Add exploratory data analysis to come up with a real-data example.
This commit is contained in:
parent
c42b94110b
commit
3d1964b806
6
civil_comments/Makefile
Normal file
6
civil_comments/Makefile
Normal file
@ -0,0 +1,6 @@
|
||||
srun_1core=srun -A comdata -p compute-bigmem --mem=4G --time=12:00:00 -c 1 --pty /usr/bin/bash -l
|
||||
perspective_scores.csv: perspective_json_to_csv.sh perspective_results.json
|
||||
$(srun_1core) ./$^ $@
|
||||
|
||||
|
||||
|
156
civil_comments/design_example.R
Normal file
156
civil_comments/design_example.R
Normal file
@ -0,0 +1,156 @@
|
||||
library(data.table)
|
||||
library(MASS)
|
||||
|
||||
scores <- fread("perspective_scores.csv")
|
||||
scores <- scores[,id:=as.character(id)]
|
||||
|
||||
df <- fread("all_data.csv")
|
||||
|
||||
# only use the data that has identity annotations
|
||||
df <- df[identity_annotator_count > 0]
|
||||
|
||||
(df[!(df$id %in% scores$id)])
|
||||
|
||||
df <- df[scores,on='id',nomatch=NULL]
|
||||
|
||||
## how accurate are the classifiers?
|
||||
|
||||
## the API claims that these scores are "probabilities"
|
||||
## say we care about the model of the classification, not the probability
|
||||
|
||||
F1 <- function(y, predictions){
|
||||
tp <- sum( (predictions == y) & (predictions==1))
|
||||
fn <- sum( (predictions != y) & (predictions!=1))
|
||||
fp <- sum( (predictions != y) & (predictions==1))
|
||||
precision <- tp / (tp + fp)
|
||||
recall <- tp / (tp + fn)
|
||||
return (2 * precision * recall ) / (precision + recall)
|
||||
}
|
||||
|
||||
df[, ":="(identity_attack_pred = identity_attack_prob >=0.5,
|
||||
insult_pred = insult_prob >= 0.5,
|
||||
profanity_pred = profanity_prob >= 0.5,
|
||||
severe_toxicity_pred = severe_toxicity_prob >= 0.5,
|
||||
threat_pred = threat_prob >= 0.5,
|
||||
toxicity_pred = toxicity_prob >= 0.5,
|
||||
identity_attack_coded = identity_attack >= 0.5,
|
||||
insult_coded = insult >= 0.5,
|
||||
profanity_coded = obscene >= 0.5,
|
||||
severe_toxicity_coded = severe_toxicity >= 0.5,
|
||||
threat_coded = threat >= 0.5,
|
||||
toxicity_coded = toxicity >= 0.5
|
||||
)]
|
||||
|
||||
|
||||
|
||||
## toxicity is about 93% accurate, with an f1 of 0.8
|
||||
## identity_attack has high accuracy 97%, but an unfortunant f1 of 0.5.
|
||||
## threat has high accuracy 99%, but a really bad looking f1 of 0.48.
|
||||
accuracies <- df[,.(identity_attack_acc = mean(identity_attack_pred == identity_attack_coded),
|
||||
insult_pred_acc = mean(insult_pred == insult_coded),
|
||||
profanity_acc = mean(profanity_pred == profanity_coded),
|
||||
severe_toxicity_acc = mean(severe_toxicity_pred == severe_toxicity_coded),
|
||||
theat_acc = mean(threat_pred == threat_coded),
|
||||
toxicity_acc = mean(toxicity_pred == toxicity_coded))]
|
||||
|
||||
f1s <- df[,.(identity_attack_f1 = F1(identity_attack_coded,identity_attack_pred),
|
||||
insult_f1 = F1(insult_coded,insult_pred),
|
||||
profanity_f1 = F1(profanity_coded,profanity_pred),
|
||||
severe_toxicity_f1 = F1(severe_toxicity_coded,severe_toxicity_pred),
|
||||
theat_f1 = F1(threat_coded,threat_pred),
|
||||
toxicity_f1 = F1(toxicity_coded,toxicity_pred))]
|
||||
|
||||
positive_cases <- df[,.(identity_attacks = sum(identity_attack_coded),
|
||||
insults = sum(insult_coded),
|
||||
profanities = sum(profanity_coded),
|
||||
severe_toxic_comments = sum(severe_toxicity_coded),
|
||||
threats = sum(threat_coded),
|
||||
toxic_comments = sum(toxicity_coded))]
|
||||
|
||||
## there are 50,000 toxic comments, 13000 identity attacks, 30000 insults, 3000 profanities, 8 severe toxic, and 1000 threats.
|
||||
|
||||
proportions_cases <- df[,.(prop_identity = mean(identity_attack_coded),
|
||||
prop_insults = mean(insult_coded),
|
||||
prop_profanity = mean(profanity_coded),
|
||||
prop_severe = mean(severe_toxicity_coded),
|
||||
prop_threats = mean(threat_coded),
|
||||
prop_toxic = mean(toxicity_coded))]
