1
0

Merge remote-tracking branch 'origin/icwsm_dataverse'

This commit is contained in:
Nathan TeBlunthuis 2024-12-12 07:45:06 -08:00
commit 3d192ab82f
72 changed files with 2087 additions and 1253 deletions

2
__init__.py Normal file
View File

@ -0,0 +1,2 @@
from .timeseries import load_clusters, load_densities, build_cluster_timeseries

View File

@ -1,74 +0,0 @@
from pyspark.sql import functions as f
from pyspark.sql import SparkSession
from pyspark.sql import Window
from pyspark.sql.types import FloatType
import zlib
def zlib_entropy_rate(s):
sb = s.encode()
if len(sb) == 0:
return None
else:
return len(zlib.compress(s.encode(),level=6))/len(s.encode())
zlib_entropy_rate_udf = f.udf(zlib_entropy_rate,FloatType())
spark = SparkSession.builder.getOrCreate()
df = spark.read.parquet("/gscratch/comdata/output/reddit_comments_by_author.parquet",compression='snappy')
df = df.withColumn("saidbot",f.lower(f.col("body")).like("%bot%"))
# df = df.filter(df.subreddit=='seattle')
# df = df.cache()
botreplies = df.filter(f.lower(df.body).rlike(".*[good|bad] bot.*"))
botreplies = botreplies.select([f.col("parent_id").substr(4,100).alias("bot_comment_id"),f.lower(f.col("body")).alias("good_bad_bot"),f.col("link_id").alias("gbbb_link_id")])
botreplies = botreplies.groupby(['bot_comment_id']).agg(f.count('good_bad_bot').alias("N_goodbad_votes"),
f.sum((f.lower(f.col('good_bad_bot')).like('%good bot%').astype("double"))).alias("n_good_votes"),
f.sum((f.lower(f.col('good_bad_bot')).like('%bad bot%').astype("double"))).alias("n_bad_votes"))
comments_by_author = df.select(['author','id','saidbot']).groupBy('author').agg(f.count('id').alias("N_comments"),
f.mean(f.col('saidbot').astype("double")).alias("prop_saidbot"),
f.sum(f.col('saidbot').astype("double")).alias("n_saidbot"))
# pd_comments_by_author = comments_by_author.toPandas()
# pd_comments_by_author['frac'] = 500 / pd_comments_by_author['N_comments']
# pd_comments_by_author.loc[pd_comments_by_author.frac > 1, 'frac'] = 1
# fractions = pd_comments_by_author.loc[:,['author','frac']]
# fractions = fractions.set_index('author').to_dict()['frac']
# sampled_author_comments = df.sampleBy("author",fractions).groupBy('author').agg(f.concat_ws(" ", f.collect_list('body')).alias('comments'))
df = df.withColumn("randn",f.randn(seed=1968))
win = Window.partitionBy("author").orderBy("randn")
df = df.withColumn("randRank",f.rank().over(win))
sampled_author_comments = df.filter(f.col("randRank") <= 1000)
sampled_author_comments = sampled_author_comments.groupBy('author').agg(f.concat_ws(" ", f.collect_list('body')).alias('comments'))
author_entropy_rates = sampled_author_comments.select(['author',zlib_entropy_rate_udf(f.col('comments')).alias("entropy_rate")])
parents = df.join(botreplies, on=df.id==botreplies.bot_comment_id,how='right_outer')
win1 = Window.partitionBy("author")
parents = parents.withColumn("first_bot_reply",f.min(f.col("CreatedAt")).over(win1))
first_bot_reply = parents.filter(f.col("first_bot_reply")==f.col("CreatedAt"))
first_bot_reply = first_bot_reply.withColumnRenamed("CreatedAt","FB_CreatedAt")
first_bot_reply = first_bot_reply.withColumnRenamed("id","FB_id")
comments_since_first_bot_reply = df.join(first_bot_reply,on = 'author',how='right_outer').filter(f.col("CreatedAt")>=f.col("first_bot_reply"))
comments_since_first_bot_reply = comments_since_first_bot_reply.groupBy("author").agg(f.count("id").alias("N_comments_since_firstbot"))
bots = parents.groupby(['author']).agg(f.sum('N_goodbad_votes').alias("N_goodbad_votes"),
f.sum(f.col('n_good_votes')).alias("n_good_votes"),
f.sum(f.col('n_bad_votes')).alias("n_bad_votes"),
f.count(f.col('author')).alias("N_bot_posts"))
bots = bots.join(comments_by_author,on="author",how='left_outer')
bots = bots.join(comments_since_first_bot_reply,on="author",how='left_outer')
bots = bots.join(author_entropy_rates,on='author',how='left_outer')
bots = bots.orderBy("N_goodbad_votes",ascending=False)
bots = bots.repartition(1)
bots.write.parquet("/gscratch/comdata/output/reddit_good_bad_bot.parquet",mode='overwrite')

View File

@ -1,55 +1,36 @@
#srun_cdsc='srun -p comdata-int -A comdata --time=300:00:00 --time-min=00:15:00 --mem=100G --ntasks=1 --cpus-per-task=28'
srun_singularity=source /gscratch/comdata/users/nathante/cdsc_reddit/bin/activate && srun_singularity.sh
similarity_data=/gscratch/comdata/output/reddit_similarity
clustering_data=/gscratch/comdata/output/reddit_clustering
selection_grid="--max_iter=3000 --convergence_iter=15,30,100 --damping=0.5,0.6,0.7,0.8,0.85,0.9,0.95,0.97,0.99, --preference_quantile=0.1,0.3,0.5,0.7,0.9"
#selection_grid="--max_iter=3000 --convergence_iter=[15] --preference_quantile=[0.5] --damping=[0.99]"
all:$(clustering_data)/subreddit_comment_authors_10k/selection_data.csv $(clustering_data)/subreddit_comment_authors-tf_10k/selection_data.csv $(clustering_data)/subreddit_comment_terms_10k/selection_data.csv
# $(clustering_data)/subreddit_comment_authors_30k.feather/SUCCESS $(clustering_data)/subreddit_authors-tf_similarities_30k.feather/SUCCESS
# $(clustering_data)/subreddit_comment_terms_30k.feather/SUCCESS
srun_singularity=srun -p compute-bigmem -A comdata --time=48:00:00 --mem=362G -c 40 /bin/bash -c
similarity_data=../../data/reddit_similarity
clustering_data=../../data/reddit_clustering
kmeans_selection_grid=--max_iters=[3000] --n_inits=[10] --n_clusters=[100,500,1000,1250,1500,1750,2000]
hdbscan_selection_grid=--min_cluster_sizes=[2,3,4,5] --min_samples=[2,3,4,5] --cluster_selection_epsilons=[0,0.01,0.05,0.1,0.15,0.2] --cluster_selection_methods=[eom,leaf]
affinity_selection_grid=--dampings=[0.5,0.6,0.7,0.8,0.95,0.97,0.99] --preference_quantiles=[0.1,0.3,0.5,0.7,0.9] --convergence_iters=[15]
$(clustering_data)/subreddit_comment_authors_10k/selection_data.csv:selection.py $(similarity_data)/subreddit_comment_authors_10k.feather clustering.py
$(srun_singularity) python3 selection.py $(similarity_data)/subreddit_comment_authors_10k.feather $(clustering_data)/subreddit_comment_authors_10k $(clustering_data)/subreddit_comment_authors_10k/selection_data.csv $(selection_grid) -J 20
authors_tf_10k_input_lsi=$(similarity_data)/subreddit_comment_authors-tf_10k_LSI
authors_tf_10k_output_lsi=$(clustering_data)/subreddit_comment_authors-tf_10k_LSI
$(clustering_data)/subreddit_comment_terms_10k/selection_data.csv:selection.py $(similarity_data)/subreddit_comment_terms_10k.feather clustering.py
$(srun_singularity) python3 selection.py $(similarity_data)/subreddit_comment_terms_10k.feather $(clustering_data)/subreddit_comment_terms_10k $(clustering_data)/subreddit_comment_terms_10k/selection_data.csv $(selection_grid) -J 20
all:authors_tf_10k_lsi
$(clustering_data)/subreddit_comment_authors-tf_10k/selection_data.csv:clustering.py $(similarity_data)/subreddit_comment_authors-tf_10k.feather
$(srun_singularity) python3 selection.py $(similarity_data)/subreddit_comment_authors-tf_10k.feather $(clustering_data)/subreddit_comment_authors-tf_10k $(clustering_data)/subreddit_comment_authors-tf_10k/selection_data.csv $(selection_grid) -J 20
authors_tf_10k_lsi:${authors_tf_10k_output_lsi}/kmeans/selection_data.csv ${authors_tf_10k_output_lsi}/hdbscan/selection_data.csv ${authors_tf_10k_output_lsi}/affinity/selection_data.csv
# $(clustering_data)/subreddit_comment_authors_30k.feather/SUCCESS:selection.py $(similarity_data)/subreddit_comment_authors_30k.feather clustering.py
# $(srun_singularity) python3 selection.py $(similarity_data)/subreddit_comment_authors_30k.feather $(clustering_data)/subreddit_comment_authors_30k $(selection_grid) -J 10 && touch $(clustering_data)/subreddit_comment_authors_30k.feather/SUCCESS
## LSI Models
${authors_tf_10k_output_lsi}/kmeans/selection_data.csv:clustering.py ${authors_tf_10k_input_lsi} clustering_base.py kmeans_clustering.py
$(srun_singularity) -c "source ~/.bashrc; python3 kmeans_clustering_lsi.py --inpath=${authors_tf_10k_input_lsi} --outpath=${authors_tf_10k_output_lsi}/kmeans --savefile=${authors_tf_10k_output_lsi}/kmeans/selection_data.csv $(kmeans_selection_grid)"
# $(clustering_data)/subreddit_comment_terms_30k.feather/SUCCESS:selection.py $(similarity_data)/subreddit_comment_terms_30k.feather clustering.py
# $(srun_singularity) python3 selection.py $(similarity_data)/subreddit_comment_terms_30k.feather $(clustering_data)/subreddit_comment_terms_30k $(selection_grid) -J 10 && touch $(clustering_data)/subreddit_comment_terms_30k.feather/SUCCESS
${authors_tf_10k_output_lsi}/affinity/selection_data.csv:clustering.py ${authors_tf_10k_input_lsi} clustering_base.py affinity_clustering.py
$(srun_singularity) -c "source ~/.bashrc; python3 affinity_clustering_lsi.py --inpath=${authors_tf_10k_input_lsi} --outpath=${authors_tf_10k_output_lsi}/affinity --savefile=${authors_tf_10k_output_lsi}/affinity/selection_data.csv $(affinity_selection_grid)"
# $(clustering_data)/subreddit_authors-tf_similarities_30k.feather/SUCCESS:clustering.py $(similarity_data)/subreddit_comment_authors-tf_30k.feather
# $(srun_singularity) python3 selection.py $(similarity_data)/subreddit_comment_authors-tf_30k.feather $(clustering_data)/subreddit_comment_authors-tf_30k $(selection_grid) -J 8 && touch $(clustering_data)/subreddit_authors-tf_similarities_30k.feather/SUCCESS
${authors_tf_10k_output_lsi}/hdbscan/selection_data.csv:clustering.py ${authors_tf_10k_input_lsi} clustering_base.py hdbscan_clustering.py
$(srun_singularity) -c "source ~/.bashrc; python3 hdbscan_clustering_lsi.py --inpath=${authors_tf_10k_input_lsi} --outpath=${authors_tf_10k_output_lsi}/hdbscan --savefile=${authors_tf_10k_output_lsi}/hdbscan/selection_data.csv $(hdbscan_selection_grid)"
${authors_tf_10k_output_lsi}/best_hdbscan.feather:${authors_tf_10k_output_lsi}/hdbscan/selection_data.csv pick_best_clustering.py
$(srun_singularity) -c "source ~/.bashrc; python3 pick_best_clustering.py $< $@ --min_clusters=50 --max_isolates=5000 --min_cluster_size=2"
# $(clustering_data)/subreddit_comment_authors_100k.feather:clustering.py $(similarity_data)/subreddit_comment_authors_100k.feather
# $(srun_singularity) python3 clustering.py $(similarity_data)/subreddit_comment_authors_100k.feather $(clustering_data)/subreddit_comment_authors_100k.feather ---max_iter=400 --convergence_iter=15 --preference_quantile=0.85 --damping=0.85
${authors_tf_10k_input_lsi}:
$(MAKE) -C ../similarities
# $(clustering_data)/comment_terms_100k.feather:clustering.py $(similarity_data)/subreddit_comment_terms_100k.feather
# $(srun_singularity) python3 clustering.py $(similarity_data)/comment_terms_10000.feather $(clustering_data)/comment_terms_10000.feather ---max_iter=1000 --convergence_iter=15 --preference_quantile=0.9 --damping=0.5
clean:
rm -f ${authors_tf_10k_output_lsi}/affinity/selection_data.csv
rm -f ${authors_tf_10k_output_lsi}/kmeans/selection_data.csv
rm -f ${authors_tf_10k_output_lsi}/hdbscan/selection_data.csv
# $(clustering_data)/subreddit_comment_author-tf_100k.feather:clustering.py $(similarity_data)/subreddit_comment_author-tf_100k.feather
# $(srun_singularity) python3 clustering.py $(similarity_data)/subreddit_comment_author-tf_100k.parquet $(clustering_data)/subreddit_comment_author-tf_100k.feather ---max_iter=400 --convergence_iter=15 --preference_quantile=0.5 --damping=0.85
# it's pretty difficult to get a result that isn't one huge megacluster. A sign that it's bullcrap
# /gscratch/comdata/output/reddit_clustering/wang_similarity_10000.feather:clustering.py /gscratch/comdata/output/reddit_similarity/wang_similarity_10000.feather
# ./clustering.py /gscratch/comdata/output/reddit_similarity/wang_similarity_10000.feather /gscratch/comdata/output/reddit_clustering/wang_similarity_10000.feather ---max_iter=400 --convergence_iter=15 --preference_quantile=0.9 --damping=0.85
# /gscratch/comdata/output/reddit_tsne/subreddit_author_tf_similarities_10000.feather:fit_tsne.py /gscratch/comdata/output/reddit_similarity/subreddit_author_tf_similarities_10000.parquet
# start_spark_and_run.sh 1 fit_tsne.py --similarities=/gscratch/comdata/output/reddit_similarity/subreddit_author_tf_similarities_10000.parquet --output=/gscratch/comdata/output/reddit_tsne/subreddit_author_tf_similarities_10000.feather
# /gscratch/comdata/output/reddit_tsne/wang_similarity_10000.feather:fit_tsne.py /gscratch/comdata/output/reddit_similarity/wang_similarity_10000.feather
# python3 fit_tsne.py --similarities=/gscratch/comdata/output/reddit_similarity/wang_similarity_10000.feather --output=/gscratch/comdata/output/reddit_tsne/wang_similarity_10000.feather
# /gscratch/comdata/output/reddit_tsne/comment_authors_10000.feather:clustering.py /gscratch/comdata/output/reddit_similarity/comment_authors_10000.feather
# # $srun_cdsc python3
# start_spark_and_run.sh 1 fit_tsne.py --similarities=/gscratch/comdata/output/reddit_similarity/comment_authors_10000.feather --output=/gscratch/comdata/output/reddit_tsne/comment_authors_10000.feather
PHONY: clean

View File

@ -0,0 +1,129 @@
from sklearn.cluster import AffinityPropagation
from dataclasses import dataclass
from clustering_base import clustering_result, clustering_job
from grid_sweep import grid_sweep
from pathlib import Path
from itertools import product, starmap
import fire
import sys
import numpy as np
# silhouette is the only one that doesn't need the feature matrix. So it's probably the only one that's worth trying.
@dataclass
class affinity_clustering_result(clustering_result):
damping:float
convergence_iter:int
preference_quantile:float
preference:float
max_iter:int
class affinity_job(clustering_job):
def __init__(self, infile, outpath, name, damping=0.9, max_iter=100000, convergence_iter=30, preference_quantile=0.5, random_state=1968, verbose=True):
super().__init__(infile,
outpath,
name,
call=self._affinity_clustering,
preference_quantile=preference_quantile,
damping=damping,
max_iter=max_iter,
convergence_iter=convergence_iter,
random_state=1968,
verbose=verbose)
self.damping=damping
self.max_iter=max_iter
self.convergence_iter=convergence_iter
self.preference_quantile=preference_quantile
def _affinity_clustering(self, mat, preference_quantile, *args, **kwargs):
mat = 1-mat
preference = np.quantile(mat, preference_quantile)
self.preference = preference
print(f"preference is {preference}")
print("data loaded")
sys.stdout.flush()
clustering = AffinityPropagation(*args,
preference=preference,
affinity='precomputed',
copy=False,
**kwargs).fit(mat)
return clustering
def get_info(self):
result = super().get_info()
self.result=affinity_clustering_result(**result.__dict__,
damping=self.damping,
max_iter=self.max_iter,
convergence_iter=self.convergence_iter,
preference_quantile=self.preference_quantile,
preference=self.preference)
return self.result
class affinity_grid_sweep(grid_sweep):
def __init__(self,
inpath,
outpath,
*args,
**kwargs):
super().__init__(affinity_job,
_afffinity_grid_sweep,
inpath,
outpath,
self.namer,
*args,
**kwargs)
def namer(self,
damping,
max_iter,
convergence_iter,
preference_quantile):
return f"damp-{damping}_maxit-{max_iter}_convit-{convergence_iter}_prefq-{preference_quantile}"
def run_affinity_grid_sweep(savefile, inpath, outpath, dampings=[0.8], max_iters=[3000], convergence_iters=[30], preference_quantiles=[0.5],n_cores=10):
"""Run affinity clustering once or more with different parameters.
Usage:
affinity_clustering.py --savefile=SAVEFILE --inpath=INPATH --outpath=OUTPATH --max_iters=<csv> --dampings=<csv> --preference_quantiles=<csv>
Keword arguments:
savefile: path to save the metadata and diagnostics
inpath: path to feather data containing a labeled matrix of subreddit similarities.
outpath: path to output fit kmeans clusterings.
dampings:one or more numbers in [0.5, 1). damping parameter in affinity propagatin clustering.
preference_quantiles:one or more numbers in (0,1) for selecting the 'preference' parameter.
convergence_iters:one or more integers of number of iterations without improvement before stopping.
max_iters: one or more numbers of different maximum interations.
"""
obj = affinity_grid_sweep(inpath,
outpath,
map(float,dampings),
map(int,max_iters),
map(int,convergence_iters),
map(float,preference_quantiles))
obj.run(n_cores)
obj.save(savefile)
def test_select_affinity_clustering():
# select_hdbscan_clustering("/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors-tf_30k_LSI",
# "test_hdbscan_author30k",
# min_cluster_sizes=[2],
# min_samples=[1,2],
# cluster_selection_epsilons=[0,0.05,0.1,0.15],
# cluster_selection_methods=['eom','leaf'],
# lsi_dimensions='all')
inpath = "/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors-tf_10k_LSI/"
outpath = "test_affinity";
dampings=[0.8,0.9]
max_iters=[100000]
convergence_iters=[15]
preference_quantiles=[0.5,0.7]
gs = affinity_lsi_grid_sweep(inpath, 'all', outpath, dampings, max_iters, convergence_iters, preference_quantiles)
gs.run(20)
gs.save("test_affinity/lsi_sweep.csv")
if __name__ == "__main__":
fire.Fire(run_affinity_grid_sweep)

View File

@ -0,0 +1,99 @@
import fire
from affinity_clustering import affinity_clustering_result, affinity_job, affinity_grid_sweep
from grid_sweep import grid_sweep
from lsi_base import lsi_result_mixin, lsi_grid_sweep, lsi_mixin
from dataclasses import dataclass
@dataclass
class affinity_clustering_result_lsi(affinity_clustering_result, lsi_result_mixin):
pass
class affinity_lsi_job(affinity_job, lsi_mixin):
def __init__(self, infile, outpath, name, lsi_dims, *args, **kwargs):
super().__init__(infile,
outpath,
name,
*args,
**kwargs)
super().set_lsi_dims(lsi_dims)
def get_info(self):
result = super().get_info()
self.result = affinity_clustering_result_lsi(**result.__dict__,
lsi_dimensions=self.lsi_dims)
return self.result
class affinity_lsi_grid_sweep(lsi_grid_sweep):
def __init__(self,
inpath,
lsi_dims,
outpath,
dampings=[0.9],
max_iters=[10000],
convergence_iters=[30],
preference_quantiles=[0.5]):
super().__init__(affinity_lsi_job,
_affinity_lsi_grid_sweep,
inpath,
lsi_dims,
outpath,
dampings,
max_iters,
convergence_iters,
preference_quantiles)
class _affinity_lsi_grid_sweep(grid_sweep):
def __init__(self,
inpath,
outpath,
lsi_dim,
*args,
**kwargs):
self.lsi_dim = lsi_dim
self.jobtype = affinity_lsi_job
super().__init__(self.jobtype,
inpath,
outpath,
self.namer,
[self.lsi_dim],
*args,
**kwargs)
def namer(self, *args, **kwargs):
s = affinity_grid_sweep.namer(self, *args[1:], **kwargs)
s += f"_lsi-{self.lsi_dim}"
return s
def run_affinity_lsi_grid_sweep(savefile, inpath, outpath, dampings=[0.8], max_iters=[3000], convergence_iters=[30], preference_quantiles=[0.5], lsi_dimensions='all',n_cores=30):
"""Run affinity clustering once or more with different parameters.
Usage:
affinity_clustering.py --savefile=SAVEFILE --inpath=INPATH --outpath=OUTPATH --max_iters=<csv> --dampings=<csv> --preference_quantiles=<csv> --lsi_dimensions: either "all" or one or more available lsi similarity dimensions at INPATH.
Keword arguments:
savefile: path to save the metadata and diagnostics
inpath: path to folder containing feather files with LSI similarity labeled matrices of subreddit similarities.
outpath: path to output fit kmeans clusterings.
dampings:one or more numbers in [0.5, 1). damping parameter in affinity propagatin clustering.
preference_quantiles:one or more numbers in (0,1) for selecting the 'preference' parameter.
convergence_iters:one or more integers of number of iterations without improvement before stopping.
max_iters: one or more numbers of different maximum interations.
lsi_dimensions: either "all" or one or more available lsi similarity dimensions at INPATH.
"""
obj = affinity_lsi_grid_sweep(inpath,
lsi_dimensions,
outpath,
map(float,dampings),
map(int,max_iters),
map(int,convergence_iters),
map(float,preference_quantiles))
obj.run(n_cores)
obj.save(savefile)
if __name__ == "__main__":
fire.Fire(run_affinity_lsi_grid_sweep)

