf", df.tf / df.sr_max_tf) | ||||
|     df = df.withColumn("relative_tf", (df.tf / df.sr_max_tf)) | ||||
| 
 | ||||
|     # group by term. term is unique | ||||
|     idf = df.groupby([term]).count() | ||||
| @ -351,7 +338,13 @@ def _calc_tfidf(df, term_colname, tf_family): | ||||
|     idf = idf.withColumn('idf',f.log(N_docs/(1+f.col('count')))+1) | ||||
| 
 | ||||
|     # collect the dictionary to make a pydict of terms to indexes | ||||
|     terms = idf.select(term).distinct() # terms are distinct | ||||
|     terms = idf | ||||
|     if min_df is not None: | ||||
|         terms = terms.filter(f.col('count')>=min_df) | ||||
|     if max_df is not None: | ||||
|         terms = terms.filter(f.col('count')<=max_df) | ||||
|      | ||||
|     terms = terms.select(term).distinct() # terms are distinct | ||||
|     terms = terms.withColumn(term_id,f.row_number().over(Window.orderBy(term))) # term ids are distinct | ||||
| 
 | ||||
|     # make subreddit ids | ||||
| @ -361,12 +354,12 @@ def _calc_tfidf(df, term_colname, tf_family): | ||||
|     df = df.join(subreddits,on='subreddit') | ||||
| 
 | ||||
|     # map terms to indexes in the tfs and the idfs | ||||
|     df = df.join(terms,on=term) # subreddit-term-id is unique | ||||
|     df = df.join(terms,on=term,how='inner') # subreddit-term-id is unique | ||||
| 
 | ||||
|     idf = idf.join(terms,on=term) | ||||
|     idf = idf.join(terms,on=term,how='inner') | ||||
| 
 | ||||
|     # join on subreddit/term to create tf/dfs indexed by term | ||||
|     df = df.join(idf, on=[term_id, term]) | ||||
|     df = df.join(idf, on=[term_id, term],how='inner') | ||||
| 
 | ||||
|     # agg terms by subreddit to make sparse tf/df vectors | ||||
|     if tf_family == tf_weight.MaxTF: | ||||
| @ -377,18 +370,36 @@ def _calc_tfidf(df, term_colname, tf_family): | ||||
|     return df | ||||
|      | ||||
| 
 | ||||
| def build_tfidf_dataset(df, include_subs, term_colname, tf_family=tf_weight.Norm05): | ||||
| def tfidf_dataset(df, include_subs, term_colname, tf_family=tf_weight.Norm05, min_df=None, max_df=None): | ||||
|     term = term_colname | ||||
|     term_id = term + '_id' | ||||
|     # aggregate counts by week. now subreddit-term is distinct | ||||
|     df = df.filter(df.subreddit.isin(include_subs)) | ||||
|     df = df.groupBy(['subreddit',term]).agg(f.sum('tf').alias('tf')) | ||||
| 
 | ||||
|     df = _calc_tfidf(df, term_colname, tf_family) | ||||
|     df = _calc_tfidf(df, term_colname, tf_family, min_df, max_df) | ||||
|     df = df.repartition('subreddit') | ||||
|     dfwriter = df.write | ||||
|     return dfwriter | ||||
| 
 | ||||
|     return df | ||||
| 
 | ||||
| def select_topN_subreddits(topN, path="/gscratch/comdata/output/reddit_similarity/subreddits_by_num_comments_nonsfw.csv"): | ||||
| def select_topN_subreddits(topN, path="../../data/reddit_similarity/subreddits_by_num_comments_nonsfw.csv"): | ||||
|     rankdf = pd.read_csv(path) | ||||
|     included_subreddits = set(rankdf.loc[rankdf.comments_rank <= topN,'subreddit'].values) | ||||
|     return included_subreddits | ||||
| 
 | ||||
| 
 | ||||
| def repartition_tfidf(inpath="/gscratch/comdata/output/reddit_similarity/tfidf/comment_terms_100k.parquet", | ||||
|                       outpath="/gscratch/comdata/output/reddit_similarity/tfidf/comment_terms_100k_repartitioned.parquet"): | ||||
|     spark = SparkSession.builder.getOrCreate() | ||||
|     df = spark.read.parquet(inpath) | ||||
|     df = df.repartition(400,'subreddit') | ||||
|     df.write.parquet(outpath,mode='overwrite') | ||||
| 
 | ||||
|      | ||||
| def repartition_tfidf_weekly(inpath="/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_terms.parquet", | ||||
|                       outpath="/gscratch/comdata/output/reddit_similarity/tfidf/comment_terms_repartitioned.parquet"): | ||||
|     spark = SparkSession.builder.getOrCreate() | ||||
|     df = spark.read.parquet(inpath) | ||||
|     df = df.repartition(400,'subreddit','week') | ||||
|     dfwriter = df.write.partitionBy("week") | ||||
|     dfwriter.parquet(outpath,mode='overwrite') | ||||
|  | ||||
| @ -2,35 +2,45 @@ | ||||
| import fire | ||||
| from pyspark.sql import SparkSession | ||||
| from pyspark.sql import functions as f | ||||
| from similarities_helper import build_tfidf_dataset, build_weekly_tfidf_dataset, select_topN_subreddits | ||||
| from similarities_helper import tfidf_dataset, build_weekly_tfidf_dataset, select_topN_subreddits | ||||
| from functools import partial | ||||
| 
 | ||||
| def _tfidf_wrapper(func, inpath, outpath, topN, term_colname, exclude, included_subreddits): | ||||
|  def _tfidf_wrapper(func, inpath, outpath, topN, term_colname, exclude, included_subreddits, included_terms=None, min_df=None, max_df=None): | ||||
|     spark = SparkSession.builder.config(map={'spark.executor.memory':'900g','spark.executor.cores':128}).getOrCreate() | ||||
|     df = spark.read.parquet(inpath) | ||||
| 
 | ||||
|     df = df.filter(~ f.col(term_colname).isin(exclude)) | ||||
| 
 | ||||
|     if included_subreddits is not None: | ||||
|         include_subs = set(map(str.strip,map(str.lower, open(included_subreddits)))) | ||||
|         include_subs = set(map(str.strip,open(included_subreddits))) | ||||
|     else: | ||||
|         include_subs = select_topN_subreddits(topN) | ||||
| 
 | ||||
|     df = func(df, include_subs, term_colname) | ||||
|     include_subs = spark.sparkContext.broadcast(include_subs) | ||||
| 
 | ||||
|     df.write.parquet(outpath,mode='overwrite',compression='snappy') | ||||
|     #    term_id = term_colname + "_id" | ||||
| 
 | ||||
|     if included_terms is not None: | ||||
|         terms_df = spark.read.parquet(included_terms) | ||||
|         terms_df = terms_df.select(term_colname).distinct() | ||||
|         df = df.join(terms_df, on=term_colname, how='left_semi') | ||||
| 
 | ||||
|     dfwriter = func(df, include_subs.value, term_colname) | ||||
| 
 | ||||
|     dfwriter.parquet(outpath,mode='overwrite',compression='snappy') | ||||
|     spark.stop() | ||||
| 
 | ||||
| def tfidf(inpath, outpath, topN, term_colname, exclude, included_subreddits): | ||||
