Update code for building simlarity matrices.
This commit is contained in:
		
							parent
							
								
									e794214653
								
							
						
					
					
						commit
						82d184d9c6
					
				| @ -2,11 +2,67 @@ from pyspark.sql import Window | ||||
| from pyspark.sql import functions as f | ||||
| from enum import Enum | ||||
| from pyspark.mllib.linalg.distributed import CoordinateMatrix | ||||
| from tempfile import TemporaryDirectory | ||||
| import pyarrow | ||||
| import pyarrow.dataset as ds | ||||
| from scipy.sparse import csr_matrix | ||||
| import pandas as pd | ||||
| import numpy as np | ||||
| 
 | ||||
| class tf_weight(Enum): | ||||
|     MaxTF = 1 | ||||
|     Norm05 = 2 | ||||
| 
 | ||||
| def read_tfidf_matrix(path,term_colname): | ||||
|     term = term_colname | ||||
|     term_id = term + '_id' | ||||
|     term_id_new = term + '_id_new' | ||||
| 
 | ||||
|     dataset = ds.dataset(path,format='parquet') | ||||
|     entries = dataset.to_table(columns=['tf_idf','subreddit_id_new',term_id_new]).to_pandas() | ||||
|     return(csr_matrix((entries.tf_idf,(entries[term_id_new]-1, entries.subreddit_id_new-1)))) | ||||
|      | ||||
| def column_similarities(mat): | ||||
|     norm = np.matrix(np.power(mat.power(2).sum(axis=0),0.5,dtype=np.float32)) | ||||
|     mat = mat.multiply(1/norm) | ||||
|     sims = mat.T @ mat | ||||
|     return(sims) | ||||
| 
 | ||||
| 
 | ||||
| def prep_tfidf_entries(tfidf, term_colname, min_df, included_subreddits): | ||||
|     term = term_colname | ||||
|     term_id = term + '_id' | ||||
|     term_id_new = term + '_id_new' | ||||
| 
 | ||||
|     if min_df is None: | ||||
|         min_df = 0.1 * len(included_subreddits) | ||||
| 
 | ||||
|     tfidf = tfidf.filter(f.col("subreddit").isin(included_subreddits)) | ||||
| 
 | ||||
|     # reset the subreddit ids | ||||
|     sub_ids = tfidf.select('subreddit_id').distinct() | ||||
|     sub_ids = sub_ids.withColumn("subreddit_id_new",f.row_number().over(Window.orderBy("subreddit_id"))) | ||||
|     tfidf = tfidf.join(sub_ids,'subreddit_id') | ||||
| 
 | ||||
|     # only use terms in at least min_df included subreddits | ||||
|     new_count = tfidf.groupBy(term_id).agg(f.count(term_id).alias('new_count')) | ||||
| #    new_count = new_count.filter(f.col('new_count') >= min_df) | ||||
|     tfidf = tfidf.join(new_count,term_id,how='inner') | ||||
|      | ||||
|     # reset the term ids | ||||
|     term_ids = tfidf.select([term_id]).distinct() | ||||
|     term_ids = term_ids.withColumn(term_id_new,f.row_number().over(Window.orderBy(term_id))) | ||||
|     tfidf = tfidf.join(term_ids,term_id) | ||||
| 
 | ||||
|     tfidf = tfidf.withColumnRenamed("tf_idf","tf_idf_old") | ||||
|     # tfidf = tfidf.withColumnRenamed("idf","idf_old") | ||||
|     # tfidf = tfidf.withColumn("idf",f.log(25000/f.col("count"))) | ||||
|     tfidf = tfidf.withColumn("tf_idf", (tfidf.relative_tf * tfidf.idf).cast('float')) | ||||
|      | ||||
|     tempdir =TemporaryDirectory(suffix='.parquet',prefix='term_tfidf_entries',dir='.') | ||||
|      | ||||
|     tfidf.write.parquet(tempdir.name,mode='overwrite',compression='snappy') | ||||
|     return tempdir | ||||
| 
 | ||||
| def cosine_similarities(tfidf, term_colname, min_df, included_subreddits, similarity_threshold): | ||||
|     term = term_colname | ||||
|  | ||||
| @ -8,38 +8,23 @@ import pandas as pd | ||||
| import fire | ||||
| from itertools import islice | ||||
| from pathlib import Path | ||||
| from similarities_helper import cosine_similarities | ||||
| 
 | ||||
| spark = SparkSession.builder.getOrCreate() | ||||
| conf = spark.sparkContext.getConf() | ||||
| 
 | ||||
| # outfile = '/gscratch/comdata/users/nathante/test_similarities_500.feather'; min_df = None; included_subreddits=None; similarity_threshold=0; | ||||
| def term_cosine_similarities(outfile, min_df = None, included_subreddits=None, similarity_threshold=0, topN=500, exclude_phrases=True): | ||||
|     ''' | ||||
|     Compute similarities between subreddits based on tfi-idf vectors of comment texts  | ||||
|      | ||||
|     included_subreddits : string | ||||
