1
0
ml_measurement_error_public/simulations/example_2_continuous.R

188 lines
7.1 KiB
R

### EXAMPLE 2: demonstrates how measurement error can lead to a type sign error in a covariate
### Even when you have a good predictor, if it's biased against a covariate you can get the wrong sign.
### Even when you include the proxy variable in the regression.
### But with some ground truth and multiple imputation, you can fix it.
library(argparser)
library(mecor)
library(ggplot2)
library(data.table)
library(filelock)
library(arrow)
library(Amelia)
library(Zelig)
library(predictionError)
options(amelia.parallel="multicore",
amelia.ncpus=40)
## SETUP:
### we want to estimate g -> y and x -> y; g is observed, x is MAR
### we have k -> x; g -> x; g->k; k is used to predict x via the model w.
### we have k -> w; x -> w; w is observed.
### for illustration, g is binary (e.g., gender==male).
### A realistic scenario is that we have an NLP model predicting something like "racial harassment" in social media comments
### Whether a comment is "racial harassment" depends on context, like the kind of person (i.e.,) the race of the person making the comment
### e.g., a Black person saying "n-word" is less likely to be racial harassement than if a white person does it.
### Say we have a language model that predicts "racial harassment," but it doesn't know the race of the writer.
### Our content analyzers can see signals of the writer's race (e.g., a profile or avatar). So our "ground truth" takes this into accont.
### Our goal is to predict an outcome (say that someone gets banned from the platform) as a function of whether they made a racial harassing comment and of their race.
### simulation:
#### how much power do we get from the model in the first place? (sweeping N and m)
####
logistic <- function(x) {1/(1+exp(-1*x))}
simulate_latent_cocause <- function(N, m, B0, Bxy, Bgy, Bkx, Bgx, seed){
set.seed(seed)
## the true value of x
g <- rbinom(N, 1, 0.5)
k <- rnorm(N, 0, 1)
x <- Bkx*k + Bgx * g + rnorm(N,0,1)
w.model <- lm(x ~ k)
w <- predict(w.model,data.frame(k=k)) + rnorm(N,0,1)
## y = B0 + B1x + e
y <- Bxy * x + Bgy * g + rnorm(N, 0, 1) + B0
df <- data.table(x=x,k=k,y=y,w=w,g=g)
if( m < N){
df <- df[sample(nrow(df), m), x.obs := x]
} else {
df <- df[, x.obs := x]
}
return(df)
}
run_simulation <- function(N, m, B0, Bxy, Bgy, Bkx, Bgx, seed){
result <- list()
df <- simulate_latent_cocause(N, m, B0, Bxy, Bgy, Bkx, Bgx, seed)
result <- append(result, list(N=N,
m=m,
B0=B0,
Bxy=Bxy,
Bgy=Bgy,
Bkx=Bkx,
seed=seed))
correlation <- cor(df$w,df$x)
result <- append(result, list(correlation=correlation))
model.true <- lm(y ~ x + g, data=df)
true.ci.Bxy <- confint(model.true)['x',]
true.ci.Bgy <- confint(model.true)['g',]
result <- append(result, list(Bxy.est.true=coef(model.true)['x'],
Bgy.est.true=coef(model.true)['g'],
Bxy.ci.upper.true = true.ci.Bxy[2],
Bxy.ci.lower.true = true.ci.Bxy[1],
Bgy.ci.upper.true = true.ci.Bgy[2],