|     return _tfidf_wrapper(build_tfidf_dataset, inpath, outpath, topN, term_colname, exclude, included_subreddits) | ||||
| def tfidf(inpath, outpath, topN, term_colname, exclude, included_subreddits, min_df, max_df): | ||||
|     tfidf_func = partial(tfidf_dataset, max_df=max_df, min_df=min_df) | ||||
|     return _tfidf_wrapper(tfidf_func, inpath, outpath, topN, term_colname, exclude, included_subreddits) | ||||
| 
 | ||||
| def tfidf_weekly(inpath, outpath, static_tfidf_path, topN, term_colname, exclude, included_subreddits): | ||||
|     return _tfidf_wrapper(build_weekly_tfidf_dataset, inpath, outpath, topN, term_colname, exclude, included_subreddits, included_terms=static_tfidf_path) | ||||
| 
 | ||||
| def tfidf_weekly(inpath, outpath, topN, term_colname, exclude, included_subreddits): | ||||
|     return _tfidf_wrapper(build_weekly_tfidf_dataset, inpath, outpath, topN, term_colname, exclude, included_subreddits) | ||||
| 
 | ||||
| def tfidf_post_comment_authors(outpath='/gscratch/comdata/output/reddit_similarity/tfidf/post_authors.parquet', | ||||
|                   topN=25000, | ||||
|                   included_subreddits=None): | ||||
| 
 | ||||
|     return tfidf("/gscratch/comdata/output/reddit_ngrams/post_comment_authors.parquet", | ||||
|                  outpath, | ||||
|                  topN, | ||||
| @ -41,49 +51,64 @@ def tfidf_post_comment_authors(outpath='/gscratch/comdata/output/reddit_similari | ||||
| 
 | ||||
| def tfidf_authors(inpath="/gscratch/comdata/output/reddit_ngrams/comment_authors.parquet", | ||||
|                   outpath='/gscratch/comdata/output/reddit_similarity/tfidf/comment_authors.parquet', | ||||
|                   topN=25000, | ||||
|                   included_subreddits=None): | ||||
|                   topN=None, | ||||
|                   included_subreddits=None, | ||||
|                   min_df=None, | ||||
|                   max_df=None): | ||||
| 
 | ||||
|     return tfidf(inpath, | ||||
|                  outpath, | ||||
|                  topN, | ||||
|                  'author', | ||||
|                  ['[deleted]','AutoModerator'], | ||||
|                  included_subreddits=included_subreddits | ||||
|                  included_subreddits=included_subreddits, | ||||
|                  min_df=min_df, | ||||
|                  max_df=max_df | ||||
|                  ) | ||||
| 
 | ||||
| def tfidf_terms(outpath='/gscratch/comdata/output/reddit_similarity/tfidf/comment_terms.parquet', | ||||
|                 topN=25000, | ||||
|                 included_subreddits=None): | ||||
| def tfidf_terms(inpath="/gscratch/comdata/output/reddit_ngrams/comment_terms.parquet", | ||||
|                 outpath='/gscratch/comdata/output/reddit_similarity/tfidf/comment_terms.parquet', | ||||
|                 topN=None, | ||||
|                 included_subreddits=None, | ||||
|                 min_df=None, | ||||
|                 max_df=None): | ||||
| 
 | ||||
|     return tfidf("/gscratch/comdata/output/reddit_ngrams/comment_terms.parquet", | ||||
|     return tfidf(inpath, | ||||
|                  outpath, | ||||
|                  topN, | ||||
|                  'term', | ||||
|                  [], | ||||
|                  included_subreddits=included_subreddits | ||||
|                  included_subreddits=included_subreddits, | ||||
|                  min_df=min_df, | ||||
|                  max_df=max_df | ||||
|                  ) | ||||
| 
 | ||||
| 
 | ||||
| def tfidf_authors_weekly(inpath="/gscratch/comdata/output/reddit_ngrams/comment_authors.parquet", | ||||
|                          static_tfidf_path="/gscratch/comdata/output/reddit_similarity/tfidf/comment_authors.parquet", | ||||
|                          outpath='/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_authors.parquet', | ||||
|                          topN=25000, | ||||
|                          topN=None, | ||||
|                          included_subreddits=None): | ||||
| 
 | ||||
|     return tfidf_weekly(inpath, | ||||
|                         outpath, | ||||
|                         static_tfidf_path, | ||||
|                         topN, | ||||
|                         'author', | ||||
|                         ['[deleted]','AutoModerator'], | ||||
|                         included_subreddits=included_subreddits | ||||
|                         ) | ||||
| 
 | ||||
| def tfidf_terms_weekly(outpath='/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_terms.parquet', | ||||
|                        topN=25000, | ||||
| def tfidf_terms_weekly(inpath="/gscratch/comdata/output/reddit_ngrams/comment_terms.parquet", | ||||
|                        static_tfidf_path="/gscratch/comdata/output/reddit_similarity/tfidf/comment_terms.parquet", | ||||
|                        outpath='/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_terms.parquet', | ||||
|                        topN=None, | ||||
|                        included_subreddits=None): | ||||
| 
 | ||||
| 
 | ||||
|     return tfidf_weekly("/gscratch/comdata/output/reddit_ngrams/comment_terms.parquet", | ||||
|     return tfidf_weekly(inpath, | ||||
|                         outpath, | ||||
|                         static_tfidf_path, | ||||
|                         topN, | ||||
|                         'term', | ||||
|                         [], | ||||
|  | ||||
| @ -1,16 +1,20 @@ | ||||
| from pyspark.sql import functions as f | ||||
| from pyspark.sql import SparkSession | ||||
| from pyspark.sql import Window | ||||
| from datetime import datetime | ||||
| from pathlib import Path | ||||
| 
 | ||||
| spark = SparkSession.builder.getOrCreate() | ||||
| conf = spark.sparkContext.getConf() | ||||
| 
 | ||||
| submissions = spark.read.parquet("/gscratch/comdata/output/reddit_submissions_by_subreddit.parquet") | ||||
| submissions = spark.read.parquet("../../data/reddit_submissions_by_subreddit.parquet") | ||||
| 
 | ||||
| submissions = submissions.filter(f.col("CreatedAt") <= datetime(2020,4,13)) | ||||
| 
 | ||||
| prop_nsfw = submissions.select(['subreddit','over_18']).groupby('subreddit').agg(f.mean(f.col('over_18').astype('double')).alias('prop_nsfw')) | ||||
| 
 | ||||
| df = spark.read.parquet("/gscratch/comdata/output/reddit_comments_by_subreddit.parquet") | ||||
