1
0

support posts in ngrams

This commit is contained in:
Nathan TeBlunthuis 2024-11-27 11:51:22 -08:00
parent 53f5b8c03c
commit dd894ebf61

View File

@ -18,24 +18,68 @@ from random import random
# taken from https://stackoverflow.com/questions/3809401/what-is-a-good-regular-expression-to-match-a-url
urlregex = re.compile(r"[-a-zA-Z0-9@:%._\+~#=]{1,256}\.[a-zA-Z0-9()]{1,6}\b([-a-zA-Z0-9()@:%_\+.~#?&//=]*)")
# compute term frequencies for comments in each subreddit by week
def weekly_tf(partition, mwe_pass = 'first'):
dataset = ds.dataset(f'/gscratch/comdata/output/reddit_comments_by_subreddit.parquet/{partition}', format='parquet')
if not os.path.exists("/gscratch/comdata/users/nathante/reddit_comment_ngrams_10p_sample/"):
os.mkdir("/gscratch/comdata/users/nathante/reddit_comment_ngrams_10p_sample/")
def tf_comments(subreddit_weeks):
for key, posts in subreddit_weeks:
subreddit, week = key
tfs = Counter([])
authors = Counter([])
for post in posts:
tokens = my_tokenizer(post.body)
tfs.update(tokens)
authors.update([post.author])
if not os.path.exists("/gscratch/comdata/users/nathante/reddit_tfidf_test_authors.parquet_temp/"):
os.mkdir("/gscratch/comdata/users/nathante/reddit_tfidf_test_authors.parquet_temp/")
for term, tf in tfs.items():
yield [True, subreddit, term, week, tf]
for author, tf in authors.items():
yield [False, subreddit, author, week, tf]
def tf_posts(subreddit_weeks):
for key, posts in subreddit_weeks:
subreddit, week = key
tfs = Counter([])
authors = Counter([])
for post in posts:
tokens = my_tokenizer(post.title)
tfs.update(tokens)
authors.update([post.author])
for term, tf in tfs.items():
yield [True, subreddit, term, week, tf]
for author, tf in authors.items():
yield [False, subreddit, author, week, tf]
# compute term frequencies for comments in each subreddit by week
def weekly_tf(partition,
mwe_pass = 'first',
input_parquet='/gscratch/comdata/output/reddit_comments_by_subreddit.parquet/',
output_10p_sample_path="/gscratch/comdata/users/nathante/reddit_comment_ngrams_10p_sample/",
temp_output_tfidf_path="/gscratch/comdata/users/nathante/reddit_tfidf_test_authors.parquet_temp/",
output_terms_path="/gscratch/comdata/output/reddit_ngrams/comment_terms.parquet",
output_authors_path="/gscratch/comdata/output/reddit_ngrams/comment_authors.parquet",
reddit_dataset = 'comments'):
if reddit_dataset == 'comments':
tf_func = tf_comments
elif reddit_dataset == 'posts':
tf_func = tf_posts
dataset = ds.dataset(f"{input_parquet}/{partition}", format='parquet')
if not os.path.exists(output_10p_sample_path):
os.mkdir(output_10p_sample_path)
if not os.path.exists(temp_output_tfidf_path):
os.mkdir(temp_output_tfidf_path)
ngram_output = partition.replace("parquet","txt")
if mwe_pass == 'first':
if os.path.exists(f"/gscratch/comdata/output/reddit_ngrams/comment_ngrams_10p_sample/{ngram_output}"):
os.remove(f"/gscratch/comdata/output/reddit_ngrams/comment_ngrams_10p_sample/{ngram_output}")
if os.path.exists(f"{output_10p_sample_path}/{ngram_output}"):
os.remove(f"{output_10p_sample_path}/{ngram_output}")
batches = dataset.to_batches(columns=['CreatedAt','subreddit','body','author'])
schema = pa.schema([pa.field('subreddit', pa.string(), nullable=False),
pa.field('term', pa.string(), nullable=False),
pa.field('week', pa.date32(), nullable=False),
@ -134,27 +178,12 @@ def weekly_tf(partition, mwe_pass = 'first'):
for token in sentence:
yield token
def tf_comments(subreddit_weeks):
for key, posts in subreddit_weeks:
subreddit, week = key
tfs = Counter([])
authors = Counter([])
for post in posts:
tokens = my_tokenizer(post.body)
tfs.update(tokens)
authors.update([post.author])
for term, tf in tfs.items():
yield [True, subreddit, term, week, tf]
for author, tf in authors.items():
yield [False, subreddit, author, week, tf]
outrows = tf_comments(subreddit_weeks)
outrows = tf_func(subreddit_weeks)
outchunksize = 10000
with pq.ParquetWriter(f"/gscratch/comdata/output/reddit_ngrams/comment_terms.parquet/{partition}",schema=schema,compression='snappy',flavor='spark') as writer, pq.ParquetWriter(f"/gscratch/comdata/output/reddit_ngrams/comment_authors.parquet/{partition}",schema=author_schema,compression='snappy',flavor='spark') as author_writer:
with pq.ParquetWriter(f"{output_terms_path}/{partition}",schema=schema,compression='snappy',flavor='spark') as writer, pq.ParquetWriter(f"{output_authors_path}/{partition}",schema=author_schema,compression='snappy',flavor='spark') as author_writer:
while True:
@ -183,12 +212,19 @@ def weekly_tf(partition, mwe_pass = 'first'):
author_writer.close()
def gen_task_list(mwe_pass='first'):
files = os.listdir("/gscratch/comdata/output/reddit_comments_by_subreddit.parquet/")
def gen_task_list(mwe_pass='first',
input_parquet="/gscratch/comdata/output/reddit_comments_by_subreddit.parquet/",
output_10p_sample_path="/gscratch/comdata/users/nathante/reddit_comment_ngrams_10p_sample/",
temp_output_tfidf_path="/gscratch/comdata/users/nathante/reddit_tfidf_test_authors.parquet_temp/",
output_terms_path="/gscratch/comdata/output/reddit_ngrams/comment_terms.parquet",
output_authors_path="/gscratch/comdata/output/reddit_ngrams/comment_authors.parquet",
dataset='comments'):
files = os.listdir(input_parquet)
with open("tf_task_list",'w') as outfile:
for f in files:
if f.endswith(".parquet"):
outfile.write(f"./tf_comments.py weekly_tf --mwe-pass {mwe_pass} {f}\n")
outfile.write(f"./tf_comments.py weekly_tf {f} --mwe-pass {mwe_pass} --input-parquet {input_parquet} --output-01p-sample-path {output_10p_sample_path} --temp-output-tfidf-path {temp_output_tfidf_path} --output-terms-path {output_terms_path} --output-authors-path {output_terms_path} --dataset {dataset}\n")
if __name__ == "__main__":
fire.Fire({"gen_task_list":gen_task_list,