1
0
ml_measurement_error_public/simulations/measerr_methods.R
2022-10-07 10:42:50 -07:00

471 lines
23 KiB
R

library(formula.tools)
library(matrixStats)
library(bbmle)
## df: dataframe to model
## outcome_formula: formula for y | x, z
## outcome_family: family for y | x, z
## proxy_formula: formula for w | x, z, y
## proxy_family: family for w | x, z, y
## truth_formula: formula for x | z
## truth_family: family for x | z
### ideal formulas for example 1
# test.fit.1 <- measerr_mle(df, y ~ x + z, gaussian(), w_pred ~ x, binomial(link='logit'), x ~ z)
### ideal formulas for example 2
# test.fit.2 <- measerr_mle(df, y ~ x + z, gaussian(), w_pred ~ x + z + y + y:x, binomial(link='logit'), x ~ z)
## outcome_formula <- y ~ x + z; proxy_formula <- w_pred ~ y + x + z + x:z + x:y + z:y
measerr_mle_dv <- function(df, outcome_formula, outcome_family=binomial(link='logit'), proxy_formula, proxy_family=binomial(link='logit'),method='optim'){
nll <- function(params){
df.obs <- model.frame(outcome_formula, df)
proxy.variable <- all.vars(proxy_formula)[1]
proxy.model.matrix <- model.matrix(proxy_formula, df)
response.var <- all.vars(outcome_formula)[1]
y.obs <- with(df.obs,eval(parse(text=response.var)))
outcome.model.matrix <- model.matrix(outcome_formula, df.obs)
param.idx <- 1
n.outcome.model.covars <- dim(outcome.model.matrix)[2]
outcome.params <- params[param.idx:n.outcome.model.covars]
param.idx <- param.idx + n.outcome.model.covars
if((outcome_family$family == "binomial") & (outcome_family$link == 'logit')){
ll.y.obs <- vector(mode='numeric', length=length(y.obs))
ll.y.obs[y.obs==1] <- plogis(outcome.params %*% t(outcome.model.matrix[y.obs==1,]),log=TRUE)
ll.y.obs[y.obs==0] <- plogis(outcome.params %*% t(outcome.model.matrix[y.obs==0,]),log=TRUE,lower.tail=FALSE)
}
df.obs <- model.frame(proxy_formula,df)
n.proxy.model.covars <- dim(proxy.model.matrix)[2]
proxy.params <- params[param.idx:(n.proxy.model.covars+param.idx-1)]
param.idx <- param.idx + n.proxy.model.covars
proxy.obs <- with(df.obs, eval(parse(text=proxy.variable)))
if( (proxy_family$family=="binomial") & (proxy_family$link=='logit')){
ll.w.obs <- vector(mode='numeric',length=dim(proxy.model.matrix)[1])
ll.w.obs[proxy.obs==1] <- plogis(proxy.params %*% t(proxy.model.matrix[proxy.obs==1,]),log=TRUE)
ll.w.obs[proxy.obs==0] <- plogis(proxy.params %*% t(proxy.model.matrix[proxy.obs==0,]),log=TRUE, lower.tail=FALSE)
}
ll.obs <- sum(ll.y.obs + ll.w.obs)
df.unobs <- df[is.na(df[[response.var]])]
df.unobs.y1 <- copy(df.unobs)
df.unobs.y1[[response.var]] <- 1
df.unobs.y0 <- copy(df.unobs)
df.unobs.y0[[response.var]] <- 0
## integrate out y
outcome.model.matrix.y1 <- model.matrix(outcome_formula, df.unobs.y1)
