#!/usr/bin/env python3 from pyspark.sql import functions as f from pyspark.sql import Window from pyspark.sql import SparkSession import numpy as np spark = SparkSession.builder.config(map={'spark.executor.memory':'900g','spark.executor.cores':128,'spark.sql.execution.arrow.pyspark.enabled':False}).getOrCreate() df = spark.read.text("/gscratch/comdata/output/reddit_ngrams/reddit_comment_ngrams_10p_sample/") df2 = spark.read.text("/gscratch/comdata/output/reddit_ngrams/reddit_post_ngrams_10p_sample/") df = df.union(df2) df = df.withColumnRenamed("value","phrase") # count phrase occurrances phrases = df.groupby('phrase').count() phrases = phrases.withColumnRenamed('count','phraseCount') phrases = phrases.filter(phrases.phraseCount > 10) # count overall N = phrases.select(f.sum(phrases.phraseCount).alias("phraseCount")).collect()[0].phraseCount print(f'analyzing PMI on a sample of {N} phrases') logN = np.log(N) phrases = phrases.withColumn("phraseLogProb", f.log(f.col("phraseCount")) - logN) # count term occurrances phrases = phrases.withColumn('terms',f.split(f.col('phrase'),' ')) terms = phrases.select(['phrase','phraseCount','phraseLogProb',f.explode(phrases.terms).alias('term')]) win = Window.partitionBy('term') terms = terms.withColumn('termCount',f.sum('phraseCount').over(win)) terms = terms.withColumnRenamed('count','termCount') terms = terms.withColumn('termLogProb',f.log(f.col('termCount')) - logN) terms = terms.groupBy(terms.phrase, terms.phraseLogProb, terms.phraseCount).sum('termLogProb') terms = terms.withColumnRenamed('sum(termLogProb)','termsLogProb') terms = terms.withColumn("phrasePWMI", f.col('phraseLogProb') - f.col('termsLogProb')) # join phrases to term counts df = terms.select(['phrase','phraseCount','phraseLogProb','phrasePWMI']) df = df.sort(['phrasePWMI'],descending=True) df = df.sortWithinPartitions(['phrasePWMI'],descending=True) df.write.parquet("/gscratch/comdata/users/nathante/reddit_comment_ngrams_pwmi.parquet/",mode='overwrite',compression='snappy') df = spark.read.parquet("/gscratch/comdata/users/nathante/reddit_comment_ngrams_pwmi.parquet/") df.write.csv("/gscratch/comdata/users/nathante/reddit_comment_ngrams_pwmi.csv/",mode='overwrite',compression='none') import pyarrow.parquet as pq import pyarrow.feather as feather from pyarrow import csv table = pq.read_table("/gscratch/comdata/users/nathante/reddit_comment_ngrams_pwmi.parquet", filters = [[('phraseCount','>', 3500),('phrasePWMI','>',3)]], columns=['phrase','phraseCount','phraseLogProb','phrasePWMI']) feather.write_feather(table,"/gscratch/comdata/output/reddit_ngrams/reddit_multiword_expressions.feather") csv.write_csv(table,"/gscratch/comdata/output/reddit_ngrams/reddit_multiword_expressions.csv")