View File

@ -6,21 +6,20 @@ import numpy as np
from sklearn.cluster import AffinityPropagation
import fire
from pathlib import Path
from multiprocessing import cpu_count
from dataclasses import dataclass
from clustering_base import sim_to_dist, process_clustering_result, clustering_result, read_similarity_mat
def read_similarity_mat(similarities, use_threads=True):
df = pd.read_feather(similarities, use_threads=use_threads)
mat = np.array(df.drop('_subreddit',1))
n = mat.shape[0]
mat[range(n),range(n)] = 1
return (df._subreddit,mat)
def affinity_clustering(similarities, *args, **kwargs):
def affinity_clustering(similarities, output, *args, **kwargs):
subreddits, mat = read_similarity_mat(similarities)
return _affinity_clustering(mat, subreddits, *args, **kwargs)
clustering = _affinity_clustering(mat, *args, **kwargs)
cluster_data = process_clustering_result(clustering, subreddits)
cluster_data['algorithm'] = 'affinity'
return(cluster_data)
def _affinity_clustering(mat, subreddits, output, damping=0.9, max_iter=100000, convergence_iter=30, preference_quantile=0.5, random_state=1968, verbose=True):
'''
similarities: feather file with a dataframe of similarity scores
similarities: matrix of similarity scores
preference_quantile: parameter controlling how many clusters to make. higher values = more clusters. 0.85 is a good value with 3000 subreddits.
damping: parameter controlling how iterations are merged. Higher values make convergence faster and more dependable. 0.85 is a good value for the 10000 subreddits by author.
'''
@ -40,25 +39,14 @@ def _affinity_clustering(mat, subreddits, output, damping=0.9, max_iter=100000,
verbose=verbose,
random_state=random_state).fit(mat)
print(f"clustering took {clustering.n_iter_} iterations")
clusters = clustering.labels_
print(f"found {len(set(clusters))} clusters")
cluster_data = pd.DataFrame({'subreddit': subreddits,'cluster':clustering.labels_})
cluster_sizes = cluster_data.groupby("cluster").count()
print(f"the largest cluster has {cluster_sizes.subreddit.max()} members")
print(f"the median cluster has {cluster_sizes.subreddit.median()} members")
print(f"{(cluster_sizes.subreddit==1).sum()} clusters have 1 member")
sys.stdout.flush()
cluster_data = process_clustering_result(clustering, subreddits)
output = Path(output)
output.parent.mkdir(parents=True,exist_ok=True)
cluster_data.to_feather(output)
print(f"saved {output}")
return clustering
if __name__ == "__main__":
fire.Fire(affinity_clustering)

View File

@ -0,0 +1,151 @@
import pickle
from pathlib import Path
import numpy as np
import pandas as pd
from dataclasses import dataclass
from sklearn.metrics import silhouette_score, silhouette_samples
from collections import Counter
# this is meant to be an interface, not created directly
class clustering_job:
def __init__(self, infile, outpath, name, call, *args, **kwargs):
self.outpath = Path(outpath)
self.call = call
self.args = args
self.kwargs = kwargs
self.infile = Path(infile)
self.name = name
self.hasrun = False
def run(self):
self.subreddits, self.mat = self.read_distance_mat(self.infile)
self.clustering = self.call(self.mat, *self.args, **self.kwargs)
self.cluster_data = self.process_clustering(self.clustering, self.subreddits)
self.outpath.mkdir(parents=True, exist_ok=True)
self.cluster_data.to_feather(self.outpath/(self.name + ".feather"))
self.hasrun = True
self.cleanup()
def cleanup(self):
self.cluster_data = None
self.mat = None
self.clustering=None
self.subreddits=None
def get_info(self):
if not self.hasrun:
self.run()
self.result = clustering_result(outpath=str(self.outpath.resolve()),
silhouette_score=self.score,
name=self.name,
n_clusters=self.n_clusters,
n_isolates=self.n_isolates,
silhouette_samples = self.silsampout
)
return self.result
def silhouette(self):
counts = Counter(self.clustering.labels_)
singletons = [key for key, value in counts.items() if value == 1]
isolates = (self.clustering.labels_ == -1) | (np.isin(self.clustering.labels_,np.array(singletons)))
scoremat = self.mat[~isolates][:,~isolates]
if self.n_clusters > 1:
score = silhouette_score(scoremat, self.clustering.labels_[~isolates], metric='precomputed')
silhouette_samp = silhouette_samples(self.mat, self.clustering.labels_, metric='precomputed')
silhouette_samp = pd.DataFrame({'subreddit':self.subreddits,'score':silhouette_samp})
self.outpath.mkdir(parents=True, exist_ok=True)
silsampout = self.outpath / ("silhouette_samples-" + self.name + ".feather")
self.silsampout = silsampout.resolve()
silhouette_samp.to_feather(self.silsampout)
else:
score = None
self.silsampout = None
return score
def read_distance_mat(self, similarities, use_threads=True):
print(similarities)
df = pd.read_feather(similarities, use_threads=use_threads)
mat = np.array(df.drop('_subreddit',axis=1))
n = mat.shape[0]
mat[range(n),range(n)] = 1
return (df._subreddit,1-mat)
def process_clustering(self, clustering, subreddits):
if hasattr(clustering,'n_iter_'):
print(f"clustering took {clustering.n_iter_} iterations")
clusters = clustering.labels_
self.n_clusters = len(set(clusters))
print(f"found {self.n_clusters} clusters")
cluster_data = pd.DataFrame({'subreddit': subreddits,'cluster':clustering.labels_})
self.score = self.silhouette()
print(f"silhouette_score:{self.score}")
cluster_sizes = cluster_data.groupby("cluster").count().reset_index()
print(f"the largest cluster has {cluster_sizes.loc[cluster_sizes.cluster!=-1].subreddit.max()} members")
print(f"the median cluster has {cluster_sizes.subreddit.median()} members")
n_isolates1 = (cluster_sizes.subreddit==1).sum()
print(f"{n_isolates1} clusters have 1 member")
n_isolates2 = cluster_sizes.loc[cluster_sizes.cluster==-1,:]['subreddit'].to_list()
if len(n_isolates2) > 0:
n_isloates2 = n_isolates2[0]
print(f"{n_isolates2} subreddits are in cluster -1",flush=True)
if n_isolates1 == 0:
self.n_isolates = n_isolates2
else:
self.n_isolates = n_isolates1
return cluster_data
class twoway_clustering_job(clustering_job):
def __init__(self, infile, outpath, name, call1, call2, args1, args2):
self.outpath = Path(outpath)
self.call1 = call1
self.args1 = args1
self.call2 = call2
self.args2 = args2
self.infile = Path(infile)
self.name = name
self.hasrun = False
self.args = args1|args2
def run(self):
self.subreddits, self.mat = self.read_distance_mat(self.infile)
self.step1 = self.call1(self.mat, **self.args1)
self.clustering = self.call2(self.mat, self.step1, **self.args2)
self.cluster_data = self.process_clustering(self.clustering, self.subreddits)
self.hasrun = True
self.after_run()
self.cleanup()
def after_run(self):
self.score = self.silhouette()
self.outpath.mkdir(parents=True, exist_ok=True)
print(self.outpath/(self.name+".feather"))
self.cluster_data.to_feather(self.outpath/(self.name + ".feather"))
def cleanup(self):
super().cleanup()
self.step1 = None
@dataclass
class clustering_result:
outpath:Path
silhouette_score:float
name:str
n_clusters:int
n_isolates:int
silhouette_samples:str

View File

@ -1,34 +0,0 @@
import fire
import pyarrow
import pandas as pd
from numpy import random
import numpy as np
from sklearn.manifold import TSNE
similarities = "/gscratch/comdata/output/reddit_similarity/subreddit_author_tf_similarities_10000.parquet"
def fit_tsne(similarities, output, learning_rate=750, perplexity=50, n_iter=10000, early_exaggeration=20):
'''
similarities: feather file with a dataframe of similarity scores
learning_rate: parameter controlling how fast the model converges. Too low and you get outliers. Too high and you get a ball.
perplexity: number of neighbors to use. the default of 50 is often good.
'''
df = pd.read_feather(similarities)
n = df.shape[0]
mat = np.array(df.drop('subreddit',1),dtype=np.float64)
mat[range(n),range(n)] = 1
mat[mat > 1] = 1
dist = 2*np.arccos(mat)/np.pi
tsne_model = TSNE(2,learning_rate=750,perplexity=50,n_iter=10000,metric='precomputed',early_exaggeration=20,n_jobs=-1)
tsne_fit_model = tsne_model.fit(dist)
tsne_fit_whole = tsne_fit_model.fit_transform(dist)
plot_data = pd.DataFrame({'x':tsne_fit_whole[:,0],'y':tsne_fit_whole[:,1], 'subreddit':df.subreddit})
plot_data.to_feather(output)
if __name__ == "__main__":
fire.Fire(fit_tsne)

49
clustering/grid_sweep.py Normal file
View File

@ -0,0 +1,49 @@
from pathlib import Path
from multiprocessing import Pool, cpu_count
from itertools import product, chain
import pandas as pd
class grid_sweep:
def __init__(self, jobtype, inpath, outpath, namer, *args):
self.jobtype = jobtype
self.namer = namer
print(*args)
grid = list(product(*args))
inpath = Path(inpath)
outpath = Path(outpath)
self.hasrun = False
self.grid = [(inpath,outpath,namer(*g)) + g for g in grid]
self.jobs = [jobtype(*g) for g in self.grid]
def run(self, cores=20):
if cores is not None and cores > 1:
with Pool(cores) as pool:
infos = pool.map(self.jobtype.get_info, self.jobs)
else:
infos = map(self.jobtype.get_info, self.jobs)
self.infos = pd.DataFrame(infos)
self.hasrun = True
def save(self, outcsv):
if not self.hasrun:
self.run()
outcsv = Path(outcsv)
outcsv.parent.mkdir(parents=True, exist_ok=True)
self.infos.to_csv(outcsv)
class twoway_grid_sweep(grid_sweep):
def __init__(self, jobtype, inpath, outpath, namer, args1, args2, *args, **kwargs):
self.jobtype = jobtype
self.namer = namer
prod1 = product(* args1.values())
prod2 = product(* args2.values())
grid1 = [dict(zip(args1.keys(), pargs)) for pargs in prod1]
grid2 = [dict(zip(args2.keys(), pargs)) for pargs in prod2]
grid = product(grid1, grid2)
inpath = Path(inpath)
outpath = Path(outpath)
self.hasrun = False
self.grid = [(inpath,outpath,namer(**(g[0] | g[1])), g[0], g[1], *args) for g in grid]
self.jobs = [jobtype(*g) for g in self.grid]

View File

@ -0,0 +1,159 @@
from clustering_base import clustering_result, clustering_job
from grid_sweep import grid_sweep
from dataclasses import dataclass
import hdbscan
from sklearn.neighbors import NearestNeighbors
import plotnine as pn
import numpy as np
from itertools import product, starmap, chain
import pandas as pd
from multiprocessing import cpu_count
import fire
def test_select_hdbscan_clustering():
# select_hdbscan_clustering("/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors-tf_30k_LSI",
# "test_hdbscan_author30k",
# min_cluster_sizes=[2],
# min_samples=[1,2],
# cluster_selection_epsilons=[0,0.05,0.1,0.15],
# cluster_selection_methods=['eom','leaf'],
# lsi_dimensions='all')
inpath = "/gscratch/comdata/users/nathante/competitive_exclusion_reddit/data/similarity/comment_authors_compex_LSI"
outpath = "test_hdbscan";
min_cluster_sizes=[2,3,4];
min_samples=[1,2,3];
cluster_selection_epsilons=[0,0.1,0.3,0.5];
cluster_selection_methods=[1];
lsi_dimensions='all'
gs = hdbscan_lsi_grid_sweep(inpath, "all", outpath, min_cluster_sizes, min_samples, cluster_selection_epsilons, cluster_selection_methods)
gs.run(20)
gs.save("test_hdbscan/lsi_sweep.csv")
# job1 = hdbscan_lsi_job(infile=inpath, outpath=outpath, name="test", lsi_dims=500, min_cluster_size=2, min_samples=1,cluster_selection_epsilon=0,cluster_selection_method='eom')
# job1.run()
# print(job1.get_info())
# df = pd.read_csv("test_hdbscan/selection_data.csv")
# test_select_hdbscan_clustering()
# check_clusters = pd.read_feather("test_hdbscan/500_2_2_0.1_eom.feather")
# silscores = pd.read_feather("test_hdbscan/silhouette_samples500_2_2_0.1_eom.feather")
# c = check_clusters.merge(silscores,on='subreddit')# fire.Fire(select_hdbscan_clustering)
class hdbscan_grid_sweep(grid_sweep):
def __init__(self,
inpath,
outpath,
*args,
**kwargs):
super().__init__(hdbscan_job, inpath, outpath, self.namer, *args, **kwargs)
def namer(self,
min_cluster_size,
min_samples,
cluster_selection_epsilon,
cluster_selection_method):
return f"mcs-{min_cluster_size}_ms-{min_samples}_cse-{cluster_selection_epsilon}_csm-{cluster_selection_method}"
@dataclass
class hdbscan_clustering_result(clustering_result):
min_cluster_size:int
min_samples:int
cluster_selection_epsilon:float
cluster_selection_method:str
class hdbscan_job(clustering_job):
def __init__(self, infile, outpath, name, min_cluster_size=2, min_samples=1, cluster_selection_epsilon=0, cluster_selection_method='eom'):
super().__init__(infile,
outpath,
name,
call=hdbscan_job._hdbscan_clustering,
min_cluster_size=min_cluster_size,
min_samples=min_samples,
cluster_selection_epsilon=cluster_selection_epsilon,
cluster_selection_method=cluster_selection_method
)
self.min_cluster_size = min_cluster_size
self.min_samples = min_samples
self.cluster_selection_epsilon = cluster_selection_epsilon
self.cluster_selection_method = cluster_selection_method
# self.mat = 1 - self.mat
def _hdbscan_clustering(mat, *args, **kwargs):
print(f"running hdbscan clustering. args:{args}. kwargs:{kwargs}")
print(mat)
clusterer = hdbscan.HDBSCAN(metric='precomputed',
core_dist_n_jobs=cpu_count(),
*args,
**kwargs,
)
clustering = clusterer.fit(mat.astype('double'))
return(clustering)
def get_info(self):
result = super().get_info()
self.result = hdbscan_clustering_result(**result.__dict__,
min_cluster_size=self.min_cluster_size,
min_samples=self.min_samples,
cluster_selection_epsilon=self.cluster_selection_epsilon,
cluster_selection_method=self.cluster_selection_method)
return self.result
def run_hdbscan_grid_sweep(savefile, inpath, outpath, min_cluster_sizes=[2], min_samples=[1], cluster_selection_epsilons=[0], cluster_selection_methods=['eom']):
"""Run hdbscan clustering once or more with different parameters.
Usage:
hdbscan_clustering.py --savefile=SAVEFILE --inpath=INPATH --outpath=OUTPATH --min_cluster_sizes=<csv> --min_samples=<csv> --cluster_selection_epsilons=<csv> --cluster_selection_methods=<csv "eom"|"leaf">
Keword arguments:
savefile: path to save the metadata and diagnostics
inpath: path to feather data containing a labeled matrix of subreddit similarities.
outpath: path to output fit kmeans clusterings.
min_cluster_sizes: one or more integers indicating the minumum cluster size
min_samples: one ore more integers indicating the minimum number of samples used in the algorithm
cluster_selection_epsilon: one or more similarity thresholds for transition from dbscan to hdbscan
cluster_selection_method: "eom" or "leaf" eom gives larger clusters.
"""
obj = hdbscan_grid_sweep(inpath,
outpath,
map(int,min_cluster_sizes),
map(int,min_samples),
map(float,cluster_selection_epsilons),
cluster_selection_methods)
obj.run()
obj.save(savefile)
def KNN_distances_plot(mat,outname,k=2):
nbrs = NearestNeighbors(n_neighbors=k,algorithm='auto',metric='precomputed').fit(mat)
distances, indices = nbrs.kneighbors(mat)
d2 = distances[:,-1]
df = pd.DataFrame({'dist':d2})
df = df.sort_values("dist",ascending=False)
df['idx'] = np.arange(0,d2.shape[0]) + 1
p = pn.qplot(x='idx',y='dist',data=df,geom='line') + pn.scales.scale_y_continuous(minor_breaks = np.arange(0,50)/50,
breaks = np.arange(0,10)/10)
p.save(outname,width=16,height=10)
def make_KNN_plots():
similarities = "/gscratch/comdata/output/reddit_similarity/subreddit_comment_terms_10k.feather"
subreddits, mat = read_similarity_mat(similarities)
mat = sim_to_dist(mat)
KNN_distances_plot(mat,k=2,outname='terms_knn_dist2.png')
similarities = "/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors_10k.feather"
subreddits, mat = read_similarity_mat(similarities)
mat = sim_to_dist(mat)
KNN_distances_plot(mat,k=2,outname='authors_knn_dist2.png')
similarities = "/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors-tf_10k.feather"
subreddits, mat = read_similarity_mat(similarities)
mat = sim_to_dist(mat)
KNN_distances_plot(mat,k=2,outname='authors-tf_knn_dist2.png')
if __name__ == "__main__":
fire.Fire(run_hdbscan_grid_sweep)
# test_select_hdbscan_clustering()
#fire.Fire(select_hdbscan_clustering)

View File

@ -0,0 +1,101 @@
from hdbscan_clustering import hdbscan_job, hdbscan_grid_sweep, hdbscan_clustering_result
from lsi_base import lsi_grid_sweep, lsi_mixin, lsi_result_mixin
from grid_sweep import grid_sweep
import fire
from dataclasses import dataclass
@dataclass
class hdbscan_clustering_result_lsi(hdbscan_clustering_result, lsi_result_mixin):
pass
class hdbscan_lsi_job(hdbscan_job, lsi_mixin):
def __init__(self, infile, outpath, name, lsi_dims, *args, **kwargs):
super().__init__(
infile,
outpath,
name,
*args,
**kwargs)
super().set_lsi_dims(lsi_dims)
def get_info(self):
partial_result = super().get_info()
self.result = hdbscan_clustering_result_lsi(**partial_result.__dict__,
lsi_dimensions=self.lsi_dims)
return self.result
class hdbscan_lsi_grid_sweep(lsi_grid_sweep):
def __init__(self,
inpath,
lsi_dims,
outpath,
min_cluster_sizes,
min_samples,
cluster_selection_epsilons,
cluster_selection_methods
):
super().__init__(hdbscan_lsi_job,
_hdbscan_lsi_grid_sweep,
inpath,
lsi_dims,
outpath,
min_cluster_sizes,
min_samples,
cluster_selection_epsilons,
cluster_selection_methods)
class _hdbscan_lsi_grid_sweep(grid_sweep):
def __init__(self,
inpath,
outpath,
lsi_dim,
*args,
**kwargs):
print(args)
print(kwargs)
self.lsi_dim = lsi_dim
self.jobtype = hdbscan_lsi_job
super().__init__(self.jobtype, inpath, outpath, self.namer, [self.lsi_dim], *args, **kwargs)
def namer(self, *args, **kwargs):
s = hdbscan_grid_sweep.namer(self, *args[1:], **kwargs)
s += f"_lsi-{self.lsi_dim}"
return s
def run_hdbscan_lsi_grid_sweep(savefile, inpath, outpath, min_cluster_sizes=[2], min_samples=[1], cluster_selection_epsilons=[0], cluster_selection_methods=[1],lsi_dimensions='all'):
"""Run hdbscan clustering once or more with different parameters.
Usage:
hdbscan_clustering_lsi --savefile=SAVEFILE --inpath=INPATH --outpath=OUTPATH --min_cluster_sizes=<csv> --min_samples=<csv> --cluster_selection_epsilons=<csv> --cluster_selection_methods=[eom]> --lsi_dimensions: either "all" or one or more available lsi similarity dimensions at INPATH.
Keword arguments:
savefile: path to save the metadata and diagnostics
inpath: path to folder containing feather files with LSI similarity labeled matrices of subreddit similarities.
outpath: path to output fit clusterings.
min_cluster_sizes: one or more integers indicating the minumum cluster size
min_samples: one ore more integers indicating the minimum number of samples used in the algorithm
cluster_selection_epsilons: one or more similarity thresholds for transition from dbscan to hdbscan
cluster_selection_methods: one or more of "eom" or "leaf" eom gives larger clusters.
lsi_dimensions: either "all" or one or more available lsi similarity dimensions at INPATH.
"""
obj = hdbscan_lsi_grid_sweep(inpath,
lsi_dimensions,
outpath,
list(map(int,min_cluster_sizes)),
list(map(int,min_samples)),
list(map(float,cluster_selection_epsilons)),
cluster_selection_methods)
obj.run(10)
obj.save(savefile)
if __name__ == "__main__":
fire.Fire(run_hdbscan_lsi_grid_sweep)