| 
 | ||||
| df = spark.read.parquet("../../data/reddit_comments_by_subreddit.parquet") | ||||
| df = df.filter(f.col("CreatedAt") <= datetime(2020,4,13)) | ||||
| # remove /u/ pages | ||||
| df = df.filter(~df.subreddit.like("u_%")) | ||||
| 
 | ||||
| @ -26,4 +30,6 @@ df = df.toPandas() | ||||
| 
 | ||||
| df = df.sort_values("n_comments") | ||||
| 
 | ||||
| df.to_csv('/gscratch/comdata/output/reddit_similarity/subreddits_by_num_comments.csv', index=False) | ||||
| outpath = Path("../../data/reddit_similarity/subreddits_by_num_comments_nonsfw.csv") | ||||
| outpath.parent.mkdir(exist_ok=True, parents=True) | ||||
| df.to_csv(str(outpath), index=False) | ||||
|  | ||||
| @ -1,18 +0,0 @@ | ||||
| from similarities_helper import similarities | ||||
| import numpy as np | ||||
| import fire  | ||||
| 
 | ||||
| def wang_similarity(mat): | ||||
|     non_zeros = (mat != 0).astype(np.float32) | ||||
|     intersection = non_zeros.T @ non_zeros | ||||
|     return intersection | ||||
| 
 | ||||
| 
 | ||||
| infile="/gscratch/comdata/output/reddit_similarity/tfidf/comment_authors.parquet"; outfile="/gscratch/comdata/output/reddit_similarity/wang_similarity_10000.feather"; min_df=1; included_subreddits=None; topN=10000; exclude_phrases=False; from_date=None; to_date=None | ||||
|      | ||||
| def wang_overlaps(infile, outfile="/gscratch/comdata/output/reddit_similarity/wang_similarity_10000.feather", min_df=1, max_df=None, included_subreddits=None, topN=10000, exclude_phrases=False, from_date=None, to_date=None): | ||||
| 
 | ||||
|     return similarities(infile=infile, simfunc=wang_similarity, term_colname='author', outfile=outfile, min_df=min_df, max_df=max_df, included_subreddits=included_subreddits, topN=topN, exclude_phrases=exclude_phrases, from_date=from_date, to_date=to_date) | ||||
| 
 | ||||
| if __name__ == "__main__": | ||||
|     fire.Fire(wang_overlaps) | ||||
| @ -1,81 +0,0 @@ | ||||
| from pyspark.sql import functions as f | ||||
| from pyspark.sql import SparkSession | ||||
| from pyspark.sql import Window | ||||
| import numpy as np | ||||
| import pyarrow | ||||
| import pandas as pd | ||||
| import fire | ||||
| from itertools import islice | ||||
| from pathlib import Path | ||||
| from similarities_helper import * | ||||
| from multiprocessing import Pool, cpu_count | ||||
| 
 | ||||
| def _week_similarities(tempdir, term_colname, week): | ||||
|         print(f"loading matrix: {week}") | ||||
|         mat = read_tfidf_matrix_weekly(tempdir.name, term_colname, week) | ||||
|         print('computing similarities') | ||||
|         sims = column_similarities(mat) | ||||
|         del mat | ||||
| 
 | ||||
|         names = subreddit_names.loc[subreddit_names.week == week] | ||||
|         sims = pd.DataFrame(sims.todense()) | ||||
| 
 | ||||
|         sims = sims.rename({i: sr for i, sr in enumerate(names.subreddit.values)}, axis=1) | ||||
|         sims['_subreddit'] = names.subreddit.values | ||||
| 
 | ||||
|         write_weekly_similarities(outfile, sims, week, names) | ||||
| 
 | ||||
| #tfidf = spark.read.parquet('/gscratch/comdata/users/nathante/subreddit_tfidf_weekly.parquet') | ||||
| def cosine_similarities_weekly(tfidf_path, outfile, term_colname, min_df = None, included_subreddits = None, topN = 500): | ||||
|     spark = SparkSession.builder.getOrCreate() | ||||
|     conf = spark.sparkContext.getConf() | ||||
|     print(outfile) | ||||
|     tfidf = spark.read.parquet(tfidf_path) | ||||
|      | ||||
|     if included_subreddits is None: | ||||
|         included_subreddits = select_topN_subreddits(topN) | ||||
|     else: | ||||
|         included_subreddits = set(open(included_subreddits)) | ||||
| 
 | ||||
|     print(f"computing weekly similarities for {len(included_subreddits)} subreddits") | ||||
| 
 | ||||
|     print("creating temporary parquet with matrix indicies") | ||||
|     tempdir = prep_tfidf_entries_weekly(tfidf, term_colname, min_df, max_df=None, included_subreddits=included_subreddits) | ||||
| 
 | ||||
|     tfidf = spark.read.parquet(tempdir.name) | ||||
| 
 | ||||
|     # the ids can change each week. | ||||
|     subreddit_names = tfidf.select(['subreddit','subreddit_id_new','week']).distinct().toPandas() | ||||
|     subreddit_names = subreddit_names.sort_values("subreddit_id_new") | ||||
|     subreddit_names['subreddit_id_new'] = subreddit_names['subreddit_id_new'] - 1 | ||||
|     spark.stop() | ||||
| 
 | ||||
|     weeks = sorted(list(subreddit_names.week.drop_duplicates())) | ||||
|     # do this step in parallel if we have the memory for it. | ||||
|     # should be doable with pool.map | ||||
| 
 | ||||
|     def week_similarities_helper(week): | ||||
|         _week_similarities(tempdir, term_colname, week) | ||||
| 
 | ||||
|     with Pool(cpu_count()) as pool: # maybe it can be done with 40 cores on the huge machine? | ||||
|         list(pool.map(week_similarities_helper,weeks)) | ||||
| 
 | ||||
| def author_cosine_similarities_weekly(outfile, min_df=2 , included_subreddits=None, topN=500): | ||||
|     return cosine_similarities_weekly('/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_authors.parquet', | ||||
|                                       outfile, | ||||
|                                       'author', | ||||
|                                       min_df, | ||||
|                                       included_subreddits, | ||||
|                                       topN) | ||||
| 
 | ||||
| def term_cosine_similarities_weekly(outfile, min_df=None, included_subreddits=None, topN=500): | ||||
|     return cosine_similarities_weekly('/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_terms.parquet', | ||||
|                                       outfile, | ||||
|                                       'term', | ||||
|                                       min_df, | ||||
|                                       included_subreddits, | ||||
|                                       topN) | ||||
| 
 | ||||
| if __name__ == "__main__": | ||||
|     fire.Fire({'authors':author_cosine_similarities_weekly, | ||||
|                'terms':term_cosine_similarities_weekly}) | ||||
							
