1
0
ml_measurement_error_public/simulations/irr_dv_simulation_base.R

108 lines
4.8 KiB
R

library(matrixStats) # for numerically stable logsumexps
options(amelia.parallel="no",
amelia.ncpus=1)
library(Amelia)
source("measerr_methods.R") ## for my more generic function.
run_simulation_depvar <- function(df, result, outcome_formula = y ~ x + z, rater_formula = y.obs ~ x, proxy_formula = w_pred ~ y){
accuracy <- df[,mean(w_pred==y)]
result <- append(result, list(accuracy=accuracy))
(model.true <- glm(y ~ x + z, data=df, family=binomial(link='logit')))
true.ci.Bxy <- confint(model.true)['x',]
true.ci.Bzy <- confint(model.true)['z',]
result <- append(result, list(Bxy.est.true=coef(model.true)['x'],
Bzy.est.true=coef(model.true)['z'],
Bxy.ci.upper.true = true.ci.Bxy[2],
Bxy.ci.lower.true = true.ci.Bxy[1],
Bzy.ci.upper.true = true.ci.Bzy[2],
Bzy.ci.lower.true = true.ci.Bzy[1]))
loa0.feasible <- glm(y.obs.0 ~ x + z, data = df[!(is.na(y.obs.0))], family=binomial(link='logit'))
loa0.ci.Bxy <- confint(loa0.feasible)['x',]
loa0.ci.Bzy <- confint(loa0.feasible)['z',]
result <- append(result, list(Bxy.est.loa0.feasible=coef(loa0.feasible)['x'],
Bzy.est.loa0.feasible=coef(loa0.feasible)['z'],
Bxy.ci.upper.loa0.feasible = loa0.ci.Bxy[2],
Bxy.ci.lower.loa0.feasible = loa0.ci.Bxy[1],
Bzy.ci.upper.loa0.feasible = loa0.ci.Bzy[2],
Bzy.ci.lower.loa0.feasible = loa0.ci.Bzy[1]))
df.loa0.mle <- copy(df)
df.loa0.mle[,y:=y.obs.0]
loa0.mle <- measerr_mle_dv(df.loa0.mle, outcome_formula=outcome_formula, proxy_formula=proxy_formula)
fisher.info <- solve(loa0.mle$hessian)
coef <- loa0.mle$par
ci.upper <- coef + sqrt(diag(fisher.info)) * 1.96
ci.lower <- coef - sqrt(diag(fisher.info)) * 1.96
result <- append(result, list(Bxy.est.loa0.mle=coef['x'],
Bzy.est.loa0.mle=coef['z'],
Bxy.ci.upper.loa0.mle = ci.upper['x'],
Bxy.ci.lower.loa0.mle = ci.lower['x'],
Bzy.ci.upper.loa0.mle = ci.upper['z'],
Bzy.ci.lower.loa0.mle = ci.upper['z']))
loco.feasible <- glm(y.obs.0 ~ x + z, data = df[(!is.na(y.obs.0)) & (y.obs.1 == y.obs.0)], family=binomial(link='logit'))
loco.feasible.ci.Bxy <- confint(loco.feasible)['x',]
loco.feasible.ci.Bzy <- confint(loco.feasible)['z',]
result <- append(result, list(Bxy.est.loco.feasible=coef(loco.feasible)['x'],
Bzy.est.loco.feasible=coef(loco.feasible)['z'],
Bxy.ci.upper.loco.feasible = loco.feasible.ci.Bxy[2],
Bxy.ci.lower.loco.feasible = loco.feasible.ci.Bxy[1],
Bzy.ci.upper.loco.feasible = loco.feasible.ci.Bzy[2],
Bzy.ci.lower.loco.feasible = loco.feasible.ci.Bzy[1]))
df.loco.mle <- copy(df)
df.loco.mle[,y.obs:=NA]
df.loco.mle[(y.obs.0)==(y.obs.1),y.obs:=y.obs.0]
df.loco.mle[,y.true:=y]
df.loco.mle[,y:=y.obs]
print(df.loco.mle[!is.na(y.obs.1),mean(y.true==y,na.rm=TRUE)])
loco.mle <- measerr_mle_dv(df.loco.mle, outcome_formula=outcome_formula, proxy_formula=proxy_formula)
fisher.info <- solve(loco.mle$hessian)
coef <- loco.mle$par
ci.upper <- coef + sqrt(diag(fisher.info)) * 1.96
ci.lower <- coef - sqrt(diag(fisher.info)) * 1.96
result <- append(result, list(Bxy.est.loco.mle=coef['x'],
Bzy.est.loco.mle=coef['z'],
Bxy.ci.upper.loco.mle = ci.upper['x'],
Bxy.ci.lower.loco.mle = ci.lower['x'],
Bzy.ci.upper.loco.mle = ci.upper['z'],
Bzy.ci.lower.loco.mle = ci.upper['z']))
print(rater_formula)
print(proxy_formula)
## mle.irr <- measerr_irr_mle( df, outcome_formula = outcome_formula, rater_formula = rater_formula, proxy_formula=proxy_formula, truth_formula=truth_formula)
## fisher.info <- solve(mle.irr$hessian)
## coef <- mle.irr$par
## ci.upper <- coef + sqrt(diag(fisher.info)) * 1.96
## ci.lower <- coef - sqrt(diag(fisher.info)) * 1.96
## result <- append(result,
## list(Bxy.est.mle = coef['x'],
## Bxy.ci.upper.mle = ci.upper['x'],
## Bxy.ci.lower.mle = ci.lower['x'],
## Bzy.est.mle = coef['z'],
## Bzy.ci.upper.mle = ci.upper['z'],
## Bzy.ci.lower.mle = ci.lower['z']))
return(result)
}