View File

@ -0,0 +1,105 @@
from sklearn.cluster import KMeans
import fire
from pathlib import Path
from dataclasses import dataclass
from clustering_base import clustering_result, clustering_job
from grid_sweep import grid_sweep
@dataclass
class kmeans_clustering_result(clustering_result):
n_clusters:int
n_init:int
max_iter:int
class kmeans_job(clustering_job):
def __init__(self, infile, outpath, name, n_clusters, n_init=10, max_iter=100000, random_state=1968, verbose=True):
super().__init__(infile,
outpath,
name,
call=kmeans_job._kmeans_clustering,
n_clusters=n_clusters,
n_init=n_init,
max_iter=max_iter,
random_state=random_state,
verbose=verbose)
self.n_clusters=n_clusters
self.n_init=n_init
self.max_iter=max_iter
def _kmeans_clustering(mat, *args, **kwargs):
clustering = KMeans(*args,
**kwargs,
).fit(mat)
return clustering
def get_info(self):
result = super().get_info()
self.result = kmeans_clustering_result(**result.__dict__,
n_init=self.n_init,
max_iter=self.max_iter)
return self.result
class kmeans_grid_sweep(grid_sweep):
def __init__(self,
inpath,
outpath,
*args,
**kwargs):
super().__init__(kmeans_job, inpath, outpath, self.namer, *args, **kwargs)
def namer(self,
n_clusters,
n_init,
max_iter):
return f"nclusters-{n_clusters}_nit-{n_init}_maxit-{max_iter}"
def test_select_kmeans_clustering():
inpath = "/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors-tf_10k_LSI/"
outpath = "test_kmeans";
n_clusters=[200,300,400];
n_init=[1,2,3];
max_iter=[100000]
gs = kmeans_lsi_grid_sweep(inpath, 'all', outpath, n_clusters, n_init, max_iter)
gs.run(1)
cluster_selection_epsilons=[0,0.1,0.3,0.5];
cluster_selection_methods=['eom'];
lsi_dimensions='all'
gs = hdbscan_lsi_grid_sweep(inpath, "all", outpath, min_cluster_sizes, min_samples, cluster_selection_epsilons, cluster_selection_methods)
gs.run(20)
gs.save("test_hdbscan/lsi_sweep.csv")
def run_kmeans_grid_sweep(savefile, inpath, outpath, n_clusters=[500], n_inits=[1], max_iters=[3000]):
"""Run kmeans clustering once or more with different parameters.
Usage:
kmeans_clustering.py --savefile=SAVEFILE --inpath=INPATH --outpath=OUTPATH --n_clusters=<csv number of clusters> --n_inits=<csv> --max_iters=<csv>
Keword arguments:
savefile: path to save the metadata and diagnostics
inpath: path to feather data containing a labeled matrix of subreddit similarities.
outpath: path to output fit kmeans clusterings.
n_clusters: one or more numbers of kmeans clusters to select.
n_inits: one or more numbers of different initializations to use for each clustering.
max_iters: one or more numbers of different maximum interations.
"""
obj = kmeans_grid_sweep(inpath,
outpath,
map(int,n_clusters),
map(int,n_inits),
map(int,max_iters))
obj.run(1)
obj.save(savefile)
if __name__ == "__main__":
fire.Fire(run_kmeans_grid_sweep)

View File

@ -0,0 +1,93 @@
import fire
from dataclasses import dataclass
from kmeans_clustering import kmeans_job, kmeans_clustering_result, kmeans_grid_sweep
from lsi_base import lsi_mixin, lsi_result_mixin, lsi_grid_sweep
from grid_sweep import grid_sweep
@dataclass
class kmeans_clustering_result_lsi(kmeans_clustering_result, lsi_result_mixin):
pass
class kmeans_lsi_job(kmeans_job, lsi_mixin):
def __init__(self, infile, outpath, name, lsi_dims, *args, **kwargs):
super().__init__(infile,
outpath,
name,
*args,
**kwargs)
super().set_lsi_dims(lsi_dims)
def get_info(self):
result = super().get_info()
self.result = kmeans_clustering_result_lsi(**result.__dict__,
lsi_dimensions=self.lsi_dims)
return self.result
class _kmeans_lsi_grid_sweep(grid_sweep):
def __init__(self,
inpath,
outpath,
lsi_dim,
*args,
**kwargs):
print(args)
print(kwargs)
self.lsi_dim = lsi_dim
self.jobtype = kmeans_lsi_job
super().__init__(self.jobtype, inpath, outpath, self.namer, [self.lsi_dim], *args, **kwargs)
def namer(self, *args, **kwargs):
s = kmeans_grid_sweep.namer(self, *args[1:], **kwargs)
s += f"_lsi-{self.lsi_dim}"
return s
class kmeans_lsi_grid_sweep(lsi_grid_sweep):
def __init__(self,
inpath,
lsi_dims,
outpath,
n_clusters,
n_inits,
max_iters
):
super().__init__(kmeans_lsi_job,
_kmeans_lsi_grid_sweep,
inpath,
lsi_dims,
outpath,
n_clusters,
n_inits,
max_iters)
def run_kmeans_lsi_grid_sweep(savefile, inpath, outpath, n_clusters=[500], n_inits=[1], max_iters=[3000], lsi_dimensions="all"):
"""Run kmeans clustering once or more with different parameters.
Usage:
kmeans_clustering_lsi.py --savefile=SAVEFILE --inpath=INPATH --outpath=OUTPATH d--lsi_dimensions=<"all"|csv number of LSI dimensions to use> --n_clusters=<csv number of clusters> --n_inits=<csv> --max_iters=<csv>
Keword arguments:
savefile: path to save the metadata and diagnostics
inpath: path to folder containing feather files with LSI similarity labeled matrices of subreddit similarities.
outpath: path to output fit kmeans clusterings.
lsi_dimensions: either "all" or one or more available lsi similarity dimensions at INPATH.
n_clusters: one or more numbers of kmeans clusters to select.
n_inits: one or more numbers of different initializations to use for each clustering.
max_iters: one or more numbers of different maximum interations.
"""
obj = kmeans_lsi_grid_sweep(inpath,
lsi_dimensions,
outpath,
list(map(int,n_clusters)),
list(map(int,n_inits)),
list(map(int,max_iters))
)
obj.run(1)
obj.save(savefile)
if __name__ == "__main__":
fire.Fire(run_kmeans_lsi_grid_sweep)

44
clustering/lsi_base.py Normal file
View File

@ -0,0 +1,44 @@
from clustering_base import clustering_job, clustering_result
from grid_sweep import grid_sweep, twoway_grid_sweep
from dataclasses import dataclass
from itertools import chain
from pathlib import Path
class lsi_mixin():
def set_lsi_dims(self, lsi_dims):
self.lsi_dims = lsi_dims
@dataclass
class lsi_result_mixin:
lsi_dimensions:int
class lsi_grid_sweep(grid_sweep):
def __init__(self, jobtype, subsweep, inpath, lsi_dimensions, outpath, *args, **kwargs):
self.jobtype = jobtype
self.subsweep = subsweep
inpath = Path(inpath)
if lsi_dimensions == 'all':
lsi_paths = list(inpath.glob("*.feather"))
else:
lsi_paths = [inpath / (str(dim) + '.feather') for dim in lsi_dimensions]
print(lsi_paths)
lsi_nums = [int(p.stem) for p in lsi_paths]
self.hasrun = False
self.subgrids = [self.subsweep(lsi_path, outpath, lsi_dim, *args, **kwargs) for lsi_dim, lsi_path in zip(lsi_nums, lsi_paths)]
self.jobs = list(chain(*map(lambda gs: gs.jobs, self.subgrids)))
class twoway_lsi_grid_sweep(twoway_grid_sweep):
def __init__(self, jobtype, subsweep, inpath, lsi_dimensions, outpath, args1, args2):
self.jobtype = jobtype
self.subsweep = subsweep
inpath = Path(inpath)
if lsi_dimensions == 'all':
lsi_paths = list(inpath.glob("*.feather"))
else:
lsi_paths = [inpath / (str(dim) + '.feather') for dim in lsi_dimensions]
lsi_nums = [int(p.stem) for p in lsi_paths]
self.hasrun = False
self.subgrids = [self.subsweep(lsi_path, outpath, lsi_dim, args1, args2) for lsi_dim, lsi_path in zip(lsi_nums, lsi_paths)]
self.jobs = list(chain(*map(lambda gs: gs.jobs, self.subgrids)))

View File

@ -0,0 +1,33 @@
#!/usr/bin/env python3
import fire
import pandas as pd
from pathlib import Path
import shutil
selection_data="/gscratch/comdata/users/nathante/competitive_exclusion_reddit/data/clustering/comment_authors_compex_LSI/selection_data.csv"
outpath = 'test_best.feather'
min_clusters=50; max_isolates=7500; min_cluster_size=2
# pick the best clustering according to silhouette score subject to contraints
def pick_best_clustering(selection_data, output, min_clusters, max_isolates, min_cluster_size):
df = pd.read_csv(selection_data,index_col=0)
df = df.sort_values("silhouette_score",ascending=False)
# not sure I fixed the bug underlying this fully or not.
df['n_isolates_str'] = df.n_isolates.str.strip("[]")
df['n_isolates_0'] = df['n_isolates_str'].apply(lambda l: len(l) == 0)
df.loc[df.n_isolates_0,'n_isolates'] = 0
df.loc[~df.n_isolates_0,'n_isolates'] = df.loc[~df.n_isolates_0].n_isolates_str.apply(lambda l: int(l))
best_cluster = df[(df.n_isolates <= max_isolates)&(df.n_clusters >= min_clusters)&(df.min_cluster_size==min_cluster_size)]
best_cluster = best_cluster.iloc[0]
best_lsi_dimensions = best_cluster.lsi_dimensions
print(best_cluster.to_dict())
best_path = Path(best_cluster.outpath) / (str(best_cluster['name']) + ".feather")
shutil.copy(best_path,output)
print(f"lsi dimensions:{best_lsi_dimensions}")
if __name__ == "__main__":
fire.Fire(pick_best_clustering)

View File

@ -1,101 +1,38 @@
from sklearn.metrics import silhouette_score
from sklearn.cluster import AffinityPropagation
from functools import partial
from clustering import _affinity_clustering, read_similarity_mat
from dataclasses import dataclass
from multiprocessing import Pool, cpu_count, Array, Process
from pathlib import Path
from itertools import product, starmap
import numpy as np
import pandas as pd
import fire
import sys
import plotnine as pn
from pathlib import Path
from clustering.fit_tsne import fit_tsne
from visualization.tsne_vis import build_visualization
# silhouette is the only one that doesn't need the feature matrix. So it's probably the only one that's worth trying.
df = pd.read_csv("/gscratch/comdata/output/reddit_clustering/subreddit_comment_authors-tf_10k_LSI/hdbscan/selection_data.csv",index_col=0)
@dataclass
class clustering_result:
outpath:Path
damping:float
max_iter:int
convergence_iter:int
preference_quantile:float
silhouette_score:float
alt_silhouette_score:float
name:str
# plot silhouette_score as a function of isolates
df = df.sort_values("silhouette_score")
df['n_isolates'] = df.n_isolates.str.split("\n0").apply(lambda rg: int(rg[1]))
p = pn.ggplot(df,pn.aes(x='n_isolates',y='silhouette_score')) + pn.geom_point()
p.save("isolates_x_score.png")
def sim_to_dist(mat):
dist = 1-mat
dist[dist < 0] = 0
np.fill_diagonal(dist,0)
return dist
p = pn.ggplot(df,pn.aes(y='n_clusters',x='n_isolates',color='silhouette_score')) + pn.geom_point()
p.save("clusters_x_isolates.png")
def do_clustering(damping, convergence_iter, preference_quantile, name, mat, subreddits, max_iter, outdir:Path, random_state, verbose, alt_mat, overwrite=False):
if name is None:
name = f"damping-{damping}_convergenceIter-{convergence_iter}_preferenceQuantile-{preference_quantile}"
print(name)
sys.stdout.flush()
outpath = outdir / (str(name) + ".feather")
print(outpath)
clustering = _affinity_clustering(mat, subreddits, outpath, damping, max_iter, convergence_iter, preference_quantile, random_state, verbose)
mat = sim_to_dist(clustering.affinity_matrix_)
# the best result for hdbscan seems like this one: it has a decent number of
# i think I prefer the 'eom' clustering style because larger clusters are less likely to suffer from ommitted variables
best_eom = df[(df.n_isolates <5000)&(df.silhouette_score>0.4)&(df.cluster_selection_method=='eom')&(df.min_cluster_size==2)].iloc[df.shape[1]]
score = silhouette_score(mat, clustering.labels_, metric='precomputed')
best_lsi = df[(df.n_isolates <5000)&(df.silhouette_score>0.4)&(df.cluster_selection_method=='leaf')&(df.min_cluster_size==2)].iloc[df.shape[1]]
if alt_mat is not None:
alt_distances = sim_to_dist(alt_mat)
alt_score = silhouette_score(alt_mat, clustering.labels_, metric='precomputed')
tsne_data = Path("./clustering/authors-tf_lsi850_tsne.feather")
res = clustering_result(outpath=outpath,
damping=damping,
max_iter=max_iter,
convergence_iter=convergence_iter,
preference_quantile=preference_quantile,
silhouette_score=score,
alt_silhouette_score=score,
name=str(name))
if not tnse_data.exists():
fit_tsne("/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors-tf_10k_LSI/850.feather",
tnse_data)
return res
build_visualization("./clustering/authors-tf_lsi850_tsne.feather",
Path(best_eom.outpath)/(best_eom['name']+'.feather'),
"./authors-tf_lsi850_best_eom.html")
# alt similiarities is for checking the silhouette coefficient of an alternative measure of similarity (e.g., topic similarities for user clustering).
build_visualization("./clustering/authors-tf_lsi850_tsne.feather",
Path(best_leaf.outpath)/(best_leaf['name']+'.feather'),
"./authors-tf_lsi850_best_leaf.html")
def select_affinity_clustering(similarities, outdir, outinfo, damping=[0.9], max_iter=100000, convergence_iter=[30], preference_quantile=[0.5], random_state=1968, verbose=True, alt_similarities=None, J=None):
damping = list(map(float,damping))
convergence_iter = convergence_iter = list(map(int,convergence_iter))
preference_quantile = list(map(float,preference_quantile))
if type(outdir) is str:
outdir = Path(outdir)
outdir.mkdir(parents=True,exist_ok=True)
subreddits, mat = read_similarity_mat(similarities,use_threads=True)
if alt_similarities is not None:
alt_mat = read_similarity_mat(alt_similarities,use_threads=True)
else:
alt_mat = None
if J is None:
J = cpu_count()
pool = Pool(J)
# get list of tuples: the combinations of hyperparameters
hyper_grid = product(damping, convergence_iter, preference_quantile)
hyper_grid = (t + (str(i),) for i, t in enumerate(hyper_grid))
_do_clustering = partial(do_clustering, mat=mat, subreddits=subreddits, outdir=outdir, max_iter=max_iter, random_state=random_state, verbose=verbose, alt_mat=alt_mat)
# similarities = Array('d', mat)
# call pool.starmap
print("running clustering selection")
clustering_data = pool.starmap(_do_clustering, hyper_grid)
clustering_data = pd.DataFrame(list(clustering_data))
clustering_data.to_csv(outinfo)
return clustering_data
if __name__ == "__main__":
x = fire.Fire(select_affinity_clustering)

4
clustering/validation.py Normal file
View File

@ -0,0 +1,4 @@
from sklearn import metrics
from sklearn.cluster import AffinityPropagation
from functools import partial
# sillouette is the only one that doesn't need the feature matrix. So it's probably the only one that's worth trying.

28
datasets/Makefile Normal file
View File

@ -0,0 +1,28 @@
all: ../../data/reddit_comments_by_subreddit.parquet ../../data/reddit_submissions_by_subreddit.parquet
../../data/reddit_comments_by_subreddit.parquet:../../data/temp/reddit_comments.parquet
../start_spark_and_run.sh 4 comments_2_parquet_part2.py
../../data/temp/reddit_comments.parquet: comments_task_list.sh run_comments_jobs.sbatch
mkdir -p comments_jobs
mkdir -p ../../data/temp/
sbatch --wait --array=1-$(shell cat comments_task_list.sh | wc -l) run_comments_jobs.sbatch 0
temp_reddit_comments.parquet: ../../data/temp/reddit_comments.parquet
comments_task_list.sh: comments_2_parquet_part1.py
srun -p compute-bigmem -A comdata --nodes=1 --mem-per-cpu=9g -c 40 --time=120:00:00 bash -c "source ~/.bashrc && python3 comments_2_parquet_part1.py gen_task_list --overwrite=False"
submissions_task_list.sh: submissions_2_parquet_part1.py
srun -p compute-bigmem -A comdata --nodes=1 --mem-per-cpu=9g -c 40 --time=120:00:00 python3 submissions_2_parquet_part1.py gen_task_list
../../data/reddit_submissions_by_subreddit.parquet:../../data/temp/reddit_submissions.parquet
../start_spark_and_run.sh 4 submissions_2_parquet_part2.py
../../data/temp/reddit_submissions.parquet: submissions_task_list.sh run_submissions_jobs.sbatch
mkdir -p submissions_jobs
rm -rf ../../data/temp/reddit_submissions.parquet
mkdir -p ../../data/temp/
sbatch --wait --array=1-$(shell cat submissions_task_list.sh | wc -l) run_submissions_jobs.sbatch 0
temp_reddit_submissions.parquet: ../../data/temp/reddit_submissions.parquet

View File

@ -1,26 +0,0 @@
#!/bin/bash
## parallel_sql_job.sh
#SBATCH --job-name=tf_subreddit_comments
## Allocation Definition
#SBATCH --account=comdata-ckpt
#SBATCH --partition=ckpt
## Resources
## Nodes. This should always be 1 for parallel-sql.
#SBATCH --nodes=1
## Walltime (12 hours)
#SBATCH --time=12:00:00
## Memory per node
#SBATCH --mem=32G
#SBATCH --cpus-per-task=4
#SBATCH --ntasks=1
#SBATCH -D /gscratch/comdata/users/nathante/cdsc-reddit
source ./bin/activate
module load parallel_sql
echo $(which perl)
conda list pyarrow
which python3
#Put here commands to load other modules (e.g. matlab etc.)
#Below command means that parallel_sql will get tasks from the database
#and run them on the node (in parallel). So a 16 core node will have
#16 tasks running at one time.
parallel-sql --sql -a parallel --exit-on-term --jobs 4

View File

@ -1,10 +1,10 @@
#!/usr/bin/env bash
## needs to be run by hand since i don't have a nice way of waiting on a parallel-sql job to complete
#!/usr/bin/env bash
echo "#!/usr/bin/bash" > job_script.sh
#echo "source $(pwd)/../bin/activate" >> job_script.sh
echo "python3 $(pwd)/comments_2_parquet_part1.py" >> job_script.sh
srun -p comdata -A comdata --nodes=1 --mem=120G --time=48:00:00 --pty job_script.sh
srun -p compute-bigmem -A comdata --nodes=1 --mem-per-cpu=9g -c 40 --time=120:00:00 --pty job_script.sh
start_spark_and_run.sh 1 $(pwd)/comments_2_parquet_part2.py

