Add exploratory data analysis to come up with a real-data example.
This commit is contained in:
		
							parent
							
								
									c42b94110b
								
							
						
					
					
						commit
						3d1964b806
					
				
							
								
								
									
										6
									
								
								civil_comments/Makefile
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										6
									
								
								civil_comments/Makefile
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,6 @@ | ||||
| srun_1core=srun -A comdata -p compute-bigmem --mem=4G --time=12:00:00 -c 1 --pty /usr/bin/bash -l | ||||
| perspective_scores.csv: perspective_json_to_csv.sh perspective_results.json | ||||
| 	$(srun_1core) ./$^ $@ | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
							
								
								
									
										156
									
								
								civil_comments/design_example.R
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										156
									
								
								civil_comments/design_example.R
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,156 @@ | ||||
| library(data.table) | ||||
| library(MASS) | ||||
| 
 | ||||
| scores <- fread("perspective_scores.csv") | ||||
| scores <- scores[,id:=as.character(id)] | ||||
| 
 | ||||
| df <- fread("all_data.csv") | ||||
| 
 | ||||
| # only use the data that has identity annotations | ||||
| df <- df[identity_annotator_count > 0] | ||||
| 
 | ||||
| (df[!(df$id %in% scores$id)]) | ||||
| 
 | ||||
| df <- df[scores,on='id',nomatch=NULL] | ||||
| 
 | ||||
| ## how accurate are the classifiers? | ||||
| 
 | ||||
| ## the API claims that these scores are "probabilities" | ||||
| ## say we care about the model of the classification, not the probability | ||||
| 
 | ||||
| F1 <- function(y, predictions){ | ||||
|     tp <- sum( (predictions == y) & (predictions==1)) | ||||
|     fn <- sum( (predictions != y) & (predictions!=1)) | ||||
|     fp <- sum( (predictions != y) & (predictions==1)) | ||||
|     precision <- tp / (tp + fp) | ||||
|     recall <- tp / (tp + fn) | ||||
|     return (2 * precision * recall ) / (precision + recall) | ||||
| } | ||||
| 
 | ||||
| df[, ":="(identity_attack_pred = identity_attack_prob >=0.5, | ||||
|           insult_pred = insult_prob >= 0.5, | ||||
|           profanity_pred = profanity_prob >= 0.5, | ||||
|           severe_toxicity_pred = severe_toxicity_prob >= 0.5, | ||||
|           threat_pred = threat_prob >= 0.5, | ||||
|           toxicity_pred = toxicity_prob >= 0.5, | ||||
|           identity_attack_coded = identity_attack >= 0.5, | ||||
|           insult_coded = insult >= 0.5, | ||||
|           profanity_coded = obscene >= 0.5, | ||||
|           severe_toxicity_coded = severe_toxicity >= 0.5, | ||||
|           threat_coded = threat >= 0.5, | ||||
|           toxicity_coded = toxicity >= 0.5 | ||||
|           )] | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| ## toxicity is about 93% accurate, with an f1 of 0.8 | ||||
| ## identity_attack has high accuracy 97%, but an unfortunant f1 of 0.5. | ||||
| ## threat has high accuracy 99%, but a really bad looking f1 of 0.48. | ||||
| accuracies <- df[,.(identity_attack_acc = mean(identity_attack_pred == identity_attack_coded), | ||||
|                     insult_pred_acc = mean(insult_pred == insult_coded), | ||||
|                     profanity_acc = mean(profanity_pred == profanity_coded), | ||||
|                     severe_toxicity_acc = mean(severe_toxicity_pred == severe_toxicity_coded), | ||||
|                     theat_acc = mean(threat_pred == threat_coded), | ||||
|                     toxicity_acc = mean(toxicity_pred == toxicity_coded))] | ||||
| 
 | ||||
| f1s <- df[,.(identity_attack_f1 = F1(identity_attack_coded,identity_attack_pred), | ||||
|                     insult_f1 = F1(insult_coded,insult_pred), | ||||
|                     profanity_f1 = F1(profanity_coded,profanity_pred), | ||||
|                     severe_toxicity_f1 = F1(severe_toxicity_coded,severe_toxicity_pred), | ||||
|                     theat_f1 = F1(threat_coded,threat_pred), | ||||
|                     toxicity_f1 = F1(toxicity_coded,toxicity_pred))] | ||||
| 
 | ||||
| positive_cases <- df[,.(identity_attacks = sum(identity_attack_coded), | ||||
|                         insults = sum(insult_coded), | ||||
|                         profanities = sum(profanity_coded), | ||||
|                         severe_toxic_comments = sum(severe_toxicity_coded), | ||||
|                         threats = sum(threat_coded), | ||||
|                         toxic_comments = sum(toxicity_coded))] | ||||
| 
 | ||||
| ## there are 50,000 toxic comments, 13000 identity attacks, 30000 insults, 3000 profanities, 8 severe toxic, and 1000 threats. | ||||
| 
 | ||||
| proportions_cases <- df[,.(prop_identity = mean(identity_attack_coded), | ||||
|                            prop_insults = mean(insult_coded), | ||||
|                            prop_profanity = mean(profanity_coded), | ||||