								
								
									
										21
									
								
								start_spark_and_run.sh
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										21
									
								
								start_spark_and_run.sh
									
									
									
									
									
										Executable file
									
								
							| @ -0,0 +1,21 @@ | ||||
| 
 | ||||
| #!/usr/bin/env bash | ||||
| 
 | ||||
| # Script to start a spark cluster and run a script on klone | ||||
| source $SPARK_CONF_DIR/spark-env.sh | ||||
| echo "#!/usr/bin/bash" > job_script.sh | ||||
| echo "source ~/.bashrc" >> job_script.sh | ||||
| echo "export PYSPARK_PYTHON=python3" >> job.script.sh | ||||
| echo "export JAVA_HOME=/gscratch/comdata/local/open-jdk" >> job.script.sh | ||||
| echo "export SPARK_CONF_DIR=/gscratch/comdata/local/spark_config" >> job.script.sh | ||||
| echo "echo \$(hostname)" >> job_script.sh | ||||
| echo "source $SPARK_CONF_DIR/spark-env.sh" >> job.script.sh | ||||
| echo "start_spark_cluster.sh" >> job_script.sh | ||||
| echo "spark-submit --verbose --master spark://\$(hostname):$SPARK_MASTER_PORT $2 ${@:3}" >> job_script.sh | ||||
| echo "stop-all.sh" >> job_script.sh | ||||
| #echo "singularity instance stop --all" >> job_script.sh | ||||
| chmod +x job_script.sh | ||||
| 
 | ||||
| let "cpus = $1 * 40"  | ||||
| salloc -p compute-bigmem -A comdata --nodes=$1 --time=48:00:00 -c 40 --mem=362G --exclusive srun -n1 job_script.sh | ||||
| 
 | ||||
							
								
								
									
										26
									
								
								start_spark_cluster.sh
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										26
									
								
								start_spark_cluster.sh
									
									
									
									
									
										Executable file
									
								
							| @ -0,0 +1,26 @@ | ||||
| #!/usr/bin/env bash | ||||
| nodes="$(scontrol show hostnames)" | ||||
| 
 | ||||
| export SPARK_MASTER_HOST=$(hostname) | ||||
| echo $SPARK_MASTER_HOST | ||||
| # singularity instance stop spark-boss | ||||
| # rm -r $HOME/.singularity/instances/sing/$(hostname)/nathante/spark-boss | ||||
|   | ||||
| # for node in $nodes | ||||
| # dol | ||||
| #     echo $node | ||||
| #     ssh $node "singularity instance stop --all -F" | ||||
| # done | ||||
| 
 | ||||
| # singularity instance start /gscratch/comdata/users/nathante/cdsc_base.sif spark-boss | ||||
| #apptainer exec /gscratch/comdata/users/nathante/containers/nathante.sif | ||||
| start-master.sh  | ||||
| for node in $nodes | ||||
| do | ||||
|     # if [ "$node" != "$SPARK_BOSS" ] | ||||
|     # then | ||||
|     echo $node | ||||
|     ssh -t $node start_spark_worker.sh $SPARK_MASTER_HOST | ||||
|    # fi				 | ||||
| done | ||||
| 
 | ||||
							