|         Text file containing a list of subreddits to include (one per line) if included_subreddits is None then do the top 500 subreddits | ||||
| 
 | ||||
|     similarity_threshold : double (default = 0) | ||||
|         set > 0 for large numbers of subreddits to get an approximate solution using the DIMSUM algorithm | ||||
| https://stanford.edu/~rezab/papers/dimsum.pdf. If similarity_threshold=0 we get an exact solution using an O(N^2) algorithm. | ||||
| 
 | ||||
|     min_df : int (default = 0.1 * (number of included_subreddits) | ||||
|          exclude terms that appear in fewer than this number of documents. | ||||
| 
 | ||||
|     outfile: string | ||||
|          where to output csv and feather outputs | ||||
| ''' | ||||
| from similarities_helper import cosine_similarities, prep_tfidf_entries, read_tfidf_matrix, column_similarities | ||||
| import scipy | ||||
| # outfile='test_similarities_500.feather'; | ||||
| # min_df = None; | ||||
| # included_subreddits=None; topN=100; exclude_phrases=True; | ||||
| 
 | ||||
| def term_cosine_similarities(outfile, min_df = None, included_subreddits=None, topN=500, exclude_phrases=False): | ||||
|     spark = SparkSession.builder.getOrCreate() | ||||
|     conf = spark.sparkContext.getConf() | ||||
|     print(outfile) | ||||
|     print(exclude_phrases) | ||||
| 
 | ||||
|     tfidf = spark.read.parquet('/gscratch/comdata/users/nathante/subreddit_tfidf.parquet') | ||||
| 
 | ||||
|     if included_subreddits is None: | ||||
|         included_subreddits = list(islice(open("/gscratch/comdata/users/nathante/cdsc-reddit/top_25000_subs_by_comments.txt"),topN)) | ||||
|         included_subreddits = {s.strip('\n') for s in included_subreddits} | ||||
|         rankdf = pd.read_csv("/gscratch/comdata/users/nathante/cdsc-reddit/subreddits_by_num_comments.csv") | ||||
|         included_subreddits = set(rankdf.loc[rankdf.comments_rank <= topN,'subreddit'].values) | ||||
| 
 | ||||
|     else: | ||||
|         included_subreddits = set(open(included_subreddits)) | ||||
| @ -47,7 +32,23 @@ https://stanford.edu/~rezab/papers/dimsum.pdf. If similarity_threshold=0 we get | ||||
|     if exclude_phrases == True: | ||||
|         tfidf = tfidf.filter(~f.col(term).contains("_")) | ||||
| 
 | ||||
|     sim_dist, tfidf = cosine_similarities(tfidf, 'term', min_df, included_subreddits, similarity_threshold) | ||||
|     print("creating temporary parquet with matrix indicies") | ||||
|     tempdir = prep_tfidf_entries(tfidf, 'term', min_df, included_subreddits) | ||||
|     tfidf = spark.read.parquet(tempdir.name) | ||||
|     subreddit_names = tfidf.select(['subreddit','subreddit_id_new']).distinct().toPandas() | ||||
|     subreddit_names = subreddit_names.sort_values("subreddit_id_new") | ||||
|     subreddit_names['subreddit_id_new'] = subreddit_names['subreddit_id_new'] - 1 | ||||
|     spark.stop() | ||||
| 
 | ||||
|     print("loading matrix") | ||||
|     mat = read_tfidf_matrix(tempdir.name,'term') | ||||
|     print('computing similarities') | ||||
|     sims = column_similarities(mat) | ||||
|     del mat | ||||
|      | ||||
|     sims = pd.DataFrame(sims.todense()) | ||||
|     sims = sims.rename({i:sr for i, sr in enumerate(subreddit_names.subreddit.values)},axis=1) | ||||
|     sims['subreddit'] = subreddit_names.subreddit.values | ||||
| 
 | ||||
|     p = Path(outfile) | ||||
| 
 | ||||
| @ -55,25 +56,72 @@ https://stanford.edu/~rezab/papers/dimsum.pdf. If similarity_threshold=0 we get | ||||
|     output_csv =  Path(str(p).replace("".join(p.suffixes), ".csv")) | ||||
|     output_parquet =  Path(str(p).replace("".join(p.suffixes), ".parquet")) | ||||
| 
 | ||||
|     sim_dist.entries.toDF().write.parquet(str(output_parquet),mode='overwrite',compression='snappy') | ||||
|     sims.to_feather(outfile) | ||||
|     tempdir.cleanup() | ||||
|     path = "term_tfidf_entriesaukjy5gv.parquet" | ||||
|      | ||||
|     #instead of toLocalMatrix() why not read as entries and put strait into numpy | ||||
|     sim_entries = pd.read_parquet(output_parquet) | ||||
| 
 | ||||
|     df = tfidf.select('subreddit','subreddit_id_new').distinct().toPandas() | ||||
|     spark.stop() | ||||