View File

@ -1,12 +1,15 @@
#!/usr/bin/env python3
import os
import json
from datetime import datetime
from multiprocessing import Pool
from itertools import islice
from helper import find_dumps, open_fileset
from helper import open_input_file, find_dumps
import pandas as pd
import pyarrow as pa
import pyarrow.parquet as pq
from pathlib import Path
import fire
def parse_comment(comment, names= None):
if names is None:
@ -44,19 +47,14 @@ def parse_comment(comment, names= None):
return tuple(row)
# conf = sc._conf.setAll([('spark.executor.memory', '20g'), ('spark.app.name', 'extract_reddit_timeline'), ('spark.executor.cores', '26'), ('spark.cores.max', '26'), ('spark.driver.memory','84g'),('spark.driver.maxResultSize','0'),('spark.local.dir','/gscratch/comdata/spark_tmp')])
# conf = sc._conf.setAll([('spark.executor.memory', '20g'), ('spark.app.name', 'extract_reddit_timeline'), ('spark.executor.cores', '26'), ('spark.cores.max', '26'), ('spark.driver.memory','84g'),('spark.driver.maxResultSize','0'),('spark.local.dir','../../data/spark_tmp')])
dumpdir = "/gscratch/comdata/raw_data/reddit_dumps/comments/"
def parse_dump(partition):
files = list(find_dumps(dumpdir, base_pattern="RC_20*"))
dumpdir = f"../../data/reddit_dumps/comments/{partition}"
pool = Pool(28)
stream = open_fileset(files)
N = int(1e4)
rows = pool.imap_unordered(parse_comment, stream, chunksize=int(N/28))
stream = open_input_file(dumpdir)
rows = map(parse_comment, stream)
schema = pa.schema([
pa.field('id', pa.string(), nullable=True),
@ -78,33 +76,16 @@ schema = pa.schema([
pa.field('error', pa.string(), nullable=True),
])
from pathlib import Path
p = Path("/gscratch/comdata/output/reddit_comments.parquet_temp2")
p = Path("../../data/temp/reddit_comments.parquet")
p.mkdir(exist_ok=True,parents=True)
if not p.is_dir():
if p.exists():
p.unlink()
p.mkdir()
else:
list(map(Path.unlink,p.glob('*')))
part_size = int(1e7)
part = 1
n_output = 0
writer = pq.ParquetWriter(f"/gscratch/comdata/output/reddit_comments.parquet_temp2/part_{part}.parquet",schema=schema,compression='snappy',flavor='spark')
N=10000
with pq.ParquetWriter(f"../../data/temp/reddit_comments.parquet/{partition}.parquet",
schema=schema,
compression='snappy',
flavor='spark') as writer:
while True:
if n_output > part_size:
if part > 1:
writer.close()
part = part + 1
n_output = 0
writer = pq.ParquetWriter(f"/gscratch/comdata/output/reddit_comments.parquet_temp2/part_{part}.parquet",schema=schema,compression='snappy',flavor='spark')
n_output += N
chunk = islice(rows,N)
pddf = pd.DataFrame(chunk, columns=schema.names)
table = pa.Table.from_pandas(pddf,schema=schema)
@ -112,4 +93,19 @@ while True:
break
writer.write_table(table)
writer.close()
def gen_task_list(dumpdir="../../data/raw_data/reddit_dumps/comments", overwrite=True):
files = list(find_dumps(dumpdir,base_pattern="RC_20*.*"))
with open("comments_task_list.sh",'w') as of:
for fpath in files:
partition = os.path.split(fpath)[1]
if (not Path(f"../../data/temp/reddit_comments.parquet/{partition}.parquet").exists()) or (overwrite is True):
of.write(f'python3 comments_2_parquet_part1.py parse_dump {partition}\n')
if __name__ == '__main__':
fire.Fire({'parse_dump':parse_dump,
'gen_task_list':gen_task_list})

View File

@ -2,12 +2,19 @@
# spark script to make sorted, and partitioned parquet files
import pyspark
from pyspark.sql import functions as f
from pyspark.sql import SparkSession
spark = SparkSession.builder.getOrCreate()
df = spark.read.parquet("/gscratch/comdata/output/reddit_comments.parquet_temp2",compression='snappy')
conf = pyspark.SparkConf().setAppName("Reddit submissions to parquet")
conf = conf.set("spark.sql.shuffle.partitions",2400)
conf = conf.set('spark.sql.crossJoin.enabled',"true")
conf = conf.set('spark.debug.maxToStringFields',200)
sc = spark.sparkContext
df = spark.read.parquet("/gscratch/comdata/output/temp/reddit_comments.parquet",compression='snappy')
df = df.withColumn("subreddit_2", f.lower(f.col('subreddit')))
df = df.drop('subreddit')
@ -18,12 +25,13 @@ df = df.withColumn("Month",f.month(f.col("CreatedAt")))
df = df.withColumn("Year",f.year(f.col("CreatedAt")))
df = df.withColumn("Day",f.dayofmonth(f.col("CreatedAt")))
df = df.repartition('subreddit')
df2 = df.sort(["subreddit","CreatedAt","link_id","parent_id","Year","Month","Day"],ascending=True)
df2 = df2.sortWithinPartitions(["subreddit","CreatedAt","link_id","parent_id","Year","Month","Day"],ascending=True)
df2.write.parquet("/gscratch/comdata/users/nathante/reddit_comments_by_subreddit.parquet_new", mode='overwrite', compression='snappy')
# df = df.repartition(1200,'subreddit')
# df2 = df.sort(["subreddit","CreatedAt","link_id","parent_id","Year","Month","Day"],ascending=True)
# df2 = df2.sortWithinPartitions(["subreddit","CreatedAt","link_id","parent_id","Year","Month","Day"],ascending=True)
# df2.write.parquet("/gscratch/scrubbed/comdata/reddit_comments_by_subreddit.parquet", mode='overwrite', compression='snappy')
df = df.repartition('author')
df3 = df.sort(["author","CreatedAt","subreddit","link_id","parent_id","Year","Month","Day"],ascending=True)
df3 = df3.sortWithinPartitions(["author","CreatedAt","subreddit","link_id","parent_id","Year","Month","Day"],ascending=True)
df3.write.parquet("/gscratch/comdata/users/nathante/reddit_comments_by_author.parquet_new", mode='overwrite',compression='snappy')
#df = spark.read.parquet("/gscratch/scrubbed/comdata/reddit_comments_by_subreddit.parquet")
df = df.repartition(2400,'author','subreddit',"Year","Month","Day")
df3 = df.sort(["author","subreddit","Year","Month","Day","CreatedAt","link_id","parent_id"],ascending=True)
df3 = df3.sortWithinPartitions(["author","subreddit","Year","Month","Day","CreatedAt","link_id","parent_id"],ascending=True)
df3.write.parquet("/gscratch/scrubbed/comdata/reddit_comments_by_author.parquet", mode='overwrite',compression='snappy')

View File

@ -24,8 +24,7 @@ def open_fileset(files):
for fh in files:
print(fh)
lines = open_input_file(fh)
for line in lines:
yield line
yield from lines
def open_input_file(input_filename):
if re.match(r'.*\.7z$', input_filename):
@ -39,7 +38,7 @@ def open_input_file(input_filename):
elif re.match(r'.*\.xz', input_filename):
cmd = ["xzcat",'-dk', '-T 20',input_filename]
elif re.match(r'.*\.zst',input_filename):
cmd = ['zstd','-dck', input_filename]
cmd = ['/kloneusr/bin/zstd','-dck', input_filename, '--memory=2048MB --stdout']
elif re.match(r'.*\.gz',input_filename):
cmd = ['gzip','-dc', input_filename]
try:

View File

@ -1,4 +0,0 @@
#!/usr/bin/bash
start_spark_cluster.sh
spark-submit --master spark://$(hostname):18899 weekly_cosine_similarities.py term --outfile=/gscratch/comdata/users/nathante/subreddit_term_similarity_weekly_5000.parquet --topN=5000
stop-all.sh

View File

@ -0,0 +1,24 @@
#!/bin/bash
## tf reddit comments
#SBATCH --job-name="cdsc_reddit; parse comment dumps"
## Allocation Definition
#SBATCH --account=comdata
#SBATCH --partition=compute-bigmem
## Resources
## Nodes. This should always be 1 for parallel-sql.
#SBATCH --nodes=1
## Walltime (12 hours)
#SBATCH --time=24:00:00
## Memory per node
#SBATCH --mem=8G
#SBATCH --cpus-per-task=1
#SBATCH --ntasks=1
#SBATCH
#SBATCH --chdir /gscratch/comdata/users/nathante/partitioning_reddit/dataverse/cdsc_reddit/datasets
#SBATCH --output=comments_jobs/%A_%a.out
#SBATCH --error=comments_jobs/%A_%a.out
. /opt/ohpc/admin/lmod/lmod/init/profile
source ~/.bashrc
TASK_NUM=$(( SLURM_ARRAY_TASK_ID + $1))
TASK_CALL=$(sed -n ${TASK_NUM}p ./comments_task_list.sh)
${TASK_CALL}

View File

@ -0,0 +1,23 @@
#!/bin/bash
## tf reddit comments
#SBATCH --job-name="cdsc_reddit; parse submission dumps"
## Allocation Definition
#SBATCH --account=comdata-ckpt
#SBATCH --partition=ckpt
## Resources
## Nodes. This should always be 1 for parallel-sql.
#SBATCH --nodes=1
## Walltime (12 hours)
#SBATCH --time=24:00:00
## Memory per node
#SBATCH --mem=8G
#SBATCH --cpus-per-task=1
#SBATCH --ntasks=1
#SBATCH
#SBATCH --chdir /gscratch/comdata/users/nathante/cdsc_reddit/datasets
#SBATCH --output=submissions_jobs/%A_%a.out
#SBATCH --error=submissions_jobs/%A_%a.out
TASK_NUM=$(( SLURM_ARRAY_TASK_ID + $1))
TASK_CALL=$(sed -n ${TASK_NUM}p ./submissions_task_list.sh)
${TASK_CALL}

4
datasets/submissions_2_parquet.sh Normal file → Executable file
View File

@ -1,8 +1,8 @@
#!/usr/bin/env bash
## this should be run manually since we don't have a nice way to wait on parallel_sql jobs
#!/usr/bin/env bash
./parse_submissions.sh
srun -p compute-bigmem -A comdata --nodes=1 --mem-per-cpu=9g -c 40 --time=120:00:00 python3 $(pwd)/submissions_2_parquet_part1.py gen_task_list
start_spark_and_run.sh 1 $(pwd)/submissions_2_parquet_part2.py

View File

@ -3,26 +3,23 @@
# two stages:
# 1. from gz to arrow parquet (this script)
# 2. from arrow parquet to spark parquet (submissions_2_parquet_part2.py)
from datetime import datetime
from multiprocessing import Pool
from pathlib import Path
from itertools import islice
from helper import find_dumps, open_fileset
import pandas as pd
import pyarrow as pa
import pyarrow.parquet as pq
import simdjson
import fire
import os
parser = simdjson.Parser()
import json
def parse_submission(post, names = None):
if names is None:
names = ['id','author','subreddit','title','created_utc','permalink','url','domain','score','ups','downs','over_18','has_media','selftext','retrieved_on','num_comments','gilded','edited','time_edited','subreddit_type','subreddit_id','subreddit_subscribers','name','is_self','stickied','quarantine','error']
try:
post = parser.parse(post)
post = json.loads(post)
except (ValueError) as e:
# print(e)
# print(post)
@ -61,7 +58,7 @@ def parse_submission(post, names = None):
def parse_dump(partition):
N=10000
stream = open_fileset([f"/gscratch/comdata/raw_data/reddit_dumps/submissions/{partition}"])
stream = open_fileset([f"/gscratch/comdata/raw_data/submissions/{partition}"])
rows = map(parse_submission,stream)
schema = pa.schema([
pa.field('id', pa.string(),nullable=True),
@ -92,8 +89,7 @@ def parse_dump(partition):
pa.field('quarantine',pa.bool_(),nullable=True),
pa.field('error',pa.string(),nullable=True)])
if not os.path.exists("/gscratch/comdata/output/temp/reddit_submissions.parquet/"):
os.mkdir("/gscratch/comdata/output/temp/reddit_submissions.parquet/")
Path("/gscratch/comdata/output/temp/reddit_submissions.parquet/").mkdir(exist_ok=True,parents=True)
with pq.ParquetWriter(f"/gscratch/comdata/output/temp/reddit_submissions.parquet/{partition}",schema=schema,compression='snappy',flavor='spark') as writer:
while True:
@ -106,9 +102,9 @@ def parse_dump(partition):
writer.close()
def gen_task_list(dumpdir="/gscratch/comdata/raw_data/reddit_dumps/submissions"):
def gen_task_list(dumpdir="/gscratch/comdata/raw_data/submissions"):
files = list(find_dumps(dumpdir,base_pattern="RS_20*.*"))
with open("parse_submissions_task_list",'w') as of:
with open("submissions_task_list.sh",'w') as of:
for fpath in files:
partition = os.path.split(fpath)[1]
of.write(f'python3 submissions_2_parquet_part1.py parse_dump {partition}\n')

View File

@ -29,14 +29,14 @@ df = df.withColumn("Day",f.dayofmonth(f.col("CreatedAt")))
df = df.withColumn("subreddit_hash",f.sha2(f.col("subreddit"), 256)[0:3])
# next we gotta resort it all.
df = df.repartition("subreddit")
df2 = df.sort(["subreddit","CreatedAt","id"],ascending=True)
df = df.repartition(800,"subreddit","Year","Month")
df2 = df.sort(["subreddit","Year","Month","CreatedAt","id"],ascending=True)
df2 = df.sortWithinPartitions(["subreddit","CreatedAt","id"],ascending=True)
df2.write.parquet("/gscratch/comdata/output/temp/reddit_submissions_by_subreddit.parquet2", mode='overwrite',compression='snappy')
# # we also want to have parquet files sorted by author then reddit.
df = df.repartition("author")
df3 = df.sort(["author","CreatedAt","id"],ascending=True)
df = df.repartition(800,"author","subreddit","Year","Month")
df3 = df.sort(["author","Year","Month","CreatedAt","id"],ascending=True)
df3 = df.sortWithinPartitions(["author","CreatedAt","id"],ascending=True)
df3.write.parquet("/gscratch/comdata/output/temp/reddit_submissions_by_author.parquet2", mode='overwrite',compression='snappy')

View File

@ -1,10 +1,7 @@
all: /gscratch/comdata/output/reddit_density/comment_terms_10000.feather /gscratch/comdata/output/reddit_density/comment_authors_10000.feather /gscratch/comdata/output/reddit_density/subreddit_author_tf_similarities_10000.feather
all: ../../data/reddit_density/subreddit_author_tf_similarities_10K_LSI/600.feather
/gscratch/comdata/output/reddit_density/comment_terms_10000.feather:overlap_density.py /gscratch/comdata/output/reddit_similarity/comment_terms_10000.feather /gscratch/comdata/output/reddit_similarity/comment_terms_10000.feather
start_spark_and_run.sh 1 overlap_density.py terms --inpath="/gscratch/comdata/output/reddit_similarity/comment_terms_10000.feather" --outpath="/gscratch/comdata/output/reddit_density/comment_terms_10000.feather" --agg=pd.DataFrame.sum
../../data/reddit_density/subreddit_author_tf_similarities_10K_LSI/600.feather: overlap_density.py ../../data/reddit_similarity/subreddit_comment_authors-tf_10k_LSI/600.feather
../start_spark_and_run.sh 1 overlap_density.py authors --inpath="../../data/reddit_similarity/subreddit_comment_authors-tf_10k_LSI/600.feather" --outpath="../../data/reddit_density/subreddit_author_tf_similarities_10K_LSI/600.feather" --agg=pd.DataFrame.sum
/gscratch/comdata/output/reddit_density/comment_authors_10000.feather:overlap_density.py /gscratch/comdata/output/reddit_similarity/comment_authors_10000.feather
start_spark_and_run.sh 1 overlap_density.py authors --inpath="/gscratch/comdata/output/reddit_similarity/comment_authors_10000.feather" --outpath="/gscratch/comdata/output/reddit_density/comment_authors_10000.feather" --agg=pd.DataFrame.sum
/gscratch/comdata/output/reddit_density/subreddit_author_tf_similarities_10000.feather: overlap_density.py /gscratch/comdata/output/reddit_similarity/subreddit_author_tf_similarities_10000.parquet
start_spark_and_run.sh 1 overlap_density.py authors --inpath="/gscratch/comdata/output/reddit_similarity/subreddit_author_tf_similarities_10000.parquet" --outpath="/gscratch/comdata/output/reddit_density/subreddit_author_tf_similarities_10000.feather" --agg=pd.DataFrame.sum
../../data/reddit_similarity/subreddit_comment_authors-tf_10k_LSI/600.feather:
$(MAKE) -C ../similarities

View File

@ -1,4 +1,6 @@
#!/usr/bin/bash
source ~/.bashrc
echo $(hostname)
start_spark_cluster.sh
spark-submit --master spark://$(hostname):18899 overlap_density.py authors --inpath=/gscratch/comdata/output/reddit_similarity/comment_authors_10000.feather --outpath=/gscratch/comdata/output/reddit_density/comment_authors_10000.feather --agg=pd.DataFrame.sum
spark-submit --verbose --master spark://$(hostname):43015 overlap_density.py authors --inpath=../../data/reddit_similarity/subreddit_comment_authors-tf_10k_LSI/600.feather --outpath=../../data/reddit_density/subreddit_author_tf_similarities_10K_LSI/600.feather --agg=pd.DataFrame.sum
stop-all.sh

View File

@ -1,11 +1,12 @@
import pandas as pd
from pandas.core.groupby import DataFrameGroupBy as GroupBy
from pathlib import Path
import fire
import numpy as np
import sys
sys.path.append("..")
sys.path.append("../similarities")
from similarities.similarities_helper import reindex_tfidf, reindex_tfidf_time_interval
# sys.path.append("..")
# sys.path.append("../similarities")
# from similarities.similarities_helper import pull_tfidf
# this is the mean of the ratio of the overlap to the focal size.
# mean shared membership per focal community member
@ -13,10 +14,12 @@ from similarities.similarities_helper import reindex_tfidf, reindex_tfidf_time_i
def overlap_density(inpath, outpath, agg = pd.DataFrame.sum):
df = pd.read_feather(inpath)
df = df.drop('subreddit',1)
df = df.drop('_subreddit',1)
np.fill_diagonal(df.values,0)
df = agg(df, 0).reset_index()
df = df.rename({0:'overlap_density'},axis='columns')
outpath = Path(outpath)
outpath.parent.mkdir(parents=True, exist_ok = True)
df.to_feather(outpath)
return df
@ -25,6 +28,8 @@ def overlap_density_weekly(inpath, outpath, agg = GroupBy.sum):
# exclude the diagonal
df = df.loc[df.subreddit != df.variable]
res = agg(df.groupby(['subreddit','week'])).reset_index()
outpath = Path(outpath)
outpath.parent.mkdir(parents=True, exist_ok = True)
res.to_feather(outpath)
return res

View File

@ -6,9 +6,9 @@ from os import path
import hashlib
shasums1 = requests.get("https://files.pushshift.io/reddit/comments/sha256sum.txt").text
shasums2 = requests.get("https://files.pushshift.io/reddit/comments/daily/sha256sum.txt").text
#shasums2 = requests.get("https://files.pushshift.io/reddit/comments/daily/sha256sum.txt").text
shasums = shasums1 + shasums2
shasums = shasums1
dumpdir = "/gscratch/comdata/raw_data/reddit_dumps/comments"
for l in shasums.strip().split('\n'):

View File

@ -1,12 +1,12 @@
#!/bin/bash
user_agent='nathante teblunthuis <nathante@uw.edu>'
user_agent='"nathante teblunthuis <nathante@uw.edu>"'
output_dir='/gscratch/comdata/raw_data/reddit_dumps/comments'
base_url='https://files.pushshift.io/reddit/comments/'
wget -r --no-parent -A 'RC_201*.bz2' -U $user_agent -P $output_dir -nd -nc $base_url
wget -r --no-parent -A 'RC_201*.xz' -U $user_agent -P $output_dir -nd -nc $base_url
wget -r --no-parent -A 'RC_201*.zst' -U $user_agent -P $output_dir -nd -nc $base_url
wget -r --no-parent -A 'RC_20*.bz2' -U $user_agent -P $output_dir -nd -nc $base_url
wget -r --no-parent -A 'RC_20*.xz' -U $user_agent -P $output_dir -nd -nc $base_url
wget -r --no-parent -A 'RC_20*.zst' -U $user_agent -P $output_dir -nd -nc $base_url
./check_comments_shas.py