|                            prop_severe = mean(severe_toxicity_coded), | ||||
|                            prop_threats = mean(threat_coded), | ||||
|                            prop_toxic = mean(toxicity_coded))] | ||||
| 
 | ||||
| ## at 11% of comments, "toxicity" seems not so badly skewed. Try toxicity first, and if it doesn't work out try insults. | ||||
| 
 | ||||
| ## now look for an example where differential error affects an identity, or a reaction. | ||||
| df <- df[,":="(identity_error = identity_attack_coded - identity_attack_pred, | ||||
|                insult_error = insult_coded - insult_pred, | ||||
|                profanity_error = profanity_coded - profanity_pred, | ||||
|                severe_toxic_error = severe_toxicity_coded - severe_toxicity_pred, | ||||
|                threat_error = threat_coded - threat_pred, | ||||
|                toxicity_error = toxicity_coded - toxicity_pred)] | ||||
| 
 | ||||
| ## what's correlated with toxicity_error ? | ||||
| df <- df[,approved := rating == "approved"] | ||||
| 
 | ||||
| cortab <- cor(df[,.(toxicity_error, | ||||
|                     identity_error, | ||||
|                     toxicity_coded, | ||||
|                     funny, | ||||
|                     approved, | ||||
|                     sad, | ||||
|                     wow, | ||||
|                     likes, | ||||
|                     disagree, | ||||
|                     male, | ||||
|                     female, | ||||
|                     transgender, | ||||
|                     other_gender, | ||||
|                     heterosexual, | ||||
|                     bisexual, | ||||
|                     other_sexual_orientation, | ||||
|                     christian, | ||||
|                     jewish, | ||||
|                     hindu, | ||||
|                     buddhist, | ||||
|                     atheist, | ||||
|                     other_religion, | ||||
|                     black, | ||||
|                     white, | ||||
|                     asian, | ||||
|                     latino, | ||||
|                     other_race_or_ethnicity, | ||||
|                     physical_disability, | ||||
|                     intellectual_or_learning_disability, | ||||
|                     psychiatric_or_mental_illness, | ||||
|                     other_disability)]) | ||||
| 
 | ||||
| ## toxicity error is weakly correlated pearson's R = 0.1 with both "white" and "black". | ||||
| 
 | ||||
| ## compare regressions with "white" or "black" as the outcome and "toxicity_coded" or "toxicity_pred" as a predictor. | ||||
| ## here's a great example with presumambly non-differential error: about what identities is toxicity found humorous? | ||||
| ## a bunch of stars reappear when you used the ground-truth data instead of the predictions. | ||||
| ## pro/con of this example: will have to implement family='poisson'. | ||||
| ## shouldn't be that bad though haha. | ||||
| cortab['toxicity_error',] | ||||
| cortab['toxicity_error','funny'] | ||||
| cortab['toxicity_coded',] | ||||
| cortab['identity_error',] | ||||
| cortab['white',] | ||||
| 
 | ||||
| glm(white ~ toxicity_coded + psychiatric_or_mental_illness, data = df, family=binomial(link='logit')) | ||||
| 
 | ||||
| glm(white ~ toxicity_pred + psychiatric_or_mental_illness, data = df, family=binomial(link='logit')) | ||||
| 
 | ||||
| m1 <- glm.nb(funny ~ (male + female + transgender + other_gender + heterosexual + bisexual + other_sexual_orientation + christian + jewish + hindu + buddhist + atheist + other_religion + asian + latino + other_race_or_ethnicity + physical_disability + intellectual_or_learning_disability + white + black + psychiatric_or_mental_illness)*toxicity_coded, data = df) | ||||
| 
 | ||||
| m2 <- glm.nb(funny ~ (male + female + transgender + other_gender + heterosexual + bisexual + other_sexual_orientation + christian + jewish + hindu + buddhist + atheist + other_religion + asian + latino + other_race_or_ethnicity + physical_disability + intellectual_or_learning_disability + white + black + psychiatric_or_mental_illness)*toxicity_pred, data = df) | ||||
| 
 | ||||
| m3 <- glm.nb(funny ~ (male + female + transgender + other_gender + heterosexual + bisexual + other_sexual_orientation + christian + jewish + hindu + buddhist + atheist + other_religion + asian + latino + other_race_or_ethnicity + physical_disability + intellectual_or_learning_disability + white + black + psychiatric_or_mental_illness)*toxicity, data = df) | ||||
| 
 | ||||
| 
 | ||||
| glm(white ~ disagree, data = df, family=binomial(link='logit')) | ||||
| 
 | ||||
| ## example with differential error | ||||
| 
 | ||||
| glm(white ~ toxicity_coded + toxicity_error, data=df,family=binomial(link='logit')) | ||||
| 
 | ||||
| glm(toxicity_coded ~ white, data = df, family=binomial(link='logit')) | ||||
| 
 | ||||
| glm(toxicity_pred ~ white, data = df, family=binomial(link='logit')) | ||||
							