if((outcome_family$family == "binomial") & (outcome_family$link == 'logit')){
ll.y.unobs.1 <- vector(mode='numeric', length=dim(outcome.model.matrix.y1)[1])
ll.y.unobs.0 <- vector(mode='numeric', length=dim(outcome.model.matrix.y1)[1])
ll.y.unobs.1 <- plogis(outcome.params %*% t(outcome.model.matrix.y1),log=TRUE)
ll.y.unobs.0 <- plogis(outcome.params %*% t(outcome.model.matrix.y1),log=TRUE,lower.tail=FALSE)
}
proxy.model.matrix.y1 <- model.matrix(proxy_formula, df.unobs.y1)
proxy.model.matrix.y0 <- model.matrix(proxy_formula, df.unobs.y0)
proxy.unobs <- with(df.unobs, eval(parse(text=proxy.variable)))
if( (proxy_family$family=="binomial") & (proxy_family$link=='logit')){
ll.w.unobs.1 <- vector(mode='numeric',length=dim(proxy.model.matrix.y1)[1])
ll.w.unobs.0 <- vector(mode='numeric',length=dim(proxy.model.matrix.y0)[1])
ll.w.unobs.1[proxy.unobs==1] <- plogis(proxy.params %*% t(proxy.model.matrix.y1[proxy.unobs==1,]),log=TRUE)
ll.w.unobs.1[proxy.unobs==0] <- plogis(proxy.params %*% t(proxy.model.matrix.y1[proxy.unobs==0,]),log=TRUE, lower.tail=FALSE)
ll.w.unobs.0[proxy.unobs==1] <- plogis(proxy.params %*% t(proxy.model.matrix.y0[proxy.unobs==1,]),log=TRUE)
ll.w.unobs.0[proxy.unobs==0] <- plogis(proxy.params %*% t(proxy.model.matrix.y0[proxy.unobs==0,]),log=TRUE, lower.tail=FALSE)
}
ll.unobs.1 <- ll.y.unobs.1 + ll.w.unobs.1
ll.unobs.0 <- ll.y.unobs.0 + ll.w.unobs.0
ll.unobs <- sum(colLogSumExps(rbind(ll.unobs.1,ll.unobs.0)))
ll <- ll.unobs + ll.obs
return(-ll)
}
params <- colnames(model.matrix(outcome_formula,df))
lower <- rep(-Inf, length(params))
proxy.params <- colnames(model.matrix(proxy_formula, df))
params <- c(params, paste0('proxy_',proxy.params))
lower <- c(lower, rep(-Inf, length(proxy.params)))
start <- rep(0.1,length(params))
names(start) <- params
if(method=='optim'){
fit <- optim(start, fn = nll, lower=lower, method='L-BFGS-B', hessian=TRUE, control=list(maxit=1e6))
} else {
quoted.names <- gsub("[\\(\\)]",'',names(start))
print(quoted.names)
text <- paste("function(", paste0(quoted.names,'=',start,collapse=','),"){params<-c(",paste0(quoted.names,collapse=','),");return(nll(params))}")
measerr_mle_nll <- eval(parse(text=text))
names(start) <- quoted.names
names(lower) <- quoted.names
fit <- mle2(minuslogl=measerr_mle_nll, start=start, lower=lower, parnames=params,control=list(maxit=1e6),method='L-BFGS-B')
}
return(fit)
}
## Experimental, and not necessary if errors are independent.
measerr_irr_mle <- function(df, outcome_formula, outcome_family=gaussian(), rater_formula, proxy_formula, proxy_family=binomial(link='logit'), truth_formula, truth_family=binomial(link='logit'),method='optim'){