View File

@ -1,14 +1,14 @@
#!/bin/bash
user_agent='nathante teblunthuis <nathante@uw.edu>'
user_agent='"nathante teblunthuis <nathante@uw.edu>"'
output_dir='/gscratch/comdata/raw_data/reddit_dumps/submissions'
base_url='https://files.pushshift.io/reddit/submissions/'
wget -r --no-parent -A 'RS_20*.bz2' -U $user_agent -P $output_dir -nd -nc $base_url
wget -r --no-parent -A 'RS_20*.xz' -U $user_agent -P $output_dir -nd -nc $base_url
wget -r --no-parent -A 'RS_20*.zst' -U $user_agent -P $output_dir -nd -nc $base_url
wget -r --no-parent -A 'RS_20*.bz2' -U $user_agent -P $output_dir -nd -nc $base_url/old_v1_data/
wget -r --no-parent -A 'RS_20*.xz' -U $user_agent -P $output_dir -nd -nc $base_url/old_v1_data/
wget -r --no-parent -A 'RS_20*.zst' -U $user_agent -P $output_dir -nd -nc $base_url/old_v1_data/
wget -r --no-parent -A 'RS_20*.bz2' --user-agent=$user_agent -P $output_dir -nd -nc $base_url
wget -r --no-parent -A 'RS_20*.xz' --user-agent=$user_agent -P $output_dir -nd -nc $base_url
wget -r --no-parent -A 'RS_20*.zst' --user-agent=$user_agent -P $output_dir -nd -nc $base_url
wget -r --no-parent -A 'RS_20*.bz2' --user-agent=$user_agent -P $output_dir -nd -nc $base_url/old_v1_data/
wget -r --no-parent -A 'RS_20*.xz' --user-agent=$user_agent -P $output_dir -nd -nc $base_url/old_v1_data/
wget -r --no-parent -A 'RS_20*.zst' --user-agent=$user_agent -P $output_dir -nd -nc $base_url/old_v1_data/
./check_submission_shas.py

View File

@ -0,0 +1,34 @@
from pathlib import Path
from itertools import chain, groupby
dumpdir = Path("/gscratch/comdata/raw_data/reddit_dumps/comments")
zst_files = dumpdir.glob("*.zst")
bz2_files = dumpdir.glob("*.bz2")
xz_files = dumpdir.glob("*.xz")
all_files = sorted(list(chain(zst_files, bz2_files, xz_files)))
groups = groupby(all_files, key = lambda p: p.stem)
kept_paths = []
removed_paths = []
priority = ['.zst','.xz','.bz2']
for stem, files in groups:
keep_file = None
remove_files = []
for f in files:
if keep_file is None:
keep_file = f
elif priority.index(keep_file.suffix) > priority.index(f.suffix):
remove_files.append(keep_file)
keep_file = f
else:
remove_files.append(f)
kept_paths.append(keep_file)
removed_paths.extend(remove_files)
(dumpdir / "to_remove").mkdir()
for f in removed_paths:
f.rename(f.parent / "to_remove" / f.name)

View File

@ -0,0 +1,34 @@
from pathlib import Path
from itertools import chain, groupby
dumpdir = Path("/gscratch/comdata/raw_data/reddit_dumps/submissions")
zst_files = dumpdir.glob("*.zst")
bz2_files = dumpdir.glob("*.bz2")
xz_files = dumpdir.glob("*.xz")
all_files = sorted(list(chain(zst_files, bz2_files, xz_files)))
groups = groupby(all_files, key = lambda p: p.stem)
kept_paths = []
removed_paths = []
priority = ['.zst','.xz','.bz2']
for stem, files in groups:
keep_file = None
remove_files = []
for f in files:
if keep_file is None:
keep_file = f
elif priority.index(keep_file.suffix) > priority.index(f.suffix):
remove_files.append(keep_file)
keep_file = f
else:
remove_files.append(f)
kept_paths.append(keep_file)
removed_paths.extend(remove_files)
(dumpdir / "to_remove").mkdir()
for f in removed_paths:
f.rename(f.parent / "to_remove" / f.name)

View File

@ -1,17 +0,0 @@
import pyarrow.dataset as ds
# A pyarrow dataset abstracts reading, writing, or filtering a parquet file. It does not read dataa into memory.
#dataset = ds.dataset(pathlib.Path('/gscratch/comdata/output/reddit_submissions_by_subreddit.parquet/'), format='parquet', partitioning='hive')
dataset = ds.dataset('/gscratch/comdata/output/reddit_comments_by_subreddit.parquet/', format='parquet')
# let's get all the comments to two subreddits:
subreddits_to_pull = ['seattle','seattlewa']
# a table is a low-level structured data format. This line pulls data into memory. Setting metadata_n_threads > 1 gives a little speed boost.
table = dataset.to_table(filter = ds.field('subreddit').isin(subreddits_to_pull), columns=['id','subreddit','CreatedAt','author','ups','downs','score','subreddit_id','stickied','title','url','is_self','selftext'])
# Since data from just these 2 subreddits fits in memory we can just turn our table into a pandas dataframe.
df = table.to_pandas()
# We should save this smaller dataset so we don't have to wait 15 min to pull from parquet next time.
df.to_csv("mydataset.csv")

View File

@ -1,38 +0,0 @@
import pyarrow.dataset as ds
from itertools import groupby
# A pyarrow dataset abstracts reading, writing, or filtering a parquet file. It does not read dataa into memory.
dataset = ds.dataset('/gscratch/comdata/output/reddit_submissions_by_author.parquet', format='parquet')
# let's get all the comments to two subreddits:
subreddits_to_pull = ['seattlewa','seattle']
# instead of loading the data into a pandas dataframe all at once we can stream it.
scan_tasks = dataset.scan(filter = ds.field('subreddit').isin(subreddits_to_pull), columns=['id','subreddit','CreatedAt','author','ups','downs','score','subreddit_id','stickied','title','url','is_self','selftext'])
# simple function to execute scantasks and generate rows
def iterate_rows(scan_tasks):
for st in scan_tasks:
for rb in st.execute():
df = rb.to_pandas()
for t in df.itertuples():
yield t
row_iter = iterate_rows(scan_tasks)
# now we can use python's groupby function to read one author at a time
# note that the same author can appear more than once since the record batches may not be in the correct order.
author_submissions = groupby(row_iter, lambda row: row.author)
count_dict = {}
for auth, posts in author_submissions:
if auth in count_dict:
count_dict[auth] = count_dict[auth] + 1
else:
count_dict[auth] = 1
# since it's partitioned and sorted by author, we get one group for each author
any([ v != 1 for k,v in count_dict.items()])

25
ngrams/Makefile Normal file
View File

@ -0,0 +1,25 @@
outputdir=../../data/reddit_ngrams/
inputdir=../../data/reddit_comments_by_subreddit.parquet
authors_tfdir=${outputdir}/comment_authors.parquet
srun=sbatch --wait --verbose run_job.sbatch
all: ${outputdir}/comment_authors_sorted.parquet/_SUCCESS
tf_task_list_1: tf_comments.py
${srun} bash -c "python3 tf_comments.py gen_task_list --mwe_pass='first' --outputdir=${outputdir} --tf_task_list=$@ --inputdir=${inputdir}"
${outputdir}/comment_terms.parquet:tf_task_list_1
mkdir -p sbatch_log
sbatch --wait --verbose --array=1-$(shell cat $< | wc -l) run_array.sbatch 0 $<
${outputdir}/comment_authors.parquet:${outputdir}/comment_terms.parquet
-
${outputdir}/comment_authors_sorted.parquet:${outputdir}/comment_authors.parquet sort_tf_comments.py
../start_spark_and_run.sh 3 sort_tf_comments.py --inparquet=$< --outparquet=$@ --colname=author
${outputdir}/comment_authors_sorted.parquet/_SUCCESS:${outputdir}/comment_authors_sorted.parquet
${inputdir}:
$(MAKE) -C ../datasets

19
ngrams/run_array.sbatch Executable file
View File

@ -0,0 +1,19 @@
#!/bin/bash
#SBATCH --job-name=reddit_comment_term_frequencies
#SBATCH --account=comdata
#SBATCH --partition=compute-bigmem
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=1
#SBATCH --mem-per-cpu=9g
#SBATCH --ntasks=1
#SBATCH --export=ALL
#SBATCH --time=48:00:00
#SBATCH --chdir=/gscratch/comdata/users/nathante/partitioning_reddit/dataverse/cdsc_reddit/ngrams
#SBATCH --error="sbatch_log/%A_%a.out"
#SBATCH --output="sbatch_log/%A_%a.out"
TASK_NUM=$(($SLURM_ARRAY_TASK_ID + $1))
TASK_CALL=$(sed -n ${TASK_NUM}p $2)
${TASK_CALL}

18
ngrams/run_job.sbatch Normal file
View File

@ -0,0 +1,18 @@
#!/bin/bash
#SBATCH --job-name="simulate measurement error models"
## Allocation Definition
#SBATCH --account=comdata
#SBATCH --partition=compute-bigmem
## Resources
#SBATCH --nodes=1
## Walltime (4 hours)
#SBATCH --time=4:00:00
## Memory per node
#SBATCH --mem=4G
#SBATCH --cpus-per-task=1
#SBATCH --ntasks-per-node=1
#SBATCH --chdir /gscratch/comdata/users/nathante/partitioning_reddit/dataverse/cdsc_reddit/ngrams/
#SBATCH --output=sbatch_log/%A_%a.out
#SBATCH --error=sbatch_log/%A_%a.err
echo "$@"
"$@"

View File

@ -1,8 +1,6 @@
#!/usr/bin/env bash
module load parallel_sql
source ./bin/activate
python3 tf_comments.py gen_task_list
psu --del --Y
cat tf_task_list | psu --load
for job in $(seq 1 50); do sbatch checkpoint_parallelsql.sbatch; done;

View File

@ -2,12 +2,17 @@
from pyspark.sql import functions as f
from pyspark.sql import SparkSession
import fire
def main(inparquet, outparquet, colname):
spark = SparkSession.builder.getOrCreate()
df = spark.read.parquet("/gscratch/comdata/users/nathante/reddit_tfidf_test.parquet_temp/")
df = spark.read.parquet(inparquet)
df = df.repartition(2000,'term')
df = df.sort(['term','week','subreddit'])
df = df.sortWithinPartitions(['term','week','subreddit'])
df = df.repartition(2000,colname)
df = df.sort([colname,'week','subreddit'])
df = df.sortWithinPartitions([colname,'week','subreddit'])
df.write.parquet("/gscratch/comdata/users/nathante/reddit_tfidf_test_sorted_tf.parquet_temp",mode='overwrite',compression='snappy')
df.write.parquet(outparquet,mode='overwrite',compression='snappy')
if __name__ == '__main__':
fire.Fire(main)

211
ngrams/tf_comments.py Executable file
View File

@ -0,0 +1,211 @@
#!/usr/bin/env python3
import pandas as pd
import pyarrow as pa
import pyarrow.dataset as ds
import pyarrow.parquet as pq
import pyarrow.compute as pc
from itertools import groupby, islice, chain
import fire
from collections import Counter
import os
import re
from nltk import wordpunct_tokenize, MWETokenizer, sent_tokenize
from nltk.corpus import stopwords
from nltk.util import ngrams
import string
from random import random
from redditcleaner import clean
from pathlib import Path
from datetime import datetime
# compute term frequencies for comments in each subreddit by week
def weekly_tf(partition, outputdir = '/gscratch/comdata/output/reddit_ngrams/', inputdir="/gscratch/comdata/output/reddit_comments_by_subreddit.parquet/", mwe_pass = 'first', excluded_users=None):
dataset = ds.dataset(Path(inputdir)/partition, format='parquet')
outputdir = Path(outputdir)
samppath = outputdir / "reddit_comment_ngrams_10p_sample"
if not samppath.exists():
samppath.mkdir(parents=True, exist_ok=True)
ngram_output = partition.replace("parquet","txt")
if excluded_users is not None:
excluded_users = set(map(str.strip,open(excluded_users)))
df = df.filter(~ (f.col("author").isin(excluded_users)))
ngram_path = samppath / ngram_output
if mwe_pass == 'first':
if ngram_path.exists():
ngram_path.unlink()
dataset = dataset.filter(pc.field("CreatedAt") <= pa.scalar(datetime(2020,4,13)))
batches = dataset.to_batches(columns=['CreatedAt','subreddit','body','author'])
schema = pa.schema([pa.field('subreddit', pa.string(), nullable=False),
pa.field('term', pa.string(), nullable=False),
pa.field('week', pa.date32(), nullable=False),
pa.field('tf', pa.int64(), nullable=False)]
)
author_schema = pa.schema([pa.field('subreddit', pa.string(), nullable=False),
pa.field('author', pa.string(), nullable=False),
pa.field('week', pa.date32(), nullable=False),
pa.field('tf', pa.int64(), nullable=False)]
)
dfs = (b.to_pandas() for b in batches)
def add_week(df):
df['week'] = (df.CreatedAt - pd.to_timedelta(df.CreatedAt.dt.dayofweek, unit='d')).dt.date
return(df)
dfs = (add_week(df) for df in dfs)
def iterate_rows(dfs):
for df in dfs:
for row in df.itertuples():
yield row
rows = iterate_rows(dfs)
subreddit_weeks = groupby(rows, lambda r: (r.subreddit, r.week))
mwe_path = outputdir / "multiword_expressions.feather"
if mwe_pass != 'first':
mwe_dataset = pd.read_feather(mwe_path)
mwe_dataset = mwe_dataset.sort_values(['phrasePWMI'],ascending=False)
mwe_phrases = list(mwe_dataset.phrase)
mwe_phrases = [tuple(s.split(' ')) for s in mwe_phrases]
mwe_tokenizer = MWETokenizer(mwe_phrases)
mwe_tokenize = mwe_tokenizer.tokenize
else:
mwe_tokenize = MWETokenizer().tokenize
def remove_punct(sentence):
new_sentence = []
for token in sentence:
new_token = ''
for c in token:
if c not in string.punctuation:
new_token += c
if len(new_token) > 0:
new_sentence.append(new_token)
return new_sentence
stopWords = set(stopwords.words('english'))
# we follow the approach described in datta, phelan, adar 2017
def my_tokenizer(text):
# remove stopwords, punctuation, urls, lower case
# lowercase
text = text.lower()
# redditcleaner removes reddit markdown(newlines, quotes, bullet points, links, strikethrough, spoiler, code, superscript, table, headings)
text = clean(text)
# sentence tokenize
sentences = sent_tokenize(text)
# wordpunct_tokenize
sentences = map(wordpunct_tokenize, sentences)
# remove punctuation
sentences = map(remove_punct, sentences)
# datta et al. select relatively common phrases from the reddit corpus, but they don't really explain how. We'll try that in a second phase.
# they say that the extract 1-4 grams from 10% of the sentences and then find phrases that appear often relative to the original terms
# here we take a 10 percent sample of sentences
if mwe_pass == 'first':
# remove sentences with less than 2 words
sentences = filter(lambda sentence: len(sentence) > 2, sentences)
sentences = list(sentences)
for sentence in sentences:
if random() <= 0.1:
grams = list(chain(*map(lambda i : ngrams(sentence,i),range(4))))
with open(ngram_path,'a') as gram_file:
for ng in grams:
gram_file.write(' '.join(ng) + '\n')
for token in sentence:
if token not in stopWords:
yield token
else:
# remove stopWords
sentences = map(mwe_tokenize, sentences)
sentences = map(lambda s: filter(lambda token: token not in stopWords, s), sentences)
for sentence in sentences:
for token in sentence:
yield token
def tf_comments(subreddit_weeks):
for key, posts in subreddit_weeks:
subreddit, week = key
tfs = Counter([])
authors = Counter([])
for post in posts:
tokens = my_tokenizer(post.body)
tfs.update(tokens)
authors.update([post.author])
for term, tf in tfs.items():
yield [True, subreddit, term, week, tf]
for author, tf in authors.items():
yield [False, subreddit, author, week, tf]
outrows = tf_comments(subreddit_weeks)
outchunksize = 10000
termtf_outputdir = (outputdir / "comment_terms.parquet")
termtf_outputdir.mkdir(parents=True, exist_ok=True)
authortf_outputdir = (outputdir / "comment_authors.parquet")
authortf_outputdir.mkdir(parents=True, exist_ok=True)
termtf_path = termtf_outputdir / partition
authortf_path = authortf_outputdir / partition
with pq.ParquetWriter(termtf_path, schema=schema, compression='snappy', flavor='spark') as writer, \
pq.ParquetWriter(authortf_path, schema=author_schema, compression='snappy', flavor='spark') as author_writer:
while True:
chunk = islice(outrows,outchunksize)
chunk = (c for c in chunk if c[1] is not None)
pddf = pd.DataFrame(chunk, columns=["is_token"] + schema.names)
author_pddf = pddf.loc[pddf.is_token == False, schema.names]
pddf = pddf.loc[pddf.is_token == True, schema.names]
author_pddf = author_pddf.rename({'term':'author'}, axis='columns')
author_pddf = author_pddf.loc[:,author_schema.names]
table = pa.Table.from_pandas(pddf,schema=schema)
author_table = pa.Table.from_pandas(author_pddf,schema=author_schema)
do_break = True
if table.shape[0] != 0:
writer.write_table(table)
do_break = False
if author_table.shape[0] != 0:
author_writer.write_table(author_table)
do_break = False
if do_break:
break
writer.close()
author_writer.close()
def gen_task_list(mwe_pass='first', inputdir="/gscratch/comdata/output/reddit_comments_by_subreddit.parquet/", outputdir='/gscratch/comdata/output/reddit_ngrams/', tf_task_list='tf_task_list', excluded_users_file=None):
files = os.listdir(inputdir)
with open(tf_task_list,'w') as outfile:
for f in files:
if f.endswith(".parquet"):
outfile.write(f"./tf_comments.py weekly_tf --mwe-pass {mwe_pass} --inputdir {inputdir} --outputdir {outputdir} --excluded_users {excluded_users_file} {f}\n")
if __name__ == "__main__":
fire.Fire({"gen_task_list":gen_task_list,
"weekly_tf":weekly_tf})

22
run_array.sbatch Normal file
View File

@ -0,0 +1,22 @@
#!/bin/bash
## tf reddit comments
#SBATCH --job-name="wikia ecology; fit var models"
## Allocation Definition
#SBATCH --account=comdata-ckpt
#SBATCH --partition=ckpt
## Resources
## Nodes. This should always be 1 for parallel-sql.
#SBATCH --nodes=1
## Walltime (12 hours)
#SBATCH --time=24:00:00
## Memory per node
#SBATCH --mem=8G
#SBATCH --cpus-per-task=1
#SBATCH --ntasks=1
#SBATCH
#SBATCH --chdir /gscratch/comdata/users/nathante/wikia_ecology
#SBATCH --output=var_jobs/%A_%a.out
#SBATCH --error=var_jobs/%A_%a.out
TASK_NUM=$(( SLURM_ARRAY_TASK_ID + $1))
TASK_CALL=$(sed -n ${TASK_NUM}p ./var_jobs.sh)
${TASK_CALL}

View File

@ -1,25 +1,28 @@
all: /gscratch/comdata/output/reddit_similarity/subreddit_comment_authors_10000.parquet /gscratch/comdata/output/reddit_similarity/subreddit_comment_authors_10000.parquet /gscratch/comdata/output/reddit_similarity/subreddit_author_tf_similarities_10000.parquet /gscratch/comdata/output/reddit_similarity/subreddit_comment_authors_10000.parquet /gscratch/comdata/output/reddit_similarity/comment_terms.parquet
srun=srun -p compute-bigmem -A comdata --mem-per-cpu=9g --time=200:00:00 -c 40
srun_huge=srun -p compute-hugemem -A comdata --mem=724g --time=200:00:00 -c 40
# all: /gscratch/comdata/output/reddit_similarity/subreddit_comment_terms_25000.parquet /gscratch/comdata/output/reddit_similarity/subreddit_comment_authors_25000.parquet /gscratch/comdata/output/reddit_similarity/subreddit_comment_authors_10000.parquet /gscratch/comdata/output/reddit_similarity/comment_terms_10000_weekly.parquet
similarity_data=../../data/reddit_similarity
tfidf_data=${similarity_data}/tfidf
lsi_components=[10,50,100,200,300,400,500,600,700,850]
lsi_similarities: ${similarity_data}/subreddit_comment_authors-tf_10k_LSI
# /gscratch/comdata/output/reddit_similarity/subreddit_comment_authors_25000.parquet: cosine_similarities.py /gscratch/comdata/output/reddit_similarity/tfidf/comment_authors.parquet
# start_spark_and_run.sh 1 cosine_similarities.py author --outfile=/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors_25000.feather
all: ${similarity_data}/subreddit_comment_authors-tf_10k.feather
/gscratch/comdata/output/reddit_similarity/tfidf/comment_terms.parquet: tfidf.py similarities_helper.py /gscratch/comdata/output/reddit_ngrams/comment_terms.parquet /gscratch/comdata/output/reddit_similarity/subreddits_by_num_comments.csv
start_spark_and_run.sh 1 tfidf.py terms --topN=10000
${similarity_data}/subreddit_comment_authors-tf_10k_LSI: ${tfidf_data}/comment_authors_100k.parquet similarities_helper.py ${similarity_data}/subreddits_by_num_comments_nonsfw.csv
${srun_huge} /bin/bash -c "source ~/.bashrc; python3 lsi_similarities.py author-tf --outfile=${similarity_data}/subreddit_comment_authors-tf_10k_LSI --topN=10000 --n_components=${lsi_components} --min_df=10 --inpath=$<"
/gscratch/comdata/output/reddit_similarity/tfidf/comment_authors.parquet: tfidf.py similarities_helper.py /gscratch/comdata/output/reddit_ngrams/comment_authors.parquet /gscratch/comdata/output/reddit_similarity/subreddits_by_num_comments.csv
start_spark_and_run.sh 1 tfidf.py authors --topN=10000
${similarity_data}/subreddits_by_num_comments_nonsfw.csv: ../../data/reddit_submissions_by_subreddit.parquet ../../data/reddit_comments_by_subreddit.parquet
../start_spark_and_run.sh 3 top_subreddits_by_comments.py
/gscratch/comdata/output/reddit_similarity/comment_authors_10000.parquet: cosine_similarities.py similarities_helper.py /gscratch/comdata/output/reddit_similarity/tfidf/comment_authors.parquet /gscratch/comdata/output/reddit_similarity/tfidf/comment_authors.parquet
start_spark_and_run.sh 1 cosine_similarities.py author --outfile=/gscratch/comdata/output/reddit_similarity/comment_authors_10000.feather
${tfidf_data}/comment_authors_100k.parquet: ../../data/reddit_ngrams/comment_authors_sorted.parquet ${similarity_data}/subreddits_by_num_comments_nonsfw.csv
../start_spark_and_run.sh 3 tfidf.py authors --topN=100000 --inpath=$< --outpath=${tfidf_data}/comment_authors_100k.parquet
/gscratch/comdata/output/reddit_similarity/comment_terms.parquet: cosine_similarities.py similarities_helper.py /gscratch/comdata/output/reddit_similarity/tfidf/comment_terms.parquet
start_spark_and_run.sh 1 cosine_similarities.py term --outfile=/gscratch/comdata/output/reddit_similarity/comment_terms_10000.feather
../../data/reddit_ngrams/comment_authors_sorted.parquet:
$(MAKE) -C ../ngrams
# /gscratch/comdata/output/reddit_similarity/comment_terms_10000_weekly.parquet: cosine_similarities.py /gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_authors.parquet
# start_spark_and_run.sh 1 weekly_cosine_similarities.py term --outfile=/gscratch/comdata/output/reddit_similarity/subreddit_comment_terms_10000_weely.parquet
../../data/reddit_submissions_by_subreddit.parquet:
$(MAKE) -C ../datasets
/gscratch/comdata/output/reddit_similarity/subreddit_author_tf_similarities_10000.parquet: cosine_similarities.py similarities_helper.py /gscratch/comdata/output/reddit_similarity/tfidf/comment_authors.parquet /gscratch/comdata/output/reddit_similarity/tfidf/comment_authors.parquet
start_spark_and_run.sh 1 cosine_similarities.py author-tf --outfile=/gscratch/comdata/output/reddit_similarity/subreddit_author_tf_similarities_10000.parquet
../../data/reddit_comments_by_subreddit.parquet:
$(MAKE) -C ../datasets