Bgy.ci.lower.true = true.ci.Bgy[1]))
model.naive <- lm(y~w+g, data=df)
naive.ci.Bxy <- confint(model.naive)['w',]
naive.ci.Bgy <- confint(model.naive)['g',]
result <- append(result, list(Bxy.est.naive=coef(model.naive)['w'],
Bgy.est.naive=coef(model.naive)['g'],
Bxy.ci.upper.naive = naive.ci.Bxy[2],
Bxy.ci.lower.naive = naive.ci.Bxy[1],
Bgy.ci.upper.naive = naive.ci.Bgy[2],
Bgy.ci.lower.naive = naive.ci.Bgy[1]))
## multiple imputation when k is observed
amelia.out.k <- amelia(df, m=200, p2s=0, idvars=c('x'))
mod.amelia.k <- zelig(y~x.obs+g+k, model='ls', data=amelia.out.k$imputations, cite=FALSE)
coefse <- combine_coef_se(mod.amelia.k, messages=FALSE)
est.x.mi <- coefse['x.obs','Estimate']
est.x.se <- coefse['x.obs','Std.Error']
result <- append(result,
list(Bxy.est.amelia.full = est.x.mi,
Bxy.ci.upper.amelia.full = est.x.mi + 1.96 * est.x.se,
Bxy.ci.lower.amelia.full = est.x.mi - 1.96 * est.x.se
))
est.g.mi <- coefse['g','Estimate']
est.g.se <- coefse['g','Std.Error']
result <- append(result,
list(Bgy.est.amelia.full = est.g.mi,
Bgy.ci.upper.amelia.full = est.g.mi + 1.96 * est.g.se,
Bgy.ci.lower.amelia.full = est.g.mi - 1.96 * est.g.se
))
## What if we can't observe k -- most realistic scenario. We can't include all the ML features in a model.
amelia.out.nok <- amelia(df, m=200, p2s=0, idvars=c("x","k"))
mod.amelia.nok <- zelig(y~x.obs+g, model='ls', data=amelia.out.nok$imputations, cite=FALSE)
coefse <- combine_coef_se(mod.amelia.nok, messages=FALSE)
est.x.mi <- coefse['x.obs','Estimate']
est.x.se <- coefse['x.obs','Std.Error']
result <- append(result,
list(Bxy.est.amelia.nok = est.x.mi,
Bxy.ci.upper.amelia.nok = est.x.mi + 1.96 * est.x.se,
Bxy.ci.lower.amelia.nok = est.x.mi - 1.96 * est.x.se
))
est.g.mi <- coefse['g','Estimate']
est.g.se <- coefse['g','Std.Error']
result <- append(result,
list(Bgy.est.amelia.nok = est.g.mi,
Bgy.ci.upper.amelia.nok = est.g.mi + 1.96 * est.g.se,
Bgy.ci.lower.amelia.nok = est.g.mi - 1.96 * est.g.se
))
p <- v <- train <- rep(0,N)
M <- m
p[(M+1):(N)] <- 1
train[0:(M/2)] <- 1
v[(M/2+1):(M)] <- 1
df <- df[order(x.obs)]
y <- df[,y]
x <- df[,x.obs]
g <- df[,g]
w <- df[,w]
gmm.res <- predicted_covariates(y, x, g, w, v, train, p, max_iter=100, verbose=FALSE)
result <- append(result,
list(Bxy.est.gmm = gmm.res$beta[1,1],
Bxy.ci.upper.gmm = gmm.res$confint[1,2],
Bxy.ci.lower.gmm = gmm.res$confint[1,1],
Bgy.est.gmm = gmm.res$beta[2,1],
Bgy.ci.upper.gmm = gmm.res$confint[2,2],
Bgy.ci.lower.gmm = gmm.res$confint[2,1]))
return(result)
}
Ns <- c(100, 200, 300, 400, 500, 1000, 2500, 5000, 7500)
ms <- c(30, 50, 100, 200, 300, 500)
B0 <- 0
Bxy <- 1
Bgy <- 0.3
Bkx <- 3
Bgx <- -4
seeds <- 1:100
rows <- list()
for(N in Ns){
print(N)
for(m in ms){
if(N>m){
for(seed in seeds){
rows <- append(rows, list(run_simulation(N, m, B0, Bxy, Bgy, Bkx, Bgx, seed)))
}
}
}
}
result <- rbindlist(rows)
write_feather(result, "example_2_simulation_continuous.feather")