### in this scenario, the ground truth also has measurement error, but we have repeated measures for it.
## probability of y given observed data.
df.obs <- df[!is.na(x.obs.1)]
proxy.variable <- all.vars(proxy_formula)[1]
df.x.obs.1 <- copy(df.obs)[,x:=1]
df.x.obs.0 <- copy(df.obs)[,x:=0]
y.obs <- df.obs[,y]
nll <- function(params){
outcome.model.matrix.x.obs.0 <- model.matrix(outcome_formula, df.x.obs.0)
outcome.model.matrix.x.obs.1 <- model.matrix(outcome_formula, df.x.obs.1)
param.idx <- 1
n.outcome.model.covars <- dim(outcome.model.matrix.x.obs.0)[2]
outcome.params <- params[param.idx:n.outcome.model.covars]
param.idx <- param.idx + n.outcome.model.covars
sigma.y <- params[param.idx]
param.idx <- param.idx + 1
ll.y.x.obs.0 <- dnorm(y.obs, outcome.params %*% t(outcome.model.matrix.x.obs.0),sd=sigma.y, log=TRUE)
ll.y.x.obs.1 <- dnorm(y.obs, outcome.params %*% t(outcome.model.matrix.x.obs.1),sd=sigma.y, log=TRUE)
## assume that the two coders are statistically independent conditional on x
ll.x.obs.0.x0 <- vector(mode='numeric', length=nrow(df.obs))
ll.x.obs.1.x0 <- vector(mode='numeric', length=nrow(df.obs))
ll.x.obs.0.x1 <- vector(mode='numeric', length=nrow(df.obs))
ll.x.obs.1.x1 <- vector(mode='numeric', length=nrow(df.obs))
rater.model.matrix.x.obs.0 <- model.matrix(rater_formula, df.x.obs.0)
rater.model.matrix.x.obs.1 <- model.matrix(rater_formula, df.x.obs.1)
n.rater.model.covars <- dim(rater.model.matrix.x.obs.0)[2]
rater.0.params <- params[param.idx:(n.rater.model.covars + param.idx - 1)]
param.idx <- param.idx + n.rater.model.covars
rater.1.params <- params[param.idx:(n.rater.model.covars + param.idx - 1)]
param.idx <- param.idx + n.rater.model.covars
# probability of rater 0 if x is 0 or 1
ll.x.obs.0.x0[df.obs$x.obs.0==1] <- plogis(rater.0.params %*% t(rater.model.matrix.x.obs.0[df.obs$x.obs.0==1,]), log=TRUE)
ll.x.obs.0.x0[df.obs$x.obs.0==0] <- plogis(rater.0.params %*% t(rater.model.matrix.x.obs.0[df.obs$x.obs.0==0,]), log=TRUE, lower.tail=FALSE)
ll.x.obs.0.x1[df.obs$x.obs.0==1] <- plogis(rater.0.params %*% t(rater.model.matrix.x.obs.1[df.obs$x.obs.0==1,]), log=TRUE)
ll.x.obs.0.x1[df.obs$x.obs.0==0] <- plogis(rater.0.params %*% t(rater.model.matrix.x.obs.1[df.obs$x.obs.0==0,]), log=TRUE, lower.tail=FALSE)
# probability of rater 1 if x is 0 or 1
ll.x.obs.1.x0[df.obs$x.obs.1==1] <- plogis(rater.1.params %*% t(rater.model.matrix.x.obs.0[df.obs$x.obs.1==1,]), log=TRUE)
ll.x.obs.1.x0[df.obs$x.obs.1==0] <- plogis(rater.1.params %*% t(rater.model.matrix.x.obs.0[df.obs$x.obs.1==0,]), log=TRUE, lower.tail=FALSE)
ll.x.obs.1.x1[df.obs$x.obs.1==1] <- plogis(rater.1.params %*% t(rater.model.matrix.x.obs.1[df.obs$x.obs.1==1,]), log=TRUE)
ll.x.obs.1.x1[df.obs$x.obs.1==0] <- plogis(rater.1.params %*% t(rater.model.matrix.x.obs.1[df.obs$x.obs.1==0,]), log=TRUE, lower.tail=FALSE)
proxy.model.matrix.x0 <- model.matrix(proxy_formula, df.x.obs.0)
proxy.model.matrix.x1 <- model.matrix(proxy_formula, df.x.obs.1)
n.proxy.model.covars <- dim(proxy.model.matrix.x0)[2]