|
||||
|
||||
## at 11% of comments, "toxicity" seems not so badly skewed. Try toxicity first, and if it doesn't work out try insults.
|
||||
|
||||
## now look for an example where differential error affects an identity, or a reaction.
|
||||
df <- df[,":="(identity_error = identity_attack_coded - identity_attack_pred,
|
||||
insult_error = insult_coded - insult_pred,
|
||||
profanity_error = profanity_coded - profanity_pred,
|
||||
severe_toxic_error = severe_toxicity_coded - severe_toxicity_pred,
|
||||
threat_error = threat_coded - threat_pred,
|
||||
toxicity_error = toxicity_coded - toxicity_pred)]
|
||||
|
||||
## what's correlated with toxicity_error ?
|
||||
df <- df[,approved := rating == "approved"]
|
||||
|
||||
cortab <- cor(df[,.(toxicity_error,
|
||||
identity_error,
|
||||
toxicity_coded,
|
||||
funny,
|
||||
approved,
|
||||
sad,
|
||||
wow,
|
||||
likes,
|
||||
disagree,
|
||||
male,
|
||||
female,
|
||||
transgender,
|
||||
other_gender,
|
||||
heterosexual,
|
||||
bisexual,
|
||||
other_sexual_orientation,
|
||||
christian,
|
||||
jewish,
|
||||
hindu,
|
||||
buddhist,
|
||||
atheist,
|
||||
other_religion,
|
||||
black,
|
||||
white,
|
||||
asian,
|
||||
latino,
|
||||
other_race_or_ethnicity,
|
||||
physical_disability,
|
||||
intellectual_or_learning_disability,
|
||||
psychiatric_or_mental_illness,
|
||||
other_disability)])
|
||||
|
||||
## toxicity error is weakly correlated pearson's R = 0.1 with both "white" and "black".
|
||||
|
||||
## compare regressions with "white" or "black" as the outcome and "toxicity_coded" or "toxicity_pred" as a predictor.
|
||||
## here's a great example with presumambly non-differential error: about what identities is toxicity found humorous?
|
||||
## a bunch of stars reappear when you used the ground-truth data instead of the predictions.
|
||||
## pro/con of this example: will have to implement family='poisson'.
|
||||
## shouldn't be that bad though haha.
|
||||
cortab['toxicity_error',]
|
||||
cortab['toxicity_error','funny']
|
||||
cortab['toxicity_coded',]
|
||||
cortab['identity_error',]
|
||||
cortab['white',]
|
||||
|
||||
glm(white ~ toxicity_coded + psychiatric_or_mental_illness, data = df, family=binomial(link='logit'))
|
||||
|
||||
glm(white ~ toxicity_pred + psychiatric_or_mental_illness, data = df, family=binomial(link='logit'))
|
||||
|
||||
m1 <- glm.nb(funny ~ (male + female + transgender + other_gender + heterosexual + bisexual + other_sexual_orientation + christian + jewish + hindu + buddhist + atheist + other_religion + asian + latino + other_race_or_ethnicity + physical_disability + intellectual_or_learning_disability + white + black + psychiatric_or_mental_illness)*toxicity_coded, data = df)
|
||||
|
||||
m2 <- glm.nb(funny ~ (male + female + transgender + other_gender + heterosexual + bisexual + other_sexual_orientation + christian + jewish + hindu + buddhist + atheist + other_religion + asian + latino + other_race_or_ethnicity + physical_disability + intellectual_or_learning_disability + white + black + psychiatric_or_mental_illness)*toxicity_pred, data = df)
|
||||
|
||||
m3 <- glm.nb(funny ~ (male + female + transgender + other_gender + heterosexual + bisexual + other_sexual_orientation + christian + jewish + hindu + buddhist + atheist + other_religion + asian + latino + other_race_or_ethnicity + physical_disability + intellectual_or_learning_disability + white + black + psychiatric_or_mental_illness)*toxicity, data = df)
|
||||
|
||||
|
||||
glm(white ~ disagree, data = df, family=binomial(link='logit'))
|
||||
|
||||
## example with differential error
|
||||
|
||||
glm(white ~ toxicity_coded + toxicity_error, data=df,family=binomial(link='logit'))
|
||||
|
||||
glm(toxicity_coded ~ white, data = df, family=binomial(link='logit'))
|
||||
|
||||
glm(toxicity_pred ~ white, data = df, family=binomial(link='logit'))
|
2
civil_comments/perspective_json_to_csv.jq
Executable file
2
civil_comments/perspective_json_to_csv.jq
Executable file
@ -0,0 +1,2 @@
|
||||
#!/usr/bin/bash
|
||||
cat $1 | jq "[.attributeScores.IDENTITY_ATTACK.summaryScore.value, .attributeScores.INSULT.summaryScore.value, .attributeScores.PROFANITY.summaryScore.value,.attributeScores.SEVERE_TOXICITY.summaryScore.value, .attributeScores.THREAT.summaryScore.value, .attributeScores.TOXICITY.summaryScore.value] | @csv" > $2
|
4
civil_comments/perspective_json_to_csv.sh
Executable file
4
civil_comments/perspective_json_to_csv.sh
Executable file
@ -0,0 +1,4 @@
|
||||
#!/usr/bin/bash
|
||||
header=id,identity_attack_prob,insult_prob,profanity_prob,severe_toxicity_prob,threat_prob,toxicity_prob
|
||||
echo "$header" > $2
|
||||
cat $1 | jq -r '[.id, .attributeScores.IDENTITY_ATTACK.summaryScore.value, .attributeScores.INSULT.summaryScore.value, .attributeScores.PROFANITY.summaryScore.value,.attributeScores.SEVERE_TOXICITY.summaryScore.value, .attributeScores.THREAT.summaryScore.value, .attributeScores.TOXICITY.summaryScore.value] | @csv' >> $2
|
Loading…
Reference in New Issue
Block a user