1
0
ml_measurement_error_public/simulations/06_irr_dv.R

100 lines
4.1 KiB
R

library(argparser)
library(mecor)
library(ggplot2)
library(data.table)
library(filelock)
library(arrow)
library(Amelia)
library(Zelig)
library(predictionError)
options(amelia.parallel="no",
amelia.ncpus=1)
setDTthreads(40)
source("irr_dv_simulation_base.R")
## one way to do it is by adding correlation to x.obs and y that isn't in w.
## in other words, the model is missing an important feature of x.obs that's related to y.
simulate_data <- function(N, m, B0, Bxy, Bzy, seed, prediction_accuracy=0.73, coder_accuracy=0.8){
set.seed(seed)
# make w and y dependent
z <- rbinom(N, 1, 0.5)
x <- rbinom(N, 1, 0.5)
ystar <- Bzy * z + Bxy * x + B0
y <- rbinom(N,1,plogis(ystar))
# glm(y ~ x + z, family="binomial")
df <- data.table(x=x,y=y,ystar=ystar,z=z)
if(m < N){
df <- df[sample(nrow(df), m), y.obs := y]
} else {
df <- df[, y.obs := y]
}
df[ (!is.na(y.obs)) ,y.obs.0 := abs(y.obs - rbinom(.N, 1, 1-coder_accuracy))]
df[ (!is.na(y.obs)) ,y.obs.1 := abs(y.obs - rbinom(.N, 1, 1-coder_accuracy))]
odds.y1 <- qlogis(prediction_accuracy)
odds.y0 <- qlogis(prediction_accuracy,lower.tail=F)
df[y==0,w:=plogis(rlogis(.N,odds.y0))]
df[y==1,w:=plogis(rlogis(.N,odds.y1))]
df[,w_pred := as.integer(w > 0.5)]
print(mean(df[x==0]$y == df[x==0]$w_pred))
print(mean(df[x==1]$y == df[x==1]$w_pred))
print(mean(df$w_pred == df$y))
return(df)
}
parser <- arg_parser("Simulate data and fit corrected models")
parser <- add_argument(parser, "--N", default=1000, help="number of observations of w")
parser <- add_argument(parser, "--m", default=500, help="m the number of ground truth observations")
parser <- add_argument(parser, "--seed", default=17, help='seed for the rng')
parser <- add_argument(parser, "--outfile", help='output file', default='example_2.feather')
parser <- add_argument(parser, "--y_explained_variance", help='what proportion of the variance of y can be explained?', default=0.005)
parser <- add_argument(parser, "--prediction_accuracy", help='how accurate is the predictive model?', default=0.72)
## parser <- add_argument(parser, "--x_bias_y1", help='how is the classifier biased when y = 1?', default=-0.75)
## parser <- add_argument(parser, "--x_bias_y0", help='how is the classifier biased when y = 0 ?', default=0.75)
parser <- add_argument(parser, "--Bxy", help='coefficient of x on y', default=0.3)
parser <- add_argument(parser, "--Bzy", help='coeffficient of z on y', default=-0.3)
parser <- add_argument(parser, "--outcome_formula", help='formula for the outcome variable', default="y~x+z")
parser <- add_argument(parser, "--proxy_formula", help='formula for the proxy variable', default="w_pred~y")
parser <- add_argument(parser, "--coder_accuracy", help='How accurate are the coders?', default=0.8)
args <- parse_args(parser)
B0 <- 0
Bxy <- args$Bxy
Bzy <- args$Bzy
if(args$m < args$N){
df <- simulate_data(args$N, args$m, B0, Bxy, Bzy, args$seed, args$prediction_accuracy, args$coder_accuracy)
# result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy,'Bzy'=Bzy, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'x_bias_y0'=args$x_bias_y0,'x_bias_y1'=args$x_bias_y1,'outcome_formula' = args$outcome_formula, 'proxy_formula' = args$proxy_formula)
result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy,'Bzy'=Bzy, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'outcome_formula' = args$outcome_formula, 'proxy_formula' = args$proxy_formula)
outline <- run_simulation_depvar(df, result, outcome_formula = as.formula(args$outcome_formula), proxy_formula = as.formula(args$proxy_formula))
outfile_lock <- lock(paste0(args$outfile, '_lock'),exclusive=TRUE)
if(file.exists(args$outfile)){
logdata <- read_feather(args$outfile)
logdata <- rbind(logdata,as.data.table(outline),fill=TRUE)
} else {
logdata <- as.data.table(outline)
}
print(outline)
write_feather(logdata, args$outfile)
unlock(outfile_lock)
}