proxy.params <- params[param.idx:(n.proxy.model.covars+param.idx-1)]
param.idx <- param.idx + n.proxy.model.covars
proxy.obs <- with(df.obs, eval(parse(text=proxy.variable)))
if( (proxy_family$family=="binomial") & (proxy_family$link=='logit')){
ll.w.obs.x0 <- vector(mode='numeric',length=dim(proxy.model.matrix.x0)[1])
ll.w.obs.x1 <- vector(mode='numeric',length=dim(proxy.model.matrix.x1)[1])
# proxy_formula likelihood using logistic regression
ll.w.obs.x0[proxy.obs==1] <- plogis(proxy.params %*% t(proxy.model.matrix.x0[proxy.obs==1,]),log=TRUE)
ll.w.obs.x0[proxy.obs==0] <- plogis(proxy.params %*% t(proxy.model.matrix.x0[proxy.obs==0,]),log=TRUE, lower.tail=FALSE)
ll.w.obs.x1[proxy.obs==1] <- plogis(proxy.params %*% t(proxy.model.matrix.x1[proxy.obs==1,]),log=TRUE)
ll.w.obs.x1[proxy.obs==0] <- plogis(proxy.params %*% t(proxy.model.matrix.x1[proxy.obs==0,]),log=TRUE, lower.tail=FALSE)
}
## assume that the probability of x is a logistic regression depending on z
truth.model.matrix.obs <- model.matrix(truth_formula, df.obs)
n.truth.params <- dim(truth.model.matrix.obs)[2]
truth.params <- params[param.idx:(n.truth.params + param.idx - 1)]
ll.obs.x0 <- plogis(truth.params %*% t(truth.model.matrix.obs), log=TRUE)
ll.obs.x1 <- plogis(truth.params %*% t(truth.model.matrix.obs), log=TRUE, lower.tail=FALSE)
ll.obs <- colLogSumExps(rbind(ll.y.x.obs.0 + ll.x.obs.0.x0 + ll.x.obs.1.x0 + ll.obs.x0 + ll.w.obs.x0,
ll.y.x.obs.1 + ll.x.obs.0.x1 + ll.x.obs.1.x1 + ll.obs.x1 + ll.w.obs.x1))
### NOW FOR THE FUN PART. Likelihood of the unobserved data.
### we have to integrate out x.obs.0, x.obs.1, and x.
## THE OUTCOME
df.unobs <- df[is.na(x.obs)]
df.x.unobs.0 <- copy(df.unobs)[,x:=0]
df.x.unobs.1 <- copy(df.unobs)[,x:=1]
y.unobs <- df.unobs$y
outcome.model.matrix.x.unobs.0 <- model.matrix(outcome_formula, df.x.unobs.0)
outcome.model.matrix.x.unobs.1 <- model.matrix(outcome_formula, df.x.unobs.1)
ll.y.unobs.x0 <- dnorm(y.unobs, outcome.params %*% t(outcome.model.matrix.x.unobs.0), sd=sigma.y, log=TRUE)
ll.y.unobs.x1 <- dnorm(y.unobs, outcome.params %*% t(outcome.model.matrix.x.unobs.1), sd=sigma.y, log=TRUE)
## THE UNLABELED DATA
## assume that the two coders are statistically independent conditional on x
ll.x.unobs.0.x0 <- vector(mode='numeric', length=nrow(df.unobs))
ll.x.unobs.1.x0 <- vector(mode='numeric', length=nrow(df.unobs))
ll.x.unobs.0.x1 <- vector(mode='numeric', length=nrow(df.unobs))
ll.x.unobs.1.x1 <- vector(mode='numeric', length=nrow(df.unobs))
df.x.unobs.0[,x.obs := 1]
df.x.unobs.1[,x.obs := 1]
rater.model.matrix.x.unobs.0 <- model.matrix(rater_formula, df.x.unobs.0)
rater.model.matrix.x.unobs.1 <- model.matrix(rater_formula, df.x.unobs.1)