View File

@ -2,11 +2,14 @@ import pandas as pd
import fire
from pathlib import Path
from similarities_helper import similarities, column_similarities
from functools import partial
def cosine_similarities(infile, term_colname, outfile, min_df=None, max_df=None, included_subreddits=None, topN=500, exclude_phrases=False, from_date=None, to_date=None, tfidf_colname='tf_idf'):
return similarities(infile=infile, simfunc=column_similarities, term_colname=term_colname, outfile=outfile, min_df=min_df, max_df=max_df, included_subreddits=included_subreddits, topN=topN, exclude_phrases=exclude_phrases,from_date=from_date, to_date=to_date, tfidf_colname=tfidf_colname)
# change so that these take in an input as an optional argument (for speed, but also for idf).
def term_cosine_similarities(outfile, min_df=None, max_df=None, included_subreddits=None, topN=500, exclude_phrases=False, from_date=None, to_date=None):
def term_cosine_similarities(outfile, infile='/gscratch/comdata/output/reddit_similarity/tfidf/comment_terms_100k.parquet', min_df=None, max_df=None, included_subreddits=None, topN=500, exclude_phrases=False, from_date=None, to_date=None):

View File

@ -1,4 +1,6 @@
#!/usr/bin/bash
source ~/.bashrc
echo $(hostname)
start_spark_cluster.sh
spark-submit --master spark://$(hostname):18899 cosine_similarities.py term --outfile=/gscratch/comdata/output/reddit_similarity/comment_terms_10000.feather
spark-submit --verbose --master spark://$(hostname):43015 tfidf.py authors --topN=100000 --inpath=../../data/reddit_ngrams/comment_authors_sorted.parquet --outpath=../../data/reddit_similarity/tfidf/comment_authors_100k.parquet
stop-all.sh

View File

@ -0,0 +1,86 @@
import pandas as pd
import fire
from pathlib import Path
from similarities_helper import *
#from similarities_helper import similarities, lsi_column_similarities
from functools import partial
# inpath = "/gscratch/comdata/users/nathante/competitive_exclusion_reddit/data/tfidf/comment_authors_compex.parquet"
# term_colname='authors'
# outfile='/gscratch/comdata/users/nathante/competitive_exclusion_reddit/data/similarity/comment_test_compex_LSI'
# n_components=[10,50,100]
# included_subreddits="/gscratch/comdata/users/nathante/competitive_exclusion_reddit/data/included_subreddits.txt"
# n_iter=5
# random_state=1968
# algorithm='randomized'
# topN = None
# from_date=None
# to_date=None
# min_df=None
# max_df=None
def lsi_similarities(inpath, term_colname, outfile, min_df=None, max_df=None, included_subreddits=None, topN=None, from_date=None, to_date=None, tfidf_colname='tf_idf',n_components=100,n_iter=5,random_state=1968,algorithm='arpack',lsi_model=None):
print(n_components,flush=True)
if lsi_model is None:
if type(n_components) == list:
lsi_model = Path(outfile) / f'{max(n_components)}_{term_colname}_LSIMOD.pkl'
else:
lsi_model = Path(outfile) / f'{n_components}_{term_colname}_LSIMOD.pkl'
simfunc = partial(lsi_column_similarities,n_components=n_components,n_iter=n_iter,random_state=random_state,algorithm=algorithm,lsi_model_save=lsi_model)
return similarities(inpath=inpath, simfunc=simfunc, term_colname=term_colname, outfile=outfile, min_df=min_df, max_df=max_df, included_subreddits=included_subreddits, topN=topN, from_date=from_date, to_date=to_date, tfidf_colname=tfidf_colname)
# change so that these take in an input as an optional argument (for speed, but also for idf).
def term_lsi_similarities(inpath='/gscratch/comdata/output/reddit_similarity/tfidf/comment_terms_100k.parquet',outfile=None, min_df=None, max_df=None, included_subreddits=None, topN=None, from_date=None, to_date=None, algorithm='arpack', n_components=300,n_iter=5,random_state=1968):
res = lsi_similarities(inpath,
'term',
outfile,
min_df,
max_df,
included_subreddits,
topN,
from_date,
to_date,
n_components=n_components,
algorithm = algorithm
)
return res
def author_lsi_similarities(inpath='/gscratch/comdata/output/reddit_similarity/tfidf/comment_authors_100k.parquet',outfile=None, min_df=2, max_df=None, included_subreddits=None, topN=None, from_date=None, to_date=None,algorithm='arpack',n_components=300,n_iter=5,random_state=1968):
return lsi_similarities(inpath,
'author',
outfile,
min_df,
max_df,
included_subreddits,
topN,
from_date=from_date,
to_date=to_date,
n_components=n_components
)
def author_tf_similarities(inpath='/gscratch/comdata/output/reddit_similarity/tfidf/comment_authors_100k.parquet',outfile=None, min_df=2, max_df=None, included_subreddits=None, topN=None, from_date=None, to_date=None,algorithm='arpack',n_components=300,n_iter=5,random_state=1968):
return lsi_similarities(inpath,
'author',
outfile,
min_df,
max_df,
included_subreddits,
topN,
from_date=from_date,
to_date=to_date,
tfidf_colname='relative_tf',
n_components=n_components,
algorithm=algorithm
)
if __name__ == "__main__":
fire.Fire({'term':term_lsi_similarities,
'author':author_lsi_similarities,
'author-tf':author_tf_similarities})

View File

@ -2,143 +2,190 @@ from pyspark.sql import SparkSession
from pyspark.sql import Window
from pyspark.sql import functions as f
from enum import Enum
from multiprocessing import cpu_count, Pool
from pyspark.mllib.linalg.distributed import CoordinateMatrix
from tempfile import TemporaryDirectory
import pyarrow
import pyarrow.dataset as ds
from sklearn.metrics import pairwise_distances
from scipy.sparse import csr_matrix, issparse
from sklearn.decomposition import TruncatedSVD
import pandas as pd
import numpy as np
import pathlib
from datetime import datetime
from pathlib import Path
import pickle
class tf_weight(Enum):
MaxTF = 1
Norm05 = 2
infile = "/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_authors.parquet"
# infile = "/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_terms.parquet"
# cache_file = "/gscratch/comdata/users/nathante/cdsc_reddit/similarities/term_tfidf_entries_bak.parquet"
def reindex_tfidf_time_interval(infile, term_colname, min_df=None, max_df=None, included_subreddits=None, topN=500, exclude_phrases=False, from_date=None, to_date=None):
term = term_colname
term_id = term + '_id'
term_id_new = term + '_id_new'
# subreddits missing after this step don't have any terms that have a high enough idf
# try rewriting without merges
spark = SparkSession.builder.getOrCreate()
conf = spark.sparkContext.getConf()
print(exclude_phrases)
tfidf_weekly = spark.read.parquet(infile)
# does reindex_tfidf, but without reindexing.
def reindex_tfidf(*args, **kwargs):
df, tfidf_ds, ds_filter = _pull_or_reindex_tfidf(*args, **kwargs, reindex=True)
# create the time interval
if from_date is not None:
if type(from_date) is str:
from_date = datetime.fromisoformat(from_date)
print("assigning names")
subreddit_names = tfidf_ds.to_table(filter=ds_filter,columns=['subreddit','subreddit_id'])
batches = subreddit_names.to_batches()
tfidf_weekly = tfidf_weekly.filter(tfidf_weekly.week >= from_date)
with Pool(cpu_count()) as pool:
chunks = pool.imap_unordered(pull_names,batches)
subreddit_names = pd.concat(chunks,copy=False).drop_duplicates()
subreddit_names = subreddit_names.set_index("subreddit_id")
if to_date is not None:
if type(to_date) is str:
to_date = datetime.fromisoformat(to_date)
tfidf_weekly = tfidf_weekly.filter(tfidf_weekly.week < to_date)
tfidf = tfidf_weekly.groupBy(["subreddit","week", term_id, term]).agg(f.sum("tf").alias("tf"))
tfidf = _calc_tfidf(tfidf, term_colname, tf_weight.Norm05)
tempdir = prep_tfidf_entries(tfidf, term_colname, min_df, max_df, included_subreddits)
tfidf = spark.read_parquet(tempdir.name)
subreddit_names = tfidf.select(['subreddit','subreddit_id_new']).distinct().toPandas()
new_ids = df.loc[:,['subreddit_id','subreddit_id_new']].drop_duplicates()
new_ids = new_ids.set_index('subreddit_id')
subreddit_names = subreddit_names.join(new_ids,on='subreddit_id').reset_index()
subreddit_names = subreddit_names.drop("subreddit_id",axis=1)
subreddit_names = subreddit_names.sort_values("subreddit_id_new")
subreddit_names['subreddit_id_new'] = subreddit_names['subreddit_id_new'] - 1
return(tempdir, subreddit_names)
return(df, subreddit_names)
def reindex_tfidf(infile, term_colname, min_df=None, max_df=None, included_subreddits=None, topN=500, exclude_phrases=False):
spark = SparkSession.builder.getOrCreate()
conf = spark.sparkContext.getConf()
print(exclude_phrases)
def pull_tfidf(*args, **kwargs):
df, _, _ = _pull_or_reindex_tfidf(*args, **kwargs, reindex=False)
return df
tfidf = spark.read.parquet(infile)
def _pull_or_reindex_tfidf(infile, term_colname, min_df=None, max_df=None, included_subreddits=None, topN=None, week=None, from_date=None, to_date=None, rescale_idf=True, tf_family=tf_weight.MaxTF, reindex=True):
print(f"loading tfidf {infile}, week {week}, min_df {min_df}, max_df {max_df}", flush=True)
if week is not None:
tfidf_ds = ds.dataset(infile, partitioning='hive')
else:
tfidf_ds = ds.dataset(infile)
if included_subreddits is None:
included_subreddits = select_topN_subreddits(topN)
else:
included_subreddits = set(map(str.strip,map(str.lower,open(included_subreddits))))
included_subreddits = set(map(str.strip,open(included_subreddits)))
if exclude_phrases == True:
tfidf = tfidf.filter(~f.col(term_colname).contains("_"))
ds_filter = ds.field("subreddit").isin(included_subreddits)
print("creating temporary parquet with matrix indicies")
tempdir = prep_tfidf_entries(tfidf, term_colname, min_df, max_df, included_subreddits)
if min_df is not None:
ds_filter &= ds.field("count") >= min_df
tfidf = spark.read.parquet(tempdir.name)
subreddit_names = tfidf.select(['subreddit','subreddit_id_new']).distinct().toPandas()
subreddit_names = subreddit_names.sort_values("subreddit_id_new")
subreddit_names['subreddit_id_new'] = subreddit_names['subreddit_id_new'] - 1
spark.stop()
return (tempdir, subreddit_names)
if max_df is not None:
ds_filter &= ds.field("count") <= max_df
if week is not None:
ds_filter &= ds.field("week") == week
if from_date is not None:
ds_filter &= ds.field("week") >= from_date
if to_date is not None:
ds_filter &= ds.field("week") <= to_date
term = term_colname
term_id = term + '_id'
term_id_new = term + '_id_new'
projection = {
'subreddit_id':ds.field('subreddit_id'),
term_id:ds.field(term_id),
'relative_tf':ds.field("relative_tf").cast('float32')
}
if not rescale_idf:
projection = {
'subreddit_id':ds.field('subreddit_id'),
term_id:ds.field(term_id),
'relative_tf':ds.field('relative_tf').cast('float32'),
'tf_idf':ds.field('tf_idf').cast('float32')}
print(projection, flush=True)
print(ds_filter, flush=True)
df = tfidf_ds.to_table(filter=ds_filter,columns=projection)
df = df.to_pandas(split_blocks=True,self_destruct=True)
print("assigning indexes",flush=True)
if reindex:
print("assigning indexes",flush=True)
df['subreddit_id_new'] = df.groupby("subreddit_id").ngroup() + 1
else:
df['subreddit_id_new'] = df['subreddit_id']
if reindex:
grouped = df.groupby(term_id)
df[term_id_new] = grouped.ngroup() + 1
else:
df[term_id_new] = df[term_id]
if rescale_idf:
print("computing idf", flush=True)
df['new_count'] = grouped[term_id].transform('count')
N_docs = df.subreddit_id_new.max() + 1
df['idf'] = np.log(N_docs/(1+df.new_count),dtype='float32') + 1
if tf_family == tf_weight.MaxTF:
df["tf_idf"] = df.relative_tf * df.idf
else: # tf_fam = tf_weight.Norm05
df["tf_idf"] = (0.5 + 0.5 * df.relative_tf) * df.idf
return (df, tfidf_ds, ds_filter)
def similarities(infile, simfunc, term_colname, outfile, min_df=None, max_df=None, included_subreddits=None, topN=500, exclude_phrases=False, from_date=None, to_date=None, tfidf_colname='tf_idf'):
def pull_names(batch):
return(batch.to_pandas().drop_duplicates())
def similarities(inpath, simfunc, term_colname, outfile, min_df=None, max_df=None, included_subreddits=None, topN=500, from_date=None, to_date=None, tfidf_colname='tf_idf'):
'''
tfidf_colname: set to 'relative_tf' to use normalized term frequency instead of tf-idf, which can be useful for author-based similarities.
'''
if from_date is not None or to_date is not None:
tempdir, subreddit_names = reindex_tfidf_time_interval(infile, term_colname=term_colname, min_df=min_df, max_df=max_df, included_subreddits=included_subreddits, topN=topN, exclude_phrases=False, from_date=from_date, to_date=to_date)
else:
tempdir, subreddit_names = reindex_tfidf(infile, term_colname=term_colname, min_df=min_df, max_df=max_df, included_subreddits=included_subreddits, topN=topN, exclude_phrases=False)
print("loading matrix")
# mat = read_tfidf_matrix("term_tfidf_entries7ejhvnvl.parquet", term_colname)
mat = read_tfidf_matrix(tempdir.name, term_colname, tfidf_colname)
print(f'computing similarities on mat. mat.shape:{mat.shape}')
print(f"size of mat is:{mat.data.nbytes}")
sims = simfunc(mat)
del mat
def proc_sims(sims, outfile):
if issparse(sims):
sims = sims.todense()
print(f"shape of sims:{sims.shape}")
print(f"len(subreddit_names.subreddit.values):{len(subreddit_names.subreddit.values)}")
print(f"len(subreddit_names.subreddit.values):{len(subreddit_names.subreddit.values)}",flush=True)
sims = pd.DataFrame(sims)
sims = sims.rename({i:sr for i, sr in enumerate(subreddit_names.subreddit.values)}, axis=1)
sims['subreddit'] = subreddit_names.subreddit.values
sims['_subreddit'] = subreddit_names.subreddit.values
p = Path(outfile)
output_feather = Path(str(p).replace("".join(p.suffixes), ".feather"))
output_csv = Path(str(p).replace("".join(p.suffixes), ".csv"))
output_parquet = Path(str(p).replace("".join(p.suffixes), ".parquet"))
p.parent.mkdir(exist_ok=True, parents=True)
sims.to_feather(outfile)
tempdir.cleanup()
def read_tfidf_matrix_weekly(path, term_colname, week, tfidf_colname='tf_idf'):
term = term_colname
term_id = term + '_id'
term_id_new = term + '_id_new'
dataset = ds.dataset(path,format='parquet')
entries = dataset.to_table(columns=[tfidf_colname,'subreddit_id_new', term_id_new],filter=ds.field('week')==week).to_pandas()
return(csr_matrix((entries[tfidf_colname], (entries[term_id_new]-1, entries.subreddit_id_new-1))))
entries, subreddit_names = reindex_tfidf(inpath, term_colname=term_colname, min_df=min_df, max_df=max_df, included_subreddits=included_subreddits, topN=topN,from_date=from_date,to_date=to_date)
mat = csr_matrix((entries[tfidf_colname],(entries[term_id_new]-1, entries.subreddit_id_new-1)))
def read_tfidf_matrix(path, term_colname, tfidf_colname='tf_idf'):
term = term_colname
term_id = term + '_id'
term_id_new = term + '_id_new'
dataset = ds.dataset(path,format='parquet')
print(f"tfidf_colname:{tfidf_colname}")
entries = dataset.to_table(columns=[tfidf_colname, 'subreddit_id_new',term_id_new]).to_pandas()
return(csr_matrix((entries[tfidf_colname],(entries[term_id_new]-1, entries.subreddit_id_new-1))))
print("loading matrix")
# mat = read_tfidf_matrix("term_tfidf_entries7ejhvnvl.parquet", term_colname)
print(f'computing similarities on mat. mat.shape:{mat.shape}')
print(f"size of mat is:{mat.data.nbytes}",flush=True)
sims = simfunc(mat)
del mat
if hasattr(sims,'__next__'):
for simmat, name in sims:
proc_sims(simmat, Path(outfile)/(str(name) + ".feather"))
else:
proc_sims(sims, outfile)
def write_weekly_similarities(path, sims, week, names):
sims['week'] = week
p = pathlib.Path(path)
if not p.is_dir():
p.mkdir()
p.mkdir(exist_ok=True,parents=True)
# reformat as a pairwise list
sims = sims.melt(id_vars=['subreddit','week'],value_vars=names.subreddit.values)
sims = sims.melt(id_vars=['_subreddit','week'],value_vars=names.subreddit.values)
sims.to_parquet(p / week.isoformat())
def column_overlaps(mat):
@ -150,136 +197,74 @@ def column_overlaps(mat):
return intersection / den
def test_lsi_sims():
term = "term"
term_id = term + '_id'
term_id_new = term + '_id_new'
t1 = time.perf_counter()
entries, subreddit_names = reindex_tfidf("/gscratch/comdata/output/reddit_similarity/tfidf/comment_terms_100k_repartitioned.parquet",
term_colname='term',
min_df=2000,
topN=10000
)
t2 = time.perf_counter()
print(f"first load took:{t2 - t1}s")
entries, subreddit_names = reindex_tfidf("/gscratch/comdata/output/reddit_similarity/tfidf/comment_terms_100k.parquet",
term_colname='term',
min_df=2000,
topN=10000
)
t3=time.perf_counter()
print(f"second load took:{t3 - t2}s")
mat = csr_matrix((entries['tf_idf'],(entries[term_id_new], entries.subreddit_id_new)))
sims = list(lsi_column_similarities(mat, [10,50]))
sims_og = sims
sims_test = list(lsi_column_similarities(mat,[10,50],algorithm='randomized',n_iter=10))
# n_components is the latent dimensionality. sklearn recommends 100. More might be better
# if n_components is a list we'll return a list of similarities with different latent dimensionalities
# if algorithm is 'randomized' instead of 'arpack' then n_iter gives the number of iterations.
# this function takes the svd and then the column similarities of it
def lsi_column_similarities(tfidfmat,n_components=300,n_iter=10,random_state=1968,algorithm='randomized',lsi_model_save=None,lsi_model_load=None):
# first compute the lsi of the matrix
# then take the column similarities
if type(n_components) is int:
n_components = [n_components]
n_components = sorted(n_components,reverse=True)
svd_components = n_components[0]
if lsi_model_load is not None and Path(lsi_model_load).exists():
print("loading LSI")
mod = pickle.load(open(lsi_model_load ,'rb'))
lsi_model_save = lsi_model_load
else:
print("running LSI",flush=True)
svd = TruncatedSVD(n_components=svd_components,random_state=random_state,algorithm=algorithm,n_iter=n_iter)
mod = svd.fit(tfidfmat.T)
if lsi_model_save is not None:
Path(lsi_model_save).parent.mkdir(exist_ok=True, parents=True)
pickle.dump(mod, open(lsi_model_save,'wb'))
print(n_components, flush=True)
lsimat = mod.transform(tfidfmat.T)
for n_dims in n_components:
print("computing similarities", flush=True)
sims = column_similarities(lsimat[:,np.arange(n_dims)])
yield (sims, n_dims)
def column_similarities(mat):
norm = np.matrix(np.power(mat.power(2).sum(axis=0),0.5,dtype=np.float32))
mat = mat.multiply(1/norm)
sims = mat.T @ mat
return(sims)
def prep_tfidf_entries_weekly(tfidf, term_colname, min_df, max_df, included_subreddits):
term = term_colname
term_id = term + '_id'
term_id_new = term + '_id_new'
if min_df is None:
min_df = 0.1 * len(included_subreddits)
tfidf = tfidf.filter(f.col('count') >= min_df)
if max_df is not None:
tfidf = tfidf.filter(f.col('count') <= max_df)
tfidf = tfidf.filter(f.col("subreddit").isin(included_subreddits))
# we might not have the same terms or subreddits each week, so we need to make unique ids for each week.
sub_ids = tfidf.select(['subreddit_id','week']).distinct()
sub_ids = sub_ids.withColumn("subreddit_id_new",f.row_number().over(Window.partitionBy('week').orderBy("subreddit_id")))
tfidf = tfidf.join(sub_ids,['subreddit_id','week'])
# only use terms in at least min_df included subreddits in a given week
new_count = tfidf.groupBy([term_id,'week']).agg(f.count(term_id).alias('new_count'))
tfidf = tfidf.join(new_count,[term_id,'week'],how='inner')
# reset the term ids
term_ids = tfidf.select([term_id,'week']).distinct()
term_ids = term_ids.withColumn(term_id_new,f.row_number().over(Window.partitionBy('week').orderBy(term_id)))
tfidf = tfidf.join(term_ids,[term_id,'week'])
tfidf = tfidf.withColumnRenamed("tf_idf","tf_idf_old")
tfidf = tfidf.withColumn("tf_idf", (tfidf.relative_tf * tfidf.idf).cast('float'))
tempdir =TemporaryDirectory(suffix='.parquet',prefix='term_tfidf_entries',dir='.')
tfidf = tfidf.repartition('week')
tfidf.write.parquet(tempdir.name,mode='overwrite',compression='snappy')
return(tempdir)
def prep_tfidf_entries(tfidf, term_colname, min_df, max_df, included_subreddits):
term = term_colname
term_id = term + '_id'
term_id_new = term + '_id_new'
if min_df is None:
min_df = 0.1 * len(included_subreddits)
tfidf = tfidf.filter(f.col('count') >= min_df)
if max_df is not None:
tfidf = tfidf.filter(f.col('count') <= max_df)
tfidf = tfidf.filter(f.col("subreddit").isin(included_subreddits))
# reset the subreddit ids
sub_ids = tfidf.select('subreddit_id').distinct()
sub_ids = sub_ids.withColumn("subreddit_id_new", f.row_number().over(Window.orderBy("subreddit_id")))
tfidf = tfidf.join(sub_ids,'subreddit_id')
# only use terms in at least min_df included subreddits
new_count = tfidf.groupBy(term_id).agg(f.count(term_id).alias('new_count'))
tfidf = tfidf.join(new_count,term_id,how='inner')
# reset the term ids
term_ids = tfidf.select([term_id]).distinct()
term_ids = term_ids.withColumn(term_id_new,f.row_number().over(Window.orderBy(term_id)))
tfidf = tfidf.join(term_ids,term_id)
tfidf = tfidf.withColumnRenamed("tf_idf","tf_idf_old")
tfidf = tfidf.withColumn("tf_idf", (tfidf.relative_tf * tfidf.idf).cast('float'))
tempdir =TemporaryDirectory(suffix='.parquet',prefix='term_tfidf_entries',dir='.')
tfidf.write.parquet(tempdir.name,mode='overwrite',compression='snappy')
return tempdir
# try computing cosine similarities using spark
def spark_cosine_similarities(tfidf, term_colname, min_df, included_subreddits, similarity_threshold):
term = term_colname
term_id = term + '_id'
term_id_new = term + '_id_new'
if min_df is None:
min_df = 0.1 * len(included_subreddits)
tfidf = tfidf.filter(f.col("subreddit").isin(included_subreddits))
tfidf = tfidf.cache()
# reset the subreddit ids
sub_ids = tfidf.select('subreddit_id').distinct()
sub_ids = sub_ids.withColumn("subreddit_id_new",f.row_number().over(Window.orderBy("subreddit_id")))
tfidf = tfidf.join(sub_ids,'subreddit_id')
# only use terms in at least min_df included subreddits
new_count = tfidf.groupBy(term_id).agg(f.count(term_id).alias('new_count'))
tfidf = tfidf.join(new_count,term_id,how='inner')
# reset the term ids
term_ids = tfidf.select([term_id]).distinct()
term_ids = term_ids.withColumn(term_id_new,f.row_number().over(Window.orderBy(term_id)))
tfidf = tfidf.join(term_ids,term_id)
tfidf = tfidf.withColumnRenamed("tf_idf","tf_idf_old")
tfidf = tfidf.withColumn("tf_idf", tfidf.relative_tf * tfidf.idf)
# step 1 make an rdd of entires
# sorted by (dense) spark subreddit id
n_partitions = int(len(included_subreddits)*2 / 5)
entries = tfidf.select(f.col(term_id_new)-1,f.col("subreddit_id_new")-1,"tf_idf").rdd.repartition(n_partitions)
# put like 10 subredis in each partition
# step 2 make it into a distributed.RowMatrix
coordMat = CoordinateMatrix(entries)
coordMat = CoordinateMatrix(coordMat.entries.repartition(n_partitions))
# this needs to be an IndexedRowMatrix()
mat = coordMat.toRowMatrix()
#goal: build a matrix of subreddit columns and tf-idfs rows
sim_dist = mat.columnSimilarities(threshold=similarity_threshold)
return (sim_dist, tfidf)
return 1 - pairwise_distances(mat,metric='cosine')
def build_weekly_tfidf_dataset(df, include_subs, term_colname, tf_family=tf_weight.Norm05):
@ -306,20 +291,20 @@ def build_weekly_tfidf_dataset(df, include_subs, term_colname, tf_family=tf_weig
idf = idf.withColumn('idf',f.log(idf.subreddits_in_week) / (1+f.col('count'))+1)
# collect the dictionary to make a pydict of terms to indexes
terms = idf.select([term,'week']).distinct() # terms are distinct
terms = idf.select([term]).distinct() # terms are distinct
terms = terms.withColumn(term_id,f.row_number().over(Window.partitionBy('week').orderBy(term))) # term ids are distinct
terms = terms.withColumn(term_id,f.row_number().over(Window.orderBy(term))) # term ids are distinct
# make subreddit ids
subreddits = df.select(['subreddit','week']).distinct()
subreddits = subreddits.withColumn('subreddit_id',f.row_number().over(Window.partitionBy("week").orderBy("subreddit")))
subreddits = df.select(['subreddit']).distinct()
subreddits = subreddits.withColumn('subreddit_id',f.row_number().over(Window.orderBy("subreddit")))
df = df.join(subreddits,on=['subreddit','week'])
df = df.join(subreddits,on=['subreddit'])
# map terms to indexes in the tfs and the idfs
df = df.join(terms,on=[term,'week']) # subreddit-term-id is unique
df = df.join(terms,on=[term]) # subreddit-term-id is unique
idf = idf.join(terms,on=[term,'week'])
idf = idf.join(terms,on=[term])
# join on subreddit/term to create tf/dfs indexed by term
df = df.join(idf, on=[term_id, term,'week'])
@ -331,9 +316,11 @@ def build_weekly_tfidf_dataset(df, include_subs, term_colname, tf_family=tf_weig
else: # tf_fam = tf_weight.Norm05
df = df.withColumn("tf_idf", (0.5 + 0.5 * df.relative_tf) * df.idf)
return df
df = df.repartition('week')
dfwriter = df.write.partitionBy("week")
return dfwriter
def _calc_tfidf(df, term_colname, tf_family):
def _calc_tfidf(df, term_colname, tf_family, min_df=None, max_df=None):
term = term_colname
term_id = term + '_id'
@ -342,7 +329,7 @@ def _calc_tfidf(df, term_colname, tf_family):
df = df.join(max_subreddit_terms, on='subreddit')
df = df.withColumn("relative_tf", df.tf / df.sr_max_tf)
df = df.withColumn("relative_tf", (df.tf / df.sr_max_tf))
# group by term. term is unique
idf = df.groupby([term]).count()
@ -351,7 +338,13 @@ def _calc_tfidf(df, term_colname, tf_family):
idf = idf.withColumn('idf',f.log(N_docs/(1+f.col('count')))+1)
# collect the dictionary to make a pydict of terms to indexes
terms = idf.select(term).distinct() # terms are distinct
terms = idf
if min_df is not None:
terms = terms.filter(f.col('count')>=min_df)
if max_df is not None:
terms = terms.filter(f.col('count')<=max_df)
terms = terms.select(term).distinct() # terms are distinct
terms = terms.withColumn(term_id,f.row_number().over(Window.orderBy(term))) # term ids are distinct
# make subreddit ids
@ -361,12 +354,12 @@ def _calc_tfidf(df, term_colname, tf_family):
df = df.join(subreddits,on='subreddit')
# map terms to indexes in the tfs and the idfs
df = df.join(terms,on=term) # subreddit-term-id is unique
df = df.join(terms,on=term,how='inner') # subreddit-term-id is unique
idf = idf.join(terms,on=term)
idf = idf.join(terms,on=term,how='inner')
# join on subreddit/term to create tf/dfs indexed by term
df = df.join(idf, on=[term_id, term])
df = df.join(idf, on=[term_id, term],how='inner')
# agg terms by subreddit to make sparse tf/df vectors
if tf_family == tf_weight.MaxTF:
@ -377,18 +370,36 @@ def _calc_tfidf(df, term_colname, tf_family):
return df
def build_tfidf_dataset(df, include_subs, term_colname, tf_family=tf_weight.Norm05):
def tfidf_dataset(df, include_subs, term_colname, tf_family=tf_weight.Norm05, min_df=None, max_df=None):
term = term_colname
term_id = term + '_id'
# aggregate counts by week. now subreddit-term is distinct
df = df.filter(df.subreddit.isin(include_subs))
df = df.groupBy(['subreddit',term]).agg(f.sum('tf').alias('tf'))
df = _calc_tfidf(df, term_colname, tf_family)
df = _calc_tfidf(df, term_colname, tf_family, min_df, max_df)
df = df.repartition('subreddit')
dfwriter = df.write
return dfwriter
return df
def select_topN_subreddits(topN, path="/gscratch/comdata/output/reddit_similarity/subreddits_by_num_comments_nonsfw.csv"):
def select_topN_subreddits(topN, path="../../data/reddit_similarity/subreddits_by_num_comments_nonsfw.csv"):
rankdf = pd.read_csv(path)
included_subreddits = set(rankdf.loc[rankdf.comments_rank <= topN,'subreddit'].values)
return included_subreddits
def repartition_tfidf(inpath="/gscratch/comdata/output/reddit_similarity/tfidf/comment_terms_100k.parquet",
outpath="/gscratch/comdata/output/reddit_similarity/tfidf/comment_terms_100k_repartitioned.parquet"):
spark = SparkSession.builder.getOrCreate()
df = spark.read.parquet(inpath)
df = df.repartition(400,'subreddit')
df.write.parquet(outpath,mode='overwrite')
def repartition_tfidf_weekly(inpath="/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_terms.parquet",
outpath="/gscratch/comdata/output/reddit_similarity/tfidf/comment_terms_repartitioned.parquet"):
spark = SparkSession.builder.getOrCreate()
df = spark.read.parquet(inpath)
df = df.repartition(400,'subreddit','week')
dfwriter = df.write.partitionBy("week")
dfwriter.parquet(outpath,mode='overwrite')

