update simulation base from hyak
This commit is contained in:
parent
69948cae1e
commit
c1dbbfd0dd
@ -89,7 +89,7 @@ my.mle <- function(df){
|
||||
return(mlefit)
|
||||
}
|
||||
|
||||
run_simulation_depvar <- function(df, result, outcome_formula=y~x+z, proxy_formula=w_pred~y){
|
||||
run_simulation_depvar <- function(df, result, outcome_formula=y~x+z, proxy_formula=w_pred~y, confint_method='quad'){
|
||||
|
||||
(accuracy <- df[,mean(w_pred==y)])
|
||||
result <- append(result, list(accuracy=accuracy))
|
||||
@ -150,11 +150,23 @@ run_simulation_depvar <- function(df, result, outcome_formula=y~x+z, proxy_formu
|
||||
|
||||
temp.df <- copy(df)
|
||||
temp.df[,y:=y.obs]
|
||||
|
||||
if(confint_method=='quad'){
|
||||
mod.caroll.lik <- measerr_mle_dv(temp.df, outcome_formula=outcome_formula, proxy_formula=proxy_formula)
|
||||
fischer.info <- solve(mod.caroll.lik$hessian)
|
||||
coef <- mod.caroll.lik$par
|
||||
ci.upper <- coef + sqrt(diag(fischer.info)) * 1.96
|
||||
ci.lower <- coef - sqrt(diag(fischer.info)) * 1.96
|
||||
}
|
||||
else{ ## confint_method is 'profile'
|
||||
|
||||
mod.caroll.lik <- measerr_mle_dv(temp.df, outcome_formula=outcome_formula, proxy_formula=proxy_formula, method='bbmle')
|
||||
coef <- coef(mod.caroll.lik)
|
||||
ci <- confint(mod.caroll.lik, method='spline')
|
||||
ci.lower <- ci[,'2.5 %']
|
||||
ci.upper <- ci[,'97.5 %']
|
||||
}
|
||||
|
||||
result <- append(result,
|
||||
list(Bxy.est.mle = coef['x'],
|
||||
Bxy.ci.upper.mle = ci.upper['x'],
|
||||
@ -216,7 +228,7 @@ run_simulation_depvar <- function(df, result, outcome_formula=y~x+z, proxy_formu
|
||||
|
||||
|
||||
## outcome_formula, proxy_formula, and truth_formula are passed to measerr_mle
|
||||
run_simulation <- function(df, result, outcome_formula=y~x+z, proxy_formula=NULL, truth_formula=NULL){
|
||||
run_simulation <- function(df, result, outcome_formula=y~x+z, proxy_formula=NULL, truth_formula=NULL, confint_method='quad'){
|
||||
|
||||
accuracy <- df[,mean(w_pred==x)]
|
||||
accuracy.y0 <- df[y<=0,mean(w_pred==x)]
|
||||
@ -328,11 +340,20 @@ run_simulation <- function(df, result, outcome_formula=y~x+z, proxy_formula=NUL
|
||||
tryCatch({
|
||||
temp.df <- copy(df)
|
||||
temp.df <- temp.df[,x:=x.obs]
|
||||
mod.caroll.lik <- measerr_mle(temp.df, outcome_formula=outcome_formula, proxy_formula=proxy_formula, truth_formula=truth_formula)
|
||||
if(confint_method=='quad'){
|
||||
mod.caroll.lik <- measerr_mle(temp.df, outcome_formula=outcome_formula, proxy_formula=proxy_formula, truth_formula=truth_formula, method='optim')
|
||||
fischer.info <- solve(mod.caroll.lik$hessian)
|
||||
coef <- mod.caroll.lik$par
|
||||
ci.upper <- coef + sqrt(diag(fischer.info)) * 1.96
|
||||
ci.lower <- coef - sqrt(diag(fischer.info)) * 1.96
|
||||
} else { # confint_method == 'bbmle'
|
||||
|
||||
mod.caroll.lik <- measerr_mle(temp.df, outcome_formula=outcome_formula, proxy_formula=proxy_formula, truth_formula=truth_formula, method='bbmle')
|
||||
coef <- coef(mod.caroll.lik)
|
||||
ci <- confint(mod.caroll.lik, method='spline')
|
||||
ci.lower <- ci[,'2.5 %']
|
||||
ci.upper <- ci[,'97.5 %']
|
||||
}
|
||||
mle_result <- list(Bxy.est.mle = coef['x'],
|
||||
Bxy.ci.upper.mle = ci.upper['x'],
|
||||
Bxy.ci.lower.mle = ci.lower['x'],
|
||||
|
Loading…
Reference in New Issue
Block a user