## # probability of rater 0 if x is 0 or 1
## ll.x.unobs.0.x0 <- colLogSumExps(rbind(plogis(rater.0.params %*% t(rater.model.matrix.x.unobs.0), log=TRUE),
## plogis(rater.0.params %*% t(rater.model.matrix.x.unobs.0), log=TRUE, lower.tail=TRUE)))
## ll.x.unobs.0.x1 <- colLogSumExps(rbind(plogis(rater.0.params %*% t(rater.model.matrix.x.unobs.1), log=TRUE),
## plogis(rater.0.params %*% t(rater.model.matrix.x.unobs.1), log=TRUE, lower.tail=TRUE)))
## # probability of rater 1 if x is 0 or 1
## ll.x.unobs.1.x0 <- colLogSumExps(rbind(plogis(rater.1.params %*% t(rater.model.matrix.x.unobs.0), log=TRUE),
## plogis(rater.1.params %*% t(rater.model.matrix.x.unobs.0), log=TRUE, lower.tail=TRUE)))
## ll.x.unobs.1.x1 <- colLogSumExps(rbind(plogis(rater.1.params %*% t(rater.model.matrix.x.unobs.1), log=TRUE),
## plogis(rater.1.params %*% t(rater.model.matrix.x.unobs.1), log=TRUE, lower.tail=TRUE)))
proxy.unobs <- with(df.unobs, eval(parse(text=proxy.variable)))
proxy.model.matrix.x0.unobs <- model.matrix(proxy_formula, df.x.unobs.0)
proxy.model.matrix.x1.unobs <- model.matrix(proxy_formula, df.x.unobs.1)
if( (proxy_family$family=="binomial") & (proxy_family$link=='logit')){
ll.w.unobs.x0 <- vector(mode='numeric',length=dim(proxy.model.matrix.x0)[1])
ll.w.unobs.x1 <- vector(mode='numeric',length=dim(proxy.model.matrix.x1)[1])
# proxy_formula likelihood using logistic regression
ll.w.unobs.x0[proxy.unobs==1] <- plogis(proxy.params %*% t(proxy.model.matrix.x0.unobs[proxy.unobs==1,]),log=TRUE)
ll.w.unobs.x0[proxy.unobs==0] <- plogis(proxy.params %*% t(proxy.model.matrix.x0.unobs[proxy.unobs==0,]),log=TRUE, lower.tail=FALSE)
ll.w.unobs.x1[proxy.unobs==1] <- plogis(proxy.params %*% t(proxy.model.matrix.x1.unobs[proxy.unobs==1,]),log=TRUE)
ll.w.unobs.x1[proxy.unobs==0] <- plogis(proxy.params %*% t(proxy.model.matrix.x1.unobs[proxy.unobs==0,]),log=TRUE, lower.tail=FALSE)
}
truth.model.matrix.unobs <- model.matrix(truth_formula, df.unobs)
ll.unobs.x0 <- plogis(truth.params %*% t(truth.model.matrix.unobs), log=TRUE)
ll.unobs.x1 <- plogis(truth.params %*% t(truth.model.matrix.unobs), log=TRUE, lower.tail=FALSE)
ll.unobs <- colLogSumExps(rbind(ll.unobs.x0 + ll.w.unobs.x0 + ll.y.unobs.x0,
ll.unobs.x1 + ll.w.unobs.x1 + ll.y.unobs.x1))
return(-1 *( sum(ll.obs) + sum(ll.unobs)))
}
outcome.params <- colnames(model.matrix(outcome_formula,df))
lower <- rep(-Inf, length(outcome.params))
if(outcome_family$family=='gaussian'){
params <- c(outcome.params, 'sigma_y')
lower <- c(lower, 0.00001)
} else {
params <- outcome.params
}
rater.0.params <- colnames(model.matrix(rater_formula,df))
params <- c(params, paste0('rater_0',rater.0.params))
lower <- c(lower, rep(-Inf, length(rater.0.params)))
rater.1.params <- colnames(model.matrix(rater_formula,df))
params <- c(params, paste0('rater_1',rater.1.params))
lower <- c(lower, rep(-Inf, length(rater.1.params)))
proxy.params <- colnames(model.matrix(proxy_formula, df))
params <- c(params, paste0('proxy_',proxy.params))
lower <- c(lower, rep(-Inf, length(proxy.params)))
truth.params <- colnames(model.matrix(truth_formula, df))
params <- c(params, paste0('truth_', truth.params))
lower <- c(lower, rep(-Inf, length(truth.params)))
start <- rep(0.1,length(params))
names(start) <- params
if(method=='optim'){