View File

@ -2,35 +2,45 @@
import fire
from pyspark.sql import SparkSession
from pyspark.sql import functions as f
from similarities_helper import build_tfidf_dataset, build_weekly_tfidf_dataset, select_topN_subreddits
from similarities_helper import tfidf_dataset, build_weekly_tfidf_dataset, select_topN_subreddits
from functools import partial
def _tfidf_wrapper(func, inpath, outpath, topN, term_colname, exclude, included_subreddits):
def _tfidf_wrapper(func, inpath, outpath, topN, term_colname, exclude, included_subreddits, included_terms=None, min_df=None, max_df=None):
spark = SparkSession.builder.config(map={'spark.executor.memory':'900g','spark.executor.cores':128}).getOrCreate()
df = spark.read.parquet(inpath)
df = df.filter(~ f.col(term_colname).isin(exclude))
if included_subreddits is not None:
include_subs = set(map(str.strip,map(str.lower, open(included_subreddits))))
include_subs = set(map(str.strip,open(included_subreddits)))
else:
include_subs = select_topN_subreddits(topN)
df = func(df, include_subs, term_colname)
include_subs = spark.sparkContext.broadcast(include_subs)
df.write.parquet(outpath,mode='overwrite',compression='snappy')
# term_id = term_colname + "_id"
if included_terms is not None:
terms_df = spark.read.parquet(included_terms)
terms_df = terms_df.select(term_colname).distinct()
df = df.join(terms_df, on=term_colname, how='left_semi')
dfwriter = func(df, include_subs.value, term_colname)
dfwriter.parquet(outpath,mode='overwrite',compression='snappy')
spark.stop()
def tfidf(inpath, outpath, topN, term_colname, exclude, included_subreddits):
return _tfidf_wrapper(build_tfidf_dataset, inpath, outpath, topN, term_colname, exclude, included_subreddits)
def tfidf(inpath, outpath, topN, term_colname, exclude, included_subreddits, min_df, max_df):
tfidf_func = partial(tfidf_dataset, max_df=max_df, min_df=min_df)
return _tfidf_wrapper(tfidf_func, inpath, outpath, topN, term_colname, exclude, included_subreddits)
def tfidf_weekly(inpath, outpath, static_tfidf_path, topN, term_colname, exclude, included_subreddits):
return _tfidf_wrapper(build_weekly_tfidf_dataset, inpath, outpath, topN, term_colname, exclude, included_subreddits, included_terms=static_tfidf_path)
def tfidf_weekly(inpath, outpath, topN, term_colname, exclude, included_subreddits):
return _tfidf_wrapper(build_weekly_tfidf_dataset, inpath, outpath, topN, term_colname, exclude, included_subreddits)
def tfidf_post_comment_authors(outpath='/gscratch/comdata/output/reddit_similarity/tfidf/post_authors.parquet',
topN=25000,
included_subreddits=None):
return tfidf("/gscratch/comdata/output/reddit_ngrams/post_comment_authors.parquet",
outpath,
topN,
@ -41,49 +51,64 @@ def tfidf_post_comment_authors(outpath='/gscratch/comdata/output/reddit_similari
def tfidf_authors(inpath="/gscratch/comdata/output/reddit_ngrams/comment_authors.parquet",
outpath='/gscratch/comdata/output/reddit_similarity/tfidf/comment_authors.parquet',
topN=25000,
included_subreddits=None):
topN=None,
included_subreddits=None,
min_df=None,
max_df=None):
return tfidf(inpath,
outpath,
topN,
'author',
['[deleted]','AutoModerator'],
included_subreddits=included_subreddits
included_subreddits=included_subreddits,
min_df=min_df,
max_df=max_df
)
def tfidf_terms(outpath='/gscratch/comdata/output/reddit_similarity/tfidf/comment_terms.parquet',
topN=25000,
included_subreddits=None):
def tfidf_terms(inpath="/gscratch/comdata/output/reddit_ngrams/comment_terms.parquet",
outpath='/gscratch/comdata/output/reddit_similarity/tfidf/comment_terms.parquet',
topN=None,
included_subreddits=None,
min_df=None,
max_df=None):
return tfidf("/gscratch/comdata/output/reddit_ngrams/comment_terms.parquet",
return tfidf(inpath,
outpath,
topN,
'term',
[],
included_subreddits=included_subreddits
included_subreddits=included_subreddits,
min_df=min_df,
max_df=max_df
)
def tfidf_authors_weekly(inpath="/gscratch/comdata/output/reddit_ngrams/comment_authors.parquet",
static_tfidf_path="/gscratch/comdata/output/reddit_similarity/tfidf/comment_authors.parquet",
outpath='/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_authors.parquet',
topN=25000,
topN=None,
included_subreddits=None):
return tfidf_weekly(inpath,
outpath,
static_tfidf_path,
topN,
'author',
['[deleted]','AutoModerator'],
included_subreddits=included_subreddits
)
def tfidf_terms_weekly(outpath='/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_terms.parquet',
topN=25000,
def tfidf_terms_weekly(inpath="/gscratch/comdata/output/reddit_ngrams/comment_terms.parquet",
static_tfidf_path="/gscratch/comdata/output/reddit_similarity/tfidf/comment_terms.parquet",
outpath='/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_terms.parquet',
topN=None,
included_subreddits=None):
return tfidf_weekly("/gscratch/comdata/output/reddit_ngrams/comment_terms.parquet",
return tfidf_weekly(inpath,
outpath,
static_tfidf_path,
topN,
'term',
[],

View File

@ -1,16 +1,20 @@
from pyspark.sql import functions as f
from pyspark.sql import SparkSession
from pyspark.sql import Window
from datetime import datetime
from pathlib import Path
spark = SparkSession.builder.getOrCreate()
conf = spark.sparkContext.getConf()
submissions = spark.read.parquet("/gscratch/comdata/output/reddit_submissions_by_subreddit.parquet")
submissions = spark.read.parquet("../../data/reddit_submissions_by_subreddit.parquet")
submissions = submissions.filter(f.col("CreatedAt") <= datetime(2020,4,13))
prop_nsfw = submissions.select(['subreddit','over_18']).groupby('subreddit').agg(f.mean(f.col('over_18').astype('double')).alias('prop_nsfw'))
df = spark.read.parquet("/gscratch/comdata/output/reddit_comments_by_subreddit.parquet")
df = spark.read.parquet("../../data/reddit_comments_by_subreddit.parquet")
df = df.filter(f.col("CreatedAt") <= datetime(2020,4,13))
# remove /u/ pages
df = df.filter(~df.subreddit.like("u_%"))
@ -26,4 +30,6 @@ df = df.toPandas()
df = df.sort_values("n_comments")
df.to_csv('/gscratch/comdata/output/reddit_similarity/subreddits_by_num_comments.csv', index=False)
outpath = Path("../../data/reddit_similarity/subreddits_by_num_comments_nonsfw.csv")
outpath.parent.mkdir(exist_ok=True, parents=True)
df.to_csv(str(outpath), index=False)

View File

@ -1,18 +0,0 @@
from similarities_helper import similarities
import numpy as np
import fire
def wang_similarity(mat):
non_zeros = (mat != 0).astype(np.float32)
intersection = non_zeros.T @ non_zeros
return intersection
infile="/gscratch/comdata/output/reddit_similarity/tfidf/comment_authors.parquet"; outfile="/gscratch/comdata/output/reddit_similarity/wang_similarity_10000.feather"; min_df=1; included_subreddits=None; topN=10000; exclude_phrases=False; from_date=None; to_date=None
def wang_overlaps(infile, outfile="/gscratch/comdata/output/reddit_similarity/wang_similarity_10000.feather", min_df=1, max_df=None, included_subreddits=None, topN=10000, exclude_phrases=False, from_date=None, to_date=None):
return similarities(infile=infile, simfunc=wang_similarity, term_colname='author', outfile=outfile, min_df=min_df, max_df=max_df, included_subreddits=included_subreddits, topN=topN, exclude_phrases=exclude_phrases, from_date=from_date, to_date=to_date)
if __name__ == "__main__":
fire.Fire(wang_overlaps)