|     df['subreddit_id_new'] = df['subreddit_id_new'] - 1 | ||||
|     df = df.sort_values('subreddit_id_new').reset_index(drop=True) | ||||
|     df = df.set_index('subreddit_id_new') | ||||
| # outfile = '/gscratch/comdata/users/nathante/test_similarities_500.feather'; min_df = None; included_subreddits=None; similarity_threshold=0; | ||||
| # def term_cosine_similarities(outfile, min_df = None, included_subreddits=None, similarity_threshold=0, topN=500, exclude_phrases=True): | ||||
| #     ''' | ||||
| #     Compute similarities between subreddits based on tfi-idf vectors of comment texts  | ||||
|      | ||||
|     similarities = sim_entries.join(df, on='i') | ||||
|     similarities = similarities.rename(columns={'subreddit':"subreddit_i"}) | ||||
|     similarities = similarities.join(df, on='j') | ||||
|     similarities = similarities.rename(columns={'subreddit':"subreddit_j"}) | ||||
| #     included_subreddits : string | ||||
| #         Text file containing a list of subreddits to include (one per line) if included_subreddits is None then do the top 500 subreddits | ||||
| 
 | ||||
|     similarities.to_feather(output_feather) | ||||
|     similarities.to_csv(output_csv) | ||||
|     return similarities | ||||
| #     similarity_threshold : double (default = 0) | ||||
| #         set > 0 for large numbers of subreddits to get an approximate solution using the DIMSUM algorithm | ||||
| # https://stanford.edu/~rezab/papers/dimsum.pdf. If similarity_threshold=0 we get an exact solution using an O(N^2) algorithm. | ||||
| 
 | ||||
| #     min_df : int (default = 0.1 * (number of included_subreddits) | ||||
| #          exclude terms that appear in fewer than this number of documents. | ||||
| 
 | ||||
| #     outfile: string | ||||
| #          where to output csv and feather outputs | ||||
| # ''' | ||||
| 
 | ||||
| #     print(outfile) | ||||
| #     print(exclude_phrases) | ||||
| 
 | ||||
| #     tfidf = spark.read.parquet('/gscratch/comdata/users/nathante/subreddit_tfidf.parquet') | ||||
| 
 | ||||
| #     if included_subreddits is None: | ||||
| #         included_subreddits = list(islice(open("/gscratch/comdata/users/nathante/cdsc-reddit/top_25000_subs_by_comments.txt"),topN)) | ||||
| #         included_subreddits = {s.strip('\n') for s in included_subreddits} | ||||
| 
 | ||||
| #     else: | ||||
| #         included_subreddits = set(open(included_subreddits)) | ||||
| 
 | ||||
| #     if exclude_phrases == True: | ||||
| #         tfidf = tfidf.filter(~f.col(term).contains("_")) | ||||
| 
 | ||||
| #     sim_dist, tfidf = cosine_similarities(tfidf, 'term', min_df, included_subreddits, similarity_threshold) | ||||
| 
 | ||||
| #     p = Path(outfile) | ||||
| 
 | ||||
| #     output_feather =  Path(str(p).replace("".join(p.suffixes), ".feather")) | ||||
| #     output_csv =  Path(str(p).replace("".join(p.suffixes), ".csv")) | ||||
| #     output_parquet =  Path(str(p).replace("".join(p.suffixes), ".parquet")) | ||||
| 
 | ||||
| #     sim_dist.entries.toDF().write.parquet(str(output_parquet),mode='overwrite',compression='snappy') | ||||
|      | ||||
| #     #instead of toLocalMatrix() why not read as entries and put strait into numpy | ||||
| #     sim_entries = pd.read_parquet(output_parquet) | ||||
| 
 | ||||
| #     df = tfidf.select('subreddit','subreddit_id_new').distinct().toPandas() | ||||
| #     spark.stop() | ||||
| #     df['subreddit_id_new'] = df['subreddit_id_new'] - 1 | ||||
| #     df = df.sort_values('subreddit_id_new').reset_index(drop=True) | ||||
| #     df = df.set_index('subreddit_id_new') | ||||
| 
 | ||||
| #     similarities = sim_entries.join(df, on='i') | ||||
| #     similarities = similarities.rename(columns={'subreddit':"subreddit_i"}) | ||||
| #     similarities = similarities.join(df, on='j') | ||||
| #     similarities = similarities.rename(columns={'subreddit':"subreddit_j"}) | ||||
| 
 | ||||
| #     similarities.to_feather(output_feather) | ||||
| #     similarities.to_csv(output_csv) | ||||
| #     return similarities | ||||
|      | ||||
| if __name__ == '__main__': | ||||
|     fire.Fire(term_cosine_similarities) | ||||
|  | ||||
							