fit <- optim(start, fn = nll, lower=lower, method='L-BFGS-B', hessian=TRUE, control=list(maxit=1e6))
} else {
quoted.names <- gsub("[\\(\\)]",'',names(start))
print(quoted.names)
text <- paste("function(", paste0(quoted.names,'=',start,collapse=','),"){params<-c(",paste0(quoted.names,collapse=','),");return(nll(params))}")
measerr_mle_nll <- eval(parse(text=text))
names(start) <- quoted.names
names(lower) <- quoted.names
fit <- mle2(minuslogl=measerr_mle_nll, start=start, lower=lower, parnames=params,control=list(maxit=1e6),method='L-BFGS-B')
}
return(fit)
}
measerr_mle <- function(df, outcome_formula, outcome_family=gaussian(), proxy_formula, proxy_family=binomial(link='logit'), truth_formula, truth_family=binomial(link='logit'),method='optim'){
measerr_mle_nll <- function(params){
df.obs <- model.frame(outcome_formula, df)
proxy.variable <- all.vars(proxy_formula)[1]
proxy.model.matrix <- model.matrix(proxy_formula, df)
response.var <- all.vars(outcome_formula)[1]
y.obs <- with(df.obs,eval(parse(text=response.var)))
outcome.model.matrix <- model.matrix(outcome_formula, df)
param.idx <- 1
n.outcome.model.covars <- dim(outcome.model.matrix)[2]
outcome.params <- params[param.idx:n.outcome.model.covars]
param.idx <- param.idx + n.outcome.model.covars
## likelihood for the fully observed data
if(outcome_family$family == "gaussian"){
sigma.y <- params[param.idx]
param.idx <- param.idx + 1
# outcome_formula likelihood using linear regression
ll.y.obs <- dnorm(y.obs, outcome.params %*% t(outcome.model.matrix),sd=sigma.y, log=TRUE)
}
df.obs <- model.frame(proxy_formula,df)
n.proxy.model.covars <- dim(proxy.model.matrix)[2]
proxy.params <- params[param.idx:(n.proxy.model.covars+param.idx-1)]
param.idx <- param.idx + n.proxy.model.covars
proxy.obs <- with(df.obs, eval(parse(text=proxy.variable)))
if( (proxy_family$family=="binomial") & (proxy_family$link=='logit')){
ll.w.obs <- vector(mode='numeric',length=dim(proxy.model.matrix)[1])
# proxy_formula likelihood using logistic regression
ll.w.obs[proxy.obs==1] <- plogis(proxy.params %*% t(proxy.model.matrix[proxy.obs==1,]),log=TRUE)
ll.w.obs[proxy.obs==0] <- plogis(proxy.params %*% t(proxy.model.matrix[proxy.obs==0,]),log=TRUE, lower.tail=FALSE)
}
df.obs <- model.frame(truth_formula, df)
truth.variable <- all.vars(truth_formula)[1]
truth.obs <- with(df.obs, eval(parse(text=truth.variable)))
truth.model.matrix <- model.matrix(truth_formula,df)
n.truth.model.covars <- dim(truth.model.matrix)[2]
truth.params <- params[param.idx:(n.truth.model.covars + param.idx - 1)]
if( (truth_family$family=="binomial") & (truth_family$link=='logit')){
ll.x.obs <- vector(mode='numeric',length=dim(truth.model.matrix)[1])
# truth_formula likelihood using logistic regression
ll.x.obs[truth.obs==1] <- plogis(truth.params %*% t(truth.model.matrix[truth.obs==1,]),log=TRUE)
ll.x.obs[truth.obs==0] <- plogis(truth.params %*% t(truth.model.matrix[truth.obs==0,]),log=TRUE, lower.tail=FALSE)
}
# add the three likelihoods
ll.obs <- sum(ll.y.obs + ll.w.obs + ll.x.obs)