								
								
									
										18
									
								
								start_spark_worker.sh
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										18
									
								
								start_spark_worker.sh
									
									
									
									
									
										Executable file
									
								
							| @ -0,0 +1,18 @@ | ||||
| #!/usr/bin/env bash | ||||
| # runs on worker node | ||||
| # instance_name=spark-worker-$(hostname) | ||||
| # echo $hostname | ||||
| # instance_url="instance://$instance_name" | ||||
| # singularity instance list | ||||
| # singularity instance stop -F "$instance_name" | ||||
| # singularity instance list | ||||
| # sleep 5 | ||||
| # ls $HOME/.singularity/instances/sing/$(hostname)/nathante/$instance_name | ||||
| # rm -r $HOME/.singularity/instances/sing/$(hostname)/nathante/$instance_name | ||||
| # singularity instance start /gscratch/comdata/users/nathante/cdsc_base.sif $instance_name | ||||
| source /gscratch/comdata/env/cdsc_klone_bashrc | ||||
| source $SPARK_CONF_DIR/spark-env.sh | ||||
| echo $(which python3) | ||||
| echo $PYSPARK_PYTHON | ||||
| echo "start-worker.sh spark://$1:$SPARK_MASTER_PORT" | ||||
| start-worker.sh spark://$1:$SPARK_MASTER_PORT | ||||
| @ -1,96 +0,0 @@ | ||||
| from pyarrow import dataset as ds | ||||
| import numpy as np | ||||
| import pandas as pd | ||||
| import plotnine as pn | ||||
| random = np.random.RandomState(1968) | ||||
| 
 | ||||
| def load_densities(term_density_file="/gscratch/comdata/output/reddit_density/comment_terms_10000.feather", | ||||
|                    author_density_file="/gscratch/comdata/output/reddit_density/comment_authors_10000.feather"): | ||||
| 
 | ||||
|     term_density = pd.read_feather(term_density_file) | ||||
|     author_density = pd.read_feather(author_density_file) | ||||
| 
 | ||||
|     term_density.rename({'overlap_density':'term_density','index':'subreddit'},axis='columns',inplace=True) | ||||
|     author_density.rename({'overlap_density':'author_density','index':'subreddit'},axis='columns',inplace=True) | ||||
| 
 | ||||
|     density = term_density.merge(author_density,on='subreddit',how='inner') | ||||
| 
 | ||||
|     return density | ||||
| 
 | ||||
| def load_clusters(term_clusters_file="/gscratch/comdata/output/reddit_clustering/comment_terms_10000.feather", | ||||
|                   author_clusters_file="/gscratch/comdata/output/reddit_clustering/comment_authors_10000.feather"): | ||||
|     term_clusters = pd.read_feather(term_clusters_file) | ||||
|     author_clusters = pd.read_feather(author_clusters_file) | ||||
| 
 | ||||
|     # rename, join and return | ||||
|     term_clusters.rename({'cluster':'term_cluster'},axis='columns',inplace=True) | ||||
|     author_clusters.rename({'cluster':'author_cluster'},axis='columns',inplace=True) | ||||
| 
 | ||||
|     clusters = term_clusters.merge(author_clusters,on='subreddit',how='inner') | ||||
| 
 | ||||
|     return clusters | ||||
| 
 | ||||
| if __name__ == '__main__': | ||||
| 
 | ||||
|     df = load_densities() | ||||
|     cl = load_clusters() | ||||
| 
 | ||||
|     df['td_rank'] = df.term_density.rank() | ||||
|     df['ad_rank'] = df.author_density.rank() | ||||
| 
 | ||||
|     df['td_percentile'] = df.td_rank / df.shape[0] | ||||
|     df['ad_percentile'] = df.ad_rank / df.shape[0] | ||||
| 
 | ||||
|     df = df.merge(cl, on='subreddit',how='inner') | ||||
| 
 | ||||
|     term_cluster_density = df.groupby('term_cluster').agg({'td_rank':['mean','min','max'], | ||||
|                                                          'ad_rank':['mean','min','max'], | ||||
|                                                          'td_percentile':['mean','min','max'], | ||||
|                                                            'ad_percentile':['mean','min','max'], | ||||
|                                                            'subreddit':['count']}) | ||||
|                                                           | ||||
| 
 | ||||
|     author_cluster_density = df.groupby('author_cluster').agg({'td_rank':['mean','min','max'], | ||||
|                                                          'ad_rank':['mean','min','max'], | ||||
|                                                          'td_percentile':['mean','min','max'], | ||||
|                                                            'ad_percentile':['mean','min','max'], | ||||
|                                                            'subreddit':['count']}) | ||||
|                                                           | ||||
|     # which clusters have the most term_density? | ||||
|     term_cluster_density.iloc[term_cluster_density.td_rank['mean'].sort_values().index] | ||||
| 
 | ||||
|     # which clusters have the most author_density? | ||||
|     term_cluster_density.iloc[term_cluster_density.ad_rank['mean'].sort_values(ascending=False).index].loc[term_cluster_density.subreddit['count'] >= 5][0:20] | ||||
| 
 | ||||
|     high_density_term_clusters = term_cluster_density.loc[(term_cluster_density.td_percentile['mean'] > 0.75) & (term_cluster_density.subreddit['count'] > 5)] | ||||
| 
 | ||||
|     # let's just use term density instead of author density for now. We can do a second batch with author density next. | ||||
|     chosen_clusters = high_density_term_clusters.sample(3,random_state=random) | ||||
| 
 | ||||
|     cluster_info = df.loc[df.term_cluster.isin(chosen_clusters.index.values)] | ||||
| 
 | ||||
|     chosen_subreddits = cluster_info.subreddit.values | ||||
| 
 | ||||
|     dataset = ds.dataset("/gscratch/comdata/output/reddit_comments_by_subreddit.parquet",format='parquet') | ||||