								
								
									
										2
									
								
								civil_comments/perspective_json_to_csv.jq
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										2
									
								
								civil_comments/perspective_json_to_csv.jq
									
									
									
									
									
										Executable file
									
								
							| @ -0,0 +1,2 @@ | ||||
| #!/usr/bin/bash | ||||
| cat $1 | jq "[.attributeScores.IDENTITY_ATTACK.summaryScore.value, .attributeScores.INSULT.summaryScore.value, .attributeScores.PROFANITY.summaryScore.value,.attributeScores.SEVERE_TOXICITY.summaryScore.value, .attributeScores.THREAT.summaryScore.value, .attributeScores.TOXICITY.summaryScore.value] | @csv" > $2 | ||||
							
								
								
									
										4
									
								
								civil_comments/perspective_json_to_csv.sh
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										4
									
								
								civil_comments/perspective_json_to_csv.sh
									
									
									
									
									
										Executable file
									
								
							| @ -0,0 +1,4 @@ | ||||
| #!/usr/bin/bash | ||||
| header=id,identity_attack_prob,insult_prob,profanity_prob,severe_toxicity_prob,threat_prob,toxicity_prob | ||||
| echo "$header" > $2 | ||||
| cat $1 | jq -r '[.id, .attributeScores.IDENTITY_ATTACK.summaryScore.value, .attributeScores.INSULT.summaryScore.value, .attributeScores.PROFANITY.summaryScore.value,.attributeScores.SEVERE_TOXICITY.summaryScore.value, .attributeScores.THREAT.summaryScore.value, .attributeScores.TOXICITY.summaryScore.value] | @csv' >>  $2 | ||||
		Loading…
	
		Reference in New Issue
	
	Block a user