View File

@ -1,81 +0,0 @@
from pyspark.sql import functions as f
from pyspark.sql import SparkSession
from pyspark.sql import Window
import numpy as np
import pyarrow
import pandas as pd
import fire
from itertools import islice
from pathlib import Path
from similarities_helper import *
from multiprocessing import Pool, cpu_count
def _week_similarities(tempdir, term_colname, week):
print(f"loading matrix: {week}")
mat = read_tfidf_matrix_weekly(tempdir.name, term_colname, week)
print('computing similarities')
sims = column_similarities(mat)
del mat
names = subreddit_names.loc[subreddit_names.week == week]
sims = pd.DataFrame(sims.todense())
sims = sims.rename({i: sr for i, sr in enumerate(names.subreddit.values)}, axis=1)
sims['_subreddit'] = names.subreddit.values
write_weekly_similarities(outfile, sims, week, names)
#tfidf = spark.read.parquet('/gscratch/comdata/users/nathante/subreddit_tfidf_weekly.parquet')
def cosine_similarities_weekly(tfidf_path, outfile, term_colname, min_df = None, included_subreddits = None, topN = 500):
spark = SparkSession.builder.getOrCreate()
conf = spark.sparkContext.getConf()
print(outfile)
tfidf = spark.read.parquet(tfidf_path)
if included_subreddits is None:
included_subreddits = select_topN_subreddits(topN)
else:
included_subreddits = set(open(included_subreddits))
print(f"computing weekly similarities for {len(included_subreddits)} subreddits")
print("creating temporary parquet with matrix indicies")
tempdir = prep_tfidf_entries_weekly(tfidf, term_colname, min_df, max_df=None, included_subreddits=included_subreddits)
tfidf = spark.read.parquet(tempdir.name)
# the ids can change each week.
subreddit_names = tfidf.select(['subreddit','subreddit_id_new','week']).distinct().toPandas()
subreddit_names = subreddit_names.sort_values("subreddit_id_new")
subreddit_names['subreddit_id_new'] = subreddit_names['subreddit_id_new'] - 1
spark.stop()
weeks = sorted(list(subreddit_names.week.drop_duplicates()))
# do this step in parallel if we have the memory for it.
# should be doable with pool.map
def week_similarities_helper(week):
_week_similarities(tempdir, term_colname, week)
with Pool(cpu_count()) as pool: # maybe it can be done with 40 cores on the huge machine?
list(pool.map(week_similarities_helper,weeks))
def author_cosine_similarities_weekly(outfile, min_df=2 , included_subreddits=None, topN=500):
return cosine_similarities_weekly('/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_authors.parquet',
outfile,
'author',
min_df,
included_subreddits,
topN)
def term_cosine_similarities_weekly(outfile, min_df=None, included_subreddits=None, topN=500):
return cosine_similarities_weekly('/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_terms.parquet',
outfile,
'term',
min_df,
included_subreddits,
topN)
if __name__ == "__main__":
fire.Fire({'authors':author_cosine_similarities_weekly,
'terms':term_cosine_similarities_weekly})

21
start_spark_and_run.sh Executable file
View File

@ -0,0 +1,21 @@
#!/usr/bin/env bash
# Script to start a spark cluster and run a script on klone
source $SPARK_CONF_DIR/spark-env.sh
echo "#!/usr/bin/bash" > job_script.sh
echo "source ~/.bashrc" >> job_script.sh
echo "export PYSPARK_PYTHON=python3" >> job.script.sh
echo "export JAVA_HOME=/gscratch/comdata/local/open-jdk" >> job.script.sh
echo "export SPARK_CONF_DIR=/gscratch/comdata/local/spark_config" >> job.script.sh
echo "echo \$(hostname)" >> job_script.sh
echo "source $SPARK_CONF_DIR/spark-env.sh" >> job.script.sh
echo "start_spark_cluster.sh" >> job_script.sh
echo "spark-submit --verbose --master spark://\$(hostname):$SPARK_MASTER_PORT $2 ${@:3}" >> job_script.sh
echo "stop-all.sh" >> job_script.sh
#echo "singularity instance stop --all" >> job_script.sh
chmod +x job_script.sh
let "cpus = $1 * 40"
salloc -p compute-bigmem -A comdata --nodes=$1 --time=48:00:00 -c 40 --mem=362G --exclusive srun -n1 job_script.sh

26
start_spark_cluster.sh Executable file
View File

@ -0,0 +1,26 @@
#!/usr/bin/env bash
nodes="$(scontrol show hostnames)"
export SPARK_MASTER_HOST=$(hostname)
echo $SPARK_MASTER_HOST
# singularity instance stop spark-boss
# rm -r $HOME/.singularity/instances/sing/$(hostname)/nathante/spark-boss
# for node in $nodes
# dol
# echo $node
# ssh $node "singularity instance stop --all -F"
# done
# singularity instance start /gscratch/comdata/users/nathante/cdsc_base.sif spark-boss
#apptainer exec /gscratch/comdata/users/nathante/containers/nathante.sif
start-master.sh
for node in $nodes
do
# if [ "$node" != "$SPARK_BOSS" ]
# then
echo $node
ssh -t $node start_spark_worker.sh $SPARK_MASTER_HOST
# fi
done

18
start_spark_worker.sh Executable file
View File

@ -0,0 +1,18 @@
#!/usr/bin/env bash
# runs on worker node
# instance_name=spark-worker-$(hostname)
# echo $hostname
# instance_url="instance://$instance_name"
# singularity instance list
# singularity instance stop -F "$instance_name"
# singularity instance list
# sleep 5
# ls $HOME/.singularity/instances/sing/$(hostname)/nathante/$instance_name
# rm -r $HOME/.singularity/instances/sing/$(hostname)/nathante/$instance_name
# singularity instance start /gscratch/comdata/users/nathante/cdsc_base.sif $instance_name
source /gscratch/comdata/env/cdsc_klone_bashrc
source $SPARK_CONF_DIR/spark-env.sh
echo $(which python3)
echo $PYSPARK_PYTHON
echo "start-worker.sh spark://$1:$SPARK_MASTER_PORT"
start-worker.sh spark://$1:$SPARK_MASTER_PORT

View File

@ -1,96 +0,0 @@
from pyarrow import dataset as ds
import numpy as np
import pandas as pd
import plotnine as pn
random = np.random.RandomState(1968)
def load_densities(term_density_file="/gscratch/comdata/output/reddit_density/comment_terms_10000.feather",
author_density_file="/gscratch/comdata/output/reddit_density/comment_authors_10000.feather"):
term_density = pd.read_feather(term_density_file)
author_density = pd.read_feather(author_density_file)
term_density.rename({'overlap_density':'term_density','index':'subreddit'},axis='columns',inplace=True)
author_density.rename({'overlap_density':'author_density','index':'subreddit'},axis='columns',inplace=True)
density = term_density.merge(author_density,on='subreddit',how='inner')
return density
def load_clusters(term_clusters_file="/gscratch/comdata/output/reddit_clustering/comment_terms_10000.feather",
author_clusters_file="/gscratch/comdata/output/reddit_clustering/comment_authors_10000.feather"):
term_clusters = pd.read_feather(term_clusters_file)
author_clusters = pd.read_feather(author_clusters_file)
# rename, join and return
term_clusters.rename({'cluster':'term_cluster'},axis='columns',inplace=True)
author_clusters.rename({'cluster':'author_cluster'},axis='columns',inplace=True)
clusters = term_clusters.merge(author_clusters,on='subreddit',how='inner')
return clusters
if __name__ == '__main__':
df = load_densities()
cl = load_clusters()
df['td_rank'] = df.term_density.rank()
df['ad_rank'] = df.author_density.rank()
df['td_percentile'] = df.td_rank / df.shape[0]
df['ad_percentile'] = df.ad_rank / df.shape[0]
df = df.merge(cl, on='subreddit',how='inner')
term_cluster_density = df.groupby('term_cluster').agg({'td_rank':['mean','min','max'],
'ad_rank':['mean','min','max'],
'td_percentile':['mean','min','max'],
'ad_percentile':['mean','min','max'],
'subreddit':['count']})
author_cluster_density = df.groupby('author_cluster').agg({'td_rank':['mean','min','max'],
'ad_rank':['mean','min','max'],
'td_percentile':['mean','min','max'],
'ad_percentile':['mean','min','max'],
'subreddit':['count']})
# which clusters have the most term_density?
term_cluster_density.iloc[term_cluster_density.td_rank['mean'].sort_values().index]
# which clusters have the most author_density?
term_cluster_density.iloc[term_cluster_density.ad_rank['mean'].sort_values(ascending=False).index].loc[term_cluster_density.subreddit['count'] >= 5][0:20]
high_density_term_clusters = term_cluster_density.loc[(term_cluster_density.td_percentile['mean'] > 0.75) & (term_cluster_density.subreddit['count'] > 5)]
# let's just use term density instead of author density for now. We can do a second batch with author density next.
chosen_clusters = high_density_term_clusters.sample(3,random_state=random)
cluster_info = df.loc[df.term_cluster.isin(chosen_clusters.index.values)]
chosen_subreddits = cluster_info.subreddit.values
dataset = ds.dataset("/gscratch/comdata/output/reddit_comments_by_subreddit.parquet",format='parquet')
comments = dataset.to_table(filter=ds.field("subreddit").isin(chosen_subreddits),columns=['id','subreddit','author','CreatedAt'])
comments = comments.to_pandas()
comments['week'] = comments.CreatedAt.dt.date - pd.to_timedelta(comments['CreatedAt'].dt.dayofweek, unit='d')
author_timeseries = comments.loc[:,['subreddit','author','week']].drop_duplicates().groupby(['subreddit','week']).count().reset_index()
for clid in chosen_clusters.index.values:
ts = pd.read_feather(f"data/ts_term_cluster_{clid}.feather")
pn.options.figure_size = (11.7,8.27)
p = pn.ggplot(ts)
p = p + pn.geom_line(pn.aes('week','value',group='subreddit'))
p = p + pn.facet_wrap('~ subreddit')
p.save(f"plots/ts_term_cluster_{clid}.png")
fig, ax = pyplot.subplots(figsize=(11.7,8.27))
g = sns.FacetGrid(ts,row='subreddit')
g.map_dataframe(sns.scatterplot,'week','value',data=ts,ax=ax)

View File

@ -1,37 +0,0 @@
import pandas as pd
import numpy as np
from pyspark.sql import functions as f
from pyspark.sql import SparkSession
from choose_clusters import load_clusters, load_densities
import fire
from pathlib import Path
def main(term_clusters_path="/gscratch/comdata/output/reddit_clustering/comment_terms_10000.feather",
author_clusters_path="/gscratch/comdata/output/reddit_clustering/comment_authors_10000.feather",
term_densities_path="/gscratch/comdata/output/reddit_density/comment_terms_10000.feather",
author_densities_path="/gscratch/comdata/output/reddit_density/comment_authors_10000.feather",
output="data/subreddit_timeseries.parquet"):
clusters = load_clusters(term_clusters_path, author_clusters_path)
densities = load_densities(term_densities_path, author_densities_path)
spark = SparkSession.builder.getOrCreate()
df = spark.read.parquet("/gscratch/comdata/output/reddit_comments_by_subreddit.parquet")
df = df.withColumn('week', f.date_trunc('week', f.col("CreatedAt")))
# time of unique authors by series by week
ts = df.select(['subreddit','week','author']).distinct().groupby(['subreddit','week']).count()
ts = ts.repartition('subreddit')
spk_clusters = spark.createDataFrame(clusters)
ts = ts.join(spk_clusters, on='subreddit', how='inner')
spk_densities = spark.createDataFrame(densities)
ts = ts.join(spk_densities, on='subreddit', how='inner')
ts.write.parquet(output, mode='overwrite')
if __name__ == "__main__":
fire.Fire(main)

View File

@ -1 +0,0 @@
/annex/objects/SHA256E-s60874--d536adb0ec637fca262c4e1ec908dd8b4a5d1464047b583cd1a99cc6dba87191

View File

@ -1,11 +0,0 @@
all: subreddit_author_tf_similarities_10000.html #comment_authors_10000.html
# wang_tsne_10000.html
# wang_tsne_10000.html:/gscratch/comdata/output/reddit_tsne/wang_similarity_10000.feather /gscratch/comdata/output/reddit_clustering/wang_similarity_10000.feather tsne_vis.py
# python3 tsne_vis.py --tsne_data=/gscratch/comdata/output/reddit_tsne/wang_similarity_10000.feather --clusters=/gscratch/comdata/output/reddit_clustering/wang_similarity_10000.feather --output=wang_tsne_10000.html
# comment_authors_10000.html:/gscratch/comdata/output/reddit_tsne/comment_authors_10000.feather /gscratch/comdata/output/reddit_clustering/comment_authors_10000.feather tsne_vis.py
# python3 tsne_vis.py --tsne_data=/gscratch/comdata/output/reddit_similarity/comment_authors_10000.feather --clusters=/gscratch/comdata/output/reddit_clustering/comment_authors_10000.feather --output=comment_authors_10000.html
subreddit_author_tf_similarities_10000.html:/gscratch/comdata/output/reddit_tsne/subreddit_author_tf_similarities_10000.feather /gscratch/comdata/output/reddit_clustering/subreddit_author_tf_similarities_10000.feather tsne_vis.py
start_spark_and_run.sh 1 tsne_vis.py --tsne_data=/gscratch/comdata/output/reddit_tsne/subreddit_author_tf_similarities_10000.feather --clusters=/gscratch/comdata/output/reddit_clustering/subreddit_author_tf_similarities_10000.feather --output=subreddit_author_tf_similarities_10000.html

View File

@ -1 +0,0 @@
../../.git/annex/objects/Qk/wG/SHA256E-s145210--14a2ad6660d1e4015437eff556ec349dd10a115a4f96594152a29e83d00aa784/SHA256E-s145210--14a2ad6660d1e4015437eff556ec349dd10a115a4f96594152a29e83d00aa784

View File

@ -1 +0,0 @@
../../.git/annex/objects/w7/2f/SHA256E-s44458--f1c5247775ecf06514a0ff9e523e944bc8fcd9d0fdb6f214cc1329b759d4354e/SHA256E-s44458--f1c5247775ecf06514a0ff9e523e944bc8fcd9d0fdb6f214cc1329b759d4354e

View File

@ -1 +0,0 @@
../../.git/annex/objects/WX/v3/SHA256E-s190874--c2aea719f989dde297ca5f13371e156693c574e44acd9a0e313e5e3a3ad4b543/SHA256E-s190874--c2aea719f989dde297ca5f13371e156693c574e44acd9a0e313e5e3a3ad4b543

View File

@ -1 +0,0 @@
../../.git/annex/objects/mq/2z/SHA256E-s58834--2e7b3ee11f47011fd9b34bddf8f1e788d35ab9c9e0bb6a1301b0b916135400cf/SHA256E-s58834--2e7b3ee11f47011fd9b34bddf8f1e788d35ab9c9e0bb6a1301b0b916135400cf

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -1,175 +0,0 @@
import pyarrow
import altair as alt
alt.data_transformers.disable_max_rows()
alt.data_transformers.enable('default')
from sklearn.neighbors import NearestNeighbors
import pandas as pd
from numpy import random
import fire
import numpy as np
def base_plot(plot_data):
# base = base.encode(alt.Color(field='color',type='nominal',scale=alt.Scale(scheme='category10')))
cluster_dropdown = alt.binding_select(options=[str(c) for c in sorted(set(plot_data.cluster))])
# subreddit_dropdown = alt.binding_select(options=sorted(plot_data.subreddit))
cluster_click_select = alt.selection_single(on='click',fields=['cluster'], bind=cluster_dropdown, name=' ')
# cluster_select = alt.selection_single(fields=['cluster'], bind=cluster_dropdown, name='cluster')
# cluster_select_and = cluster_click_select & cluster_select
#
# subreddit_select = alt.selection_single(on='click',fields=['subreddit'],bind=subreddit_dropdown,name='subreddit_click')
color = alt.condition(cluster_click_select ,
alt.Color(field='color',type='nominal',scale=alt.Scale(scheme='category10')),
alt.value("lightgray"))
base = alt.Chart(plot_data).mark_text().encode(
alt.X('x',axis=alt.Axis(grid=False),scale=alt.Scale(domain=(-65,65))),
alt.Y('y',axis=alt.Axis(grid=False),scale=alt.Scale(domain=(-65,65))),
color=color,
text='subreddit')
base = base.add_selection(cluster_click_select)
return base
def zoom_plot(plot_data):
chart = base_plot(plot_data)
chart = chart.interactive()
chart = chart.properties(width=1275,height=800)
return chart
def viewport_plot(plot_data):
selector1 = alt.selection_interval(encodings=['x','y'],init={'x':(-65,65),'y':(-65,65)})
selectorx2 = alt.selection_interval(encodings=['x'],init={'x':(30,40)})
selectory2 = alt.selection_interval(encodings=['y'],init={'y':(-20,0)})
base = base_plot(plot_data)
viewport = base.mark_point(fillOpacity=0.2,opacity=0.2).encode(
alt.X('x',axis=alt.Axis(grid=False)),
alt.Y('y',axis=alt.Axis(grid=False)),
)
viewport = viewport.properties(width=600,height=400)
viewport1 = viewport.add_selection(selector1)
viewport2 = viewport.encode(
alt.X('x',axis=alt.Axis(grid=False),scale=alt.Scale(domain=selector1)),
alt.Y('y',axis=alt.Axis(grid=False),scale=alt.Scale(domain=selector1))
)
viewport2 = viewport2.add_selection(selectorx2)
viewport2 = viewport2.add_selection(selectory2)
sr = base.encode(alt.X('x',axis=alt.Axis(grid=False),scale=alt.Scale(domain=selectorx2)),
alt.Y('y',axis=alt.Axis(grid=False),scale=alt.Scale(domain=selectory2))
)
sr = sr.properties(width=1275,height=600)
chart = (viewport1 | viewport2) & sr
return chart
def assign_cluster_colors(tsne_data, clusters, n_colors, n_neighbors = 4):
tsne_data = tsne_data.merge(clusters,on='subreddit')
centroids = tsne_data.groupby('cluster').agg({'x':np.mean,'y':np.mean})
color_ids = np.arange(n_colors)
distances = np.empty(shape=(centroids.shape[0],centroids.shape[0]))
groups = tsne_data.groupby('cluster')
points = np.array(tsne_data.loc[:,['x','y']])
centers = np.array(centroids.loc[:,['x','y']])
# point x centroid
point_center_distances = np.linalg.norm((points[:,None,:] - centers[None,:,:]),axis=-1)
# distances is cluster x point
for gid, group in groups:
c_dists = point_center_distances[group.index.values,:].min(axis=0)
distances[group.cluster.values[0],] = c_dists
# nbrs = NearestNeighbors(n_neighbors=n_neighbors).fit(centroids)
# distances, indices = nbrs.kneighbors()
nearest = distances.argpartition(n_neighbors,0)
indices = nearest[:n_neighbors,:].T
# neighbor_distances = np.copy(distances)
# neighbor_distances.sort(0)
# neighbor_distances = neighbor_distances[0:n_neighbors,:]
# nbrs = NearestNeighbors(n_neighbors=n_neighbors,metric='precomputed').fit(distances)
# distances, indices = nbrs.kneighbors()
color_assignments = np.repeat(-1,len(centroids))
for i in range(len(centroids)):
knn = indices[i]
knn_colors = color_assignments[knn]
available_colors = color_ids[list(set(color_ids) - set(knn_colors))]
if(len(available_colors) > 0):
color_assignments[i] = available_colors[0]
else:
raise Exception("Can't color this many neighbors with this many colors")
centroids = centroids.reset_index()
colors = centroids.loc[:,['cluster']]
colors['color'] = color_assignments
tsne_data = tsne_data.merge(colors,on='cluster')
return(tsne_data)
def build_visualization(tsne_data, clusters, output):
# tsne_data = "/gscratch/comdata/output/reddit_tsne/subreddit_author_tf_similarities_10000.feather"
# clusters = "/gscratch/comdata/output/reddit_clustering/subreddit_author_tf_similarities_10000.feather"
tsne_data = pd.read_feather(tsne_data)
clusters = pd.read_feather(clusters)
tsne_data = assign_cluster_colors(tsne_data,clusters,10,8)
# sr_per_cluster = tsne_data.groupby('cluster').subreddit.count().reset_index()
# sr_per_cluster = sr_per_cluster.rename(columns={'subreddit':'cluster_size'})
tsne_data = tsne_data.merge(sr_per_cluster,on='cluster')
term_zoom_plot = zoom_plot(tsne_data)
term_zoom_plot.save(output)
term_viewport_plot = viewport_plot(tsne_data)
term_viewport_plot.save(output.replace(".html","_viewport.html"))
if __name__ == "__main__":
fire.Fire(build_visualization)
# commenter_data = pd.read_feather("tsne_author_fit.feather")
# clusters = pd.read_feather('author_3000_clusters.feather')
# commenter_data = assign_cluster_colors(commenter_data,clusters,10,8)
# commenter_zoom_plot = zoom_plot(commenter_data)
# commenter_viewport_plot = viewport_plot(commenter_data)
# commenter_zoom_plot.save("subreddit_commenters_tsne_3000.html")
# commenter_viewport_plot.save("subreddit_commenters_tsne_3000_viewport.html")
# chart = chart.properties(width=10000,height=10000)
# chart.save("test_tsne_whole.svg")