|     comments = dataset.to_table(filter=ds.field("subreddit").isin(chosen_subreddits),columns=['id','subreddit','author','CreatedAt']) | ||||
| 
 | ||||
|     comments = comments.to_pandas() | ||||
| 
 | ||||
|     comments['week'] = comments.CreatedAt.dt.date - pd.to_timedelta(comments['CreatedAt'].dt.dayofweek, unit='d') | ||||
| 
 | ||||
|     author_timeseries = comments.loc[:,['subreddit','author','week']].drop_duplicates().groupby(['subreddit','week']).count().reset_index() | ||||
| 
 | ||||
|     for clid in chosen_clusters.index.values: | ||||
| 
 | ||||
|         ts = pd.read_feather(f"data/ts_term_cluster_{clid}.feather") | ||||
| 
 | ||||
|         pn.options.figure_size = (11.7,8.27) | ||||
|         p = pn.ggplot(ts) | ||||
|         p = p + pn.geom_line(pn.aes('week','value',group='subreddit')) | ||||
|         p = p + pn.facet_wrap('~ subreddit') | ||||
|         p.save(f"plots/ts_term_cluster_{clid}.png") | ||||
|          | ||||
| 
 | ||||
|         fig, ax = pyplot.subplots(figsize=(11.7,8.27)) | ||||
|         g = sns.FacetGrid(ts,row='subreddit') | ||||
|         g.map_dataframe(sns.scatterplot,'week','value',data=ts,ax=ax) | ||||
| @ -1,37 +0,0 @@ | ||||
| import pandas as pd | ||||
| import numpy as np | ||||
| from pyspark.sql import functions as f | ||||
| from pyspark.sql import SparkSession | ||||
| from choose_clusters import load_clusters, load_densities | ||||
| import fire | ||||
| from pathlib import Path | ||||
| 
 | ||||
| def main(term_clusters_path="/gscratch/comdata/output/reddit_clustering/comment_terms_10000.feather", | ||||
|          author_clusters_path="/gscratch/comdata/output/reddit_clustering/comment_authors_10000.feather", | ||||
|          term_densities_path="/gscratch/comdata/output/reddit_density/comment_terms_10000.feather", | ||||
|          author_densities_path="/gscratch/comdata/output/reddit_density/comment_authors_10000.feather", | ||||
|          output="data/subreddit_timeseries.parquet"): | ||||
| 
 | ||||
| 
 | ||||
|     clusters = load_clusters(term_clusters_path, author_clusters_path) | ||||
|     densities = load_densities(term_densities_path, author_densities_path) | ||||
|      | ||||
|     spark = SparkSession.builder.getOrCreate() | ||||
|      | ||||
|     df = spark.read.parquet("/gscratch/comdata/output/reddit_comments_by_subreddit.parquet") | ||||
|      | ||||
|     df = df.withColumn('week', f.date_trunc('week', f.col("CreatedAt"))) | ||||
|      | ||||
|     # time of unique authors by series by week | ||||
|     ts = df.select(['subreddit','week','author']).distinct().groupby(['subreddit','week']).count() | ||||
|      | ||||
|     ts = ts.repartition('subreddit') | ||||
|     spk_clusters = spark.createDataFrame(clusters) | ||||
|      | ||||
|     ts = ts.join(spk_clusters, on='subreddit', how='inner') | ||||
|     spk_densities = spark.createDataFrame(densities) | ||||
|     ts = ts.join(spk_densities, on='subreddit', how='inner') | ||||
|     ts.write.parquet(output, mode='overwrite') | ||||
| 
 | ||||
| if __name__ == "__main__": | ||||
|     fire.Fire(main) | ||||
| @ -1 +0,0 @@ | ||||
| /annex/objects/SHA256E-s60874--d536adb0ec637fca262c4e1ec908dd8b4a5d1464047b583cd1a99cc6dba87191 | ||||
| @ -1,11 +0,0 @@ | ||||
| all: subreddit_author_tf_similarities_10000.html #comment_authors_10000.html
 | ||||
| 
 | ||||
| # wang_tsne_10000.html
 | ||||
| # wang_tsne_10000.html:/gscratch/comdata/output/reddit_tsne/wang_similarity_10000.feather /gscratch/comdata/output/reddit_clustering/wang_similarity_10000.feather tsne_vis.py
 | ||||
| # 	python3 tsne_vis.py --tsne_data=/gscratch/comdata/output/reddit_tsne/wang_similarity_10000.feather --clusters=/gscratch/comdata/output/reddit_clustering/wang_similarity_10000.feather --output=wang_tsne_10000.html
 | ||||
| 
 | ||||
| # comment_authors_10000.html:/gscratch/comdata/output/reddit_tsne/comment_authors_10000.feather /gscratch/comdata/output/reddit_clustering/comment_authors_10000.feather tsne_vis.py
 | ||||
| # 	python3 tsne_vis.py --tsne_data=/gscratch/comdata/output/reddit_similarity/comment_authors_10000.feather --clusters=/gscratch/comdata/output/reddit_clustering/comment_authors_10000.feather --output=comment_authors_10000.html
 | ||||
| 
 | ||||
| subreddit_author_tf_similarities_10000.html:/gscratch/comdata/output/reddit_tsne/subreddit_author_tf_similarities_10000.feather /gscratch/comdata/output/reddit_clustering/subreddit_author_tf_similarities_10000.feather tsne_vis.py | ||||
| 	start_spark_and_run.sh 1 tsne_vis.py --tsne_data=/gscratch/comdata/output/reddit_tsne/subreddit_author_tf_similarities_10000.feather --clusters=/gscratch/comdata/output/reddit_clustering/subreddit_author_tf_similarities_10000.feather --output=subreddit_author_tf_similarities_10000.html | ||||
| @ -1 +0,0 @@ | ||||
| ../../.git/annex/objects/Qk/wG/SHA256E-s145210--14a2ad6660d1e4015437eff556ec349dd10a115a4f96594152a29e83d00aa784/SHA256E-s145210--14a2ad6660d1e4015437eff556ec349dd10a115a4f96594152a29e83d00aa784 | ||||
| @ -1 +0,0 @@ | ||||
| ../../.git/annex/objects/w7/2f/SHA256E-s44458--f1c5247775ecf06514a0ff9e523e944bc8fcd9d0fdb6f214cc1329b759d4354e/SHA256E-s44458--f1c5247775ecf06514a0ff9e523e944bc8fcd9d0fdb6f214cc1329b759d4354e | ||||
| @ -1 +0,0 @@ | ||||
| ../../.git/annex/objects/WX/v3/SHA256E-s190874--c2aea719f989dde297ca5f13371e156693c574e44acd9a0e313e5e3a3ad4b543/SHA256E-s190874--c2aea719f989dde297ca5f13371e156693c574e44acd9a0e313e5e3a3ad4b543 | ||||
| @ -1 +0,0 @@ | ||||
| ../../.git/annex/objects/mq/2z/SHA256E-s58834--2e7b3ee11f47011fd9b34bddf8f1e788d35ab9c9e0bb6a1301b0b916135400cf/SHA256E-s58834--2e7b3ee11f47011fd9b34bddf8f1e788d35ab9c9e0bb6a1301b0b916135400cf | ||||
										
