split fitting and plotting tsne.
This commit is contained in:
		
							parent
							
								
									db53c0138a
								
							
						
					
					
						commit
						4447c60265
					
				
							
								
								
									
										35
									
								
								fit_tsne.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										35
									
								
								fit_tsne.py
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,35 @@ | |||||||
|  | import pyarrow | ||||||
|  | import pandas as pd | ||||||
|  | from numpy import random | ||||||
|  | import numpy as np | ||||||
|  | from sklearn.manifold import TSNE | ||||||
|  | 
 | ||||||
|  | df = pd.read_feather("reddit_term_similarity_3000.feather") | ||||||
|  | df = df.sort_values(['i','j']) | ||||||
|  | 
 | ||||||
|  | n = max(df.i.max(),df.j.max()) | ||||||
|  | 
 | ||||||
|  | def zero_pad(grp): | ||||||
|  |     p = grp.shape[0] | ||||||
|  |     grp = grp.sort_values('j') | ||||||
|  |     return np.concatenate([np.zeros(n-p),np.ones(1),np.array(grp.value)]) | ||||||
|  | 
 | ||||||
|  | col_names = df.sort_values('j').loc[:,['subreddit_j']].drop_duplicates() | ||||||
|  | first_name = list(set(df.subreddit_i) - set(df.subreddit_j))[0] | ||||||
|  | col_names = [first_name] + list(col_names.subreddit_j) | ||||||
|  | mat = df.groupby('i').apply(zero_pad) | ||||||
|  | mat.loc[n] = np.concatenate([np.zeros(n),np.ones(1)]) | ||||||
|  | mat = np.stack(mat) | ||||||
|  | 
 | ||||||
|  | mat = mat + np.tril(mat.transpose(),k=-1) | ||||||
|  | dist = 2*np.arccos(mat)/np.pi | ||||||
|  | 
 | ||||||
|  | tsne_model = TSNE(2,learning_rate=200,perplexity=40,n_iter=5000,metric='precomputed') | ||||||
|  | 
 | ||||||
|  | tsne_fit_model = tsne_model.fit(dist) | ||||||
|  | 
 | ||||||
|  | tsne_fit_whole = tsne_fit_model.fit_transform(mat) | ||||||
|  | 
 | ||||||
|  | plot_data = pd.DataFrame({'x':tsne_fit_whole[:,0],'y':tsne_fit_whole[:,1], 'subreddit':col_names}) | ||||||
|  | 
 | ||||||
|  | plot_data.to_feather("tsne_subreddit_fit.feather") | ||||||
							
								
								
									
										1
									
								
								tsne_subreddit_fit.feather
									
									
									
									
									
										Symbolic link
									
								
							
							
						
						
									
										1
									
								
								tsne_subreddit_fit.feather
									
									
									
									
									
										Symbolic link
									
								
							| @ -0,0 +1 @@ | |||||||
|  | .git/annex/objects/1M/PF/SHA256E-s60874--5fe93033b4fcac562cb235e85134d2bd330a0aecd6d0afc151f9b9c028b0ebe5/SHA256E-s60874--5fe93033b4fcac562cb235e85134d2bd330a0aecd6d0afc151f9b9c028b0ebe5 | ||||||
| @ -7,33 +7,7 @@ from numpy import random | |||||||
| import numpy as np | import numpy as np | ||||||
| from sklearn.manifold import TSNE | from sklearn.manifold import TSNE | ||||||
| 
 | 
 | ||||||
| df = pd.read_csv("reddit_term_similarity_3000.csv") | pd.read_feather("tsne_subreddit_fit.feather") | ||||||
| df = df.sort_values(['i','j']) |  | ||||||
| 
 |  | ||||||
| n = max(df.i.max(),df.j.max()) |  | ||||||
| 
 |  | ||||||
| def zero_pad(grp): |  | ||||||
|     p = grp.shape[0] |  | ||||||
|     grp = grp.sort_values('j') |  | ||||||
|     return np.concatenate([np.zeros(n-p),np.zeros(1),np.array(grp.value)]) |  | ||||||
| 
 |  | ||||||
| col_names = df.sort_values('j').loc[:,['subreddit_j']].drop_duplicates() |  | ||||||
| first_name = list(set(df.subreddit_i) - set(df.subreddit_j))[0] |  | ||||||
| col_names = [first_name] + list(col_names.subreddit_j) |  | ||||||
| mat = df.groupby('i').apply(zero_pad) |  | ||||||
| mat.loc[n] = np.concatenate([np.zeros(n),np.ones(1)]) |  | ||||||
| mat = np.stack(mat) |  | ||||||
| 
 |  | ||||||
| # plot the matrix using the first and second eigenvalues |  | ||||||
| mat = mat + np.tril(mat.transpose(),k=-1) |  | ||||||
| 
 |  | ||||||
| tsne_model = TSNE(2,learning_rate=500,perplexity=40,n_iter=2000) |  | ||||||
| tsne_fit_model = tsne_model.fit(mat) |  | ||||||
| tsne_fit_whole = tsne_fit_model.fit_transform(mat) |  | ||||||
| 
 |  | ||||||
| plot_data = pd.DataFrame({'x':tsne_fit_whole[:,0],'y':tsne_fit_whole[:,1], 'subreddit':col_names}) |  | ||||||
| 
 |  | ||||||
| plot_data.to_feather("tsne_subreddit_fit.feather") |  | ||||||
| 
 | 
 | ||||||
| slider = alt.binding_range(min=1,max=100,step=1,name='zoom: ') | slider = alt.binding_range(min=1,max=100,step=1,name='zoom: ') | ||||||
| selector = alt.selection_single(name='zoomselect',fields=['zoom'],bind='scales',init={'zoom':1}) | selector = alt.selection_single(name='zoomselect',fields=['zoom'],bind='scales',init={'zoom':1}) | ||||||
|  | |||||||
		Loading…
	
		Reference in New Issue
	
	Block a user