## likelihood for the predicted data
## integrate out the "truth" variable.
if(truth_family$family=='binomial'){
df.unobs <- df[is.na(eval(parse(text=truth.variable)))]
df.unobs.x1 <- copy(df.unobs)
df.unobs.x1[,'x'] <- 1
df.unobs.x0 <- copy(df.unobs)
df.unobs.x0[,'x'] <- 0
outcome.unobs <- with(df.unobs, eval(parse(text=response.var)))
outcome.model.matrix.x0 <- model.matrix(outcome_formula, df.unobs.x0)
outcome.model.matrix.x1 <- model.matrix(outcome_formula, df.unobs.x1)
if(outcome_family$family=="gaussian"){
# likelihood of outcome
ll.y.x0 <- dnorm(outcome.unobs, outcome.params %*% t(outcome.model.matrix.x0), sd=sigma.y, log=TRUE)
ll.y.x1 <- dnorm(outcome.unobs, outcome.params %*% t(outcome.model.matrix.x1), sd=sigma.y, log=TRUE)
}
if( (proxy_family$family=='binomial') & (proxy_family$link=='logit')){
proxy.model.matrix.x0 <- model.matrix(proxy_formula, df.unobs.x0)
proxy.model.matrix.x1 <- model.matrix(proxy_formula, df.unobs.x1)
proxy.unobs <- df.unobs[[proxy.variable]]
ll.w.x0 <- vector(mode='numeric', length=dim(df.unobs)[1])
ll.w.x1 <- vector(mode='numeric', length=dim(df.unobs)[1])
# likelihood of proxy
ll.w.x0[proxy.unobs==1] <- plogis(proxy.params %*% t(proxy.model.matrix.x0[proxy.unobs==1,]), log=TRUE)
ll.w.x1[proxy.unobs==1] <- plogis(proxy.params %*% t(proxy.model.matrix.x1[proxy.unobs==1,]), log=TRUE)
ll.w.x0[proxy.unobs==0] <- plogis(proxy.params %*% t(proxy.model.matrix.x0[proxy.unobs==0,]), log=TRUE,lower.tail=FALSE)
ll.w.x1[proxy.unobs==0] <- plogis(proxy.params %*% t(proxy.model.matrix.x1[proxy.unobs==0,]), log=TRUE,lower.tail=FALSE)
}
if(truth_family$link=='logit'){
truth.model.matrix <- model.matrix(truth_formula, df.unobs.x0)
# likelihood of truth
ll.x.x1 <- plogis(truth.params %*% t(truth.model.matrix), log=TRUE)
ll.x.x0 <- plogis(truth.params %*% t(truth.model.matrix), log=TRUE, lower.tail=FALSE)
}
}
ll.x0 <- ll.y.x0 + ll.w.x0 + ll.x.x0
ll.x1 <- ll.y.x1 + ll.w.x1 + ll.x.x1
ll.unobs <- sum(colLogSumExps(rbind(ll.x0, ll.x1)))
return(-(ll.unobs + ll.obs))
}
outcome.params <- colnames(model.matrix(outcome_formula,df))
lower <- rep(-Inf, length(outcome.params))
if(outcome_family$family=='gaussian'){
params <- c(outcome.params, 'sigma_y')
lower <- c(lower, 0.00001)
} else {
params <- outcome.params
}
proxy.params <- colnames(model.matrix(proxy_formula, df))
params <- c(params, paste0('proxy_',proxy.params))
lower <- c(lower, rep(-Inf, length(proxy.params)))
truth.params <- colnames(model.matrix(truth_formula, df))
params <- c(params, paste0('truth_', truth.params))
lower <- c(lower, rep(-Inf, length(truth.params)))
start <- rep(0.1,length(params))
names(start) <- params
if(method=='optim'){
fit <- optim(start, fn = measerr_mle_nll, lower=lower, method='L-BFGS-B', hessian=TRUE, control=list(maxit=1e6))
} else { # method='mle2'
quoted.names <- gsub("[\\(\\)]",'',names(start))
text <- paste("function(", paste0(quoted.names,'=',start,collapse=','),"){params<-c(",paste0(quoted.names,collapse=','),");return(measerr_mle_nll(params))}")
measerr_mle_nll_mle <- eval(parse(text=text))
names(start) <- quoted.names
names(lower) <- quoted.names
fit <- mle2(minuslogl=measerr_mle_nll_mle, start=start, lower=lower, parnames=params,control=list(maxit=1e6),method='L-BFGS-B')
}
return(fit)
}