											
												File diff suppressed because one or more lines are too long
											
										
									
								
							
										
											
												File diff suppressed because one or more lines are too long
											
										
									
								
							| @ -1,175 +0,0 @@ | ||||
| import pyarrow | ||||
| import altair as alt | ||||
| alt.data_transformers.disable_max_rows() | ||||
| alt.data_transformers.enable('default') | ||||
| from sklearn.neighbors import NearestNeighbors | ||||
| import pandas as pd | ||||
| from numpy import random | ||||
| import fire | ||||
| import numpy as np | ||||
| 
 | ||||
| def base_plot(plot_data): | ||||
| 
 | ||||
| #    base = base.encode(alt.Color(field='color',type='nominal',scale=alt.Scale(scheme='category10'))) | ||||
| 
 | ||||
|     cluster_dropdown = alt.binding_select(options=[str(c) for c in sorted(set(plot_data.cluster))]) | ||||
| 
 | ||||
|     #    subreddit_dropdown = alt.binding_select(options=sorted(plot_data.subreddit)) | ||||
| 
 | ||||
|     cluster_click_select = alt.selection_single(on='click',fields=['cluster'], bind=cluster_dropdown, name=' ') | ||||
|     # cluster_select = alt.selection_single(fields=['cluster'], bind=cluster_dropdown, name='cluster') | ||||
|     # cluster_select_and = cluster_click_select & cluster_select | ||||
|     # | ||||
|     #    subreddit_select = alt.selection_single(on='click',fields=['subreddit'],bind=subreddit_dropdown,name='subreddit_click') | ||||
|      | ||||
|     color = alt.condition(cluster_click_select , | ||||
|                           alt.Color(field='color',type='nominal',scale=alt.Scale(scheme='category10')), | ||||
|                           alt.value("lightgray")) | ||||
|    | ||||
|      | ||||
|     base = alt.Chart(plot_data).mark_text().encode( | ||||
|         alt.X('x',axis=alt.Axis(grid=False),scale=alt.Scale(domain=(-65,65))), | ||||
|         alt.Y('y',axis=alt.Axis(grid=False),scale=alt.Scale(domain=(-65,65))), | ||||
|         color=color, | ||||
|         text='subreddit') | ||||
| 
 | ||||
|     base = base.add_selection(cluster_click_select) | ||||
|   | ||||
| 
 | ||||
|     return base | ||||
| 
 | ||||
| def zoom_plot(plot_data): | ||||
|     chart = base_plot(plot_data) | ||||
| 
 | ||||
|     chart = chart.interactive() | ||||
|     chart = chart.properties(width=1275,height=800) | ||||
| 
 | ||||
|     return chart | ||||
| 
 | ||||
| def viewport_plot(plot_data): | ||||
|     selector1 = alt.selection_interval(encodings=['x','y'],init={'x':(-65,65),'y':(-65,65)}) | ||||
|     selectorx2 = alt.selection_interval(encodings=['x'],init={'x':(30,40)}) | ||||
|     selectory2 = alt.selection_interval(encodings=['y'],init={'y':(-20,0)}) | ||||
| 
 | ||||
|     base = base_plot(plot_data) | ||||
| 
 | ||||
|     viewport = base.mark_point(fillOpacity=0.2,opacity=0.2).encode( | ||||
|         alt.X('x',axis=alt.Axis(grid=False)), | ||||
|         alt.Y('y',axis=alt.Axis(grid=False)), | ||||
|     ) | ||||
|     | ||||
|     viewport = viewport.properties(width=600,height=400) | ||||
| 
 | ||||
|     viewport1 = viewport.add_selection(selector1) | ||||
| 
 | ||||
|     viewport2 = viewport.encode( | ||||
|         alt.X('x',axis=alt.Axis(grid=False),scale=alt.Scale(domain=selector1)), | ||||
|         alt.Y('y',axis=alt.Axis(grid=False),scale=alt.Scale(domain=selector1)) | ||||
|     ) | ||||
| 
 | ||||
|     viewport2 = viewport2.add_selection(selectorx2) | ||||
|     viewport2 = viewport2.add_selection(selectory2) | ||||
| 
 | ||||
|     sr = base.encode(alt.X('x',axis=alt.Axis(grid=False),scale=alt.Scale(domain=selectorx2)), | ||||
|                      alt.Y('y',axis=alt.Axis(grid=False),scale=alt.Scale(domain=selectory2)) | ||||
|     ) | ||||
| 
 | ||||
| 
 | ||||
|     sr = sr.properties(width=1275,height=600) | ||||
| 
 | ||||
| 
 | ||||
|     chart = (viewport1 | viewport2) & sr | ||||
| 
 | ||||
| 
 | ||||
|     return chart | ||||
| 
 | ||||
| def assign_cluster_colors(tsne_data, clusters, n_colors, n_neighbors = 4): | ||||
|     tsne_data = tsne_data.merge(clusters,on='subreddit') | ||||