								
								
									
										30
									
								
								top_subreddits_by_comments.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										30
									
								
								top_subreddits_by_comments.py
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,30 @@ | ||||
| from pyspark.sql import functions as f | ||||
| from pyspark.sql import SparkSession | ||||
| from pyspark.sql import Window | ||||
| from pyspark.mllib.linalg.distributed import RowMatrix, CoordinateMatrix | ||||
| import numpy as np | ||||
| import pyarrow | ||||
| import pandas as pd | ||||
| import fire | ||||
| from itertools import islice | ||||
| from pathlib import Path | ||||
| from similarities_helper import cosine_similarities | ||||
| 
 | ||||
| spark = SparkSession.builder.getOrCreate() | ||||
| conf = spark.sparkContext.getConf() | ||||
| 
 | ||||
| df = spark.read.parquet("/gscratch/comdata/output/reddit_comments_by_subreddit.parquet") | ||||
| 
 | ||||
| # remove /u/ pages | ||||
| df = df.filter(~df.subreddit.like("u_%")) | ||||
| 
 | ||||
| df = df.groupBy('subreddit').agg(f.count('id').alias("n_comments")) | ||||
| 
 | ||||
| win = Window.orderBy(f.col('n_comments').desc()) | ||||
| df = df.withColumn('comments_rank',f.rank().over(win)) | ||||
| 
 | ||||
| df = df.toPandas() | ||||
| 
 | ||||
| df = df.sort_values("n_comments") | ||||
| 
 | ||||
| df.to_csv('/gscratch/comdata/users/nathante/cdsc-reddit/subreddits_by_num_comments.csv',index=False) | ||||
		Loading…
	
		Reference in New Issue
	
	Block a user