.ONESHELL: SHELL=bash Ns=[1000,5000,10000] ms=[100,200,400,1000] seeds=[$(shell seq -s, 1 500)] explained_variances=[0.1] all:main main:remembr.rds srun=sbatch --wait --verbose skx_dev.sbatch skx_pylauncher_limit=40 joblists:example_1_jobs example_2_jobs example_3_jobs grid_sweep_script=../simulations/grid_sweep.py example_1_jobs: 01_indep_differential.R simulation_base.R ${grid_sweep_script} skx_dev.sbatch ../misclassificationmodels ${srun} uv run ${grid_sweep_script} --command 01_indep_differential.R --arg_dict '{"N":${Ns},"m":${ms},"seed":${seeds},"outfile":["example_1.feather"],"y_explained_variance":${explained_variances},"Bzx":[1],"prediction_accuracy":[0.825]}' --outfile example_1_jobs --remember_file=remember_grid_sweep.rds example_1.feather: example_1_jobs my_pylauncher.py sbatch -J "multiple iv measerr correction" spr_2.sbatch my_pylauncher.py $< --cores 1 remembr.rds:example_1.feather # rm -f remembr.RDS # ${srun} Rscript plot_example.R --infile example_1.feather --name "plot.df.example.1" clean_main: rm -f example_1_jobs rm -f example_1.feather # clean_all: clean_main rm *.feather rm -f remembr.RDS rm -f remembr*.RDS rm -f robustness*.RDS rm -f example_*_jobs rm -f robustness_*_jobs_*