|      | ||||
|     centroids = tsne_data.groupby('cluster').agg({'x':np.mean,'y':np.mean}) | ||||
| 
 | ||||
|     color_ids = np.arange(n_colors) | ||||
| 
 | ||||
|     distances = np.empty(shape=(centroids.shape[0],centroids.shape[0])) | ||||
| 
 | ||||
|     groups = tsne_data.groupby('cluster') | ||||
|      | ||||
|     points = np.array(tsne_data.loc[:,['x','y']]) | ||||
|     centers = np.array(centroids.loc[:,['x','y']]) | ||||
| 
 | ||||
|     # point x centroid | ||||
|     point_center_distances = np.linalg.norm((points[:,None,:] - centers[None,:,:]),axis=-1) | ||||
|      | ||||
|     # distances is cluster x point | ||||
|     for gid, group in groups: | ||||
|         c_dists = point_center_distances[group.index.values,:].min(axis=0) | ||||
|         distances[group.cluster.values[0],] = c_dists         | ||||
| 
 | ||||
|     # nbrs = NearestNeighbors(n_neighbors=n_neighbors).fit(centroids)  | ||||
|     # distances, indices = nbrs.kneighbors() | ||||
| 
 | ||||
|     nearest = distances.argpartition(n_neighbors,0) | ||||
|     indices = nearest[:n_neighbors,:].T | ||||
|     # neighbor_distances = np.copy(distances) | ||||
|     # neighbor_distances.sort(0) | ||||
|     # neighbor_distances = neighbor_distances[0:n_neighbors,:] | ||||
|      | ||||
|     # nbrs = NearestNeighbors(n_neighbors=n_neighbors,metric='precomputed').fit(distances)  | ||||
|     # distances, indices = nbrs.kneighbors() | ||||
| 
 | ||||
|     color_assignments = np.repeat(-1,len(centroids)) | ||||
| 
 | ||||
|     for i in range(len(centroids)): | ||||
|         knn = indices[i] | ||||
|         knn_colors = color_assignments[knn] | ||||
|         available_colors = color_ids[list(set(color_ids) - set(knn_colors))] | ||||
| 
 | ||||
|         if(len(available_colors) > 0): | ||||
|             color_assignments[i] = available_colors[0] | ||||
|         else: | ||||
|             raise Exception("Can't color this many neighbors with this many colors") | ||||
| 
 | ||||
| 
 | ||||
|     centroids = centroids.reset_index() | ||||
|     colors = centroids.loc[:,['cluster']] | ||||
|     colors['color'] = color_assignments | ||||
| 
 | ||||
|     tsne_data = tsne_data.merge(colors,on='cluster') | ||||
|     return(tsne_data) | ||||
| 
 | ||||
| def build_visualization(tsne_data, clusters, output): | ||||
| 
 | ||||
|     # tsne_data = "/gscratch/comdata/output/reddit_tsne/subreddit_author_tf_similarities_10000.feather" | ||||
|     # clusters = "/gscratch/comdata/output/reddit_clustering/subreddit_author_tf_similarities_10000.feather" | ||||
| 
 | ||||
|     tsne_data = pd.read_feather(tsne_data) | ||||
|     clusters = pd.read_feather(clusters) | ||||
| 
 | ||||
|     tsne_data = assign_cluster_colors(tsne_data,clusters,10,8) | ||||
| 
 | ||||
|     # sr_per_cluster = tsne_data.groupby('cluster').subreddit.count().reset_index() | ||||
|     # sr_per_cluster = sr_per_cluster.rename(columns={'subreddit':'cluster_size'}) | ||||
| 
 | ||||
|     tsne_data = tsne_data.merge(sr_per_cluster,on='cluster') | ||||
| 
 | ||||
|     term_zoom_plot = zoom_plot(tsne_data) | ||||
| 
 | ||||
|     term_zoom_plot.save(output) | ||||
| 
 | ||||
|     term_viewport_plot = viewport_plot(tsne_data) | ||||
| 
 | ||||
|     term_viewport_plot.save(output.replace(".html","_viewport.html")) | ||||
| 
 | ||||
| if __name__ == "__main__": | ||||
|     fire.Fire(build_visualization) | ||||
| 
 | ||||
| # commenter_data = pd.read_feather("tsne_author_fit.feather") | ||||
| # clusters = pd.read_feather('author_3000_clusters.feather') | ||||
| # commenter_data = assign_cluster_colors(commenter_data,clusters,10,8) | ||||
| # commenter_zoom_plot = zoom_plot(commenter_data) | ||||
| # commenter_viewport_plot = viewport_plot(commenter_data) | ||||
| # commenter_zoom_plot.save("subreddit_commenters_tsne_3000.html") | ||||
| # commenter_viewport_plot.save("subreddit_commenters_tsne_3000_viewport.html") | ||||
| 
 | ||||
| # chart = chart.properties(width=10000,height=10000) | ||||
| # chart.save("test_tsne_whole.svg") | ||||
		Loading…
	
		Reference in New Issue
	
	Block a user