1
0
ml_measurement_error_public/civil_comments/02_iv_example.R

108 lines
4.6 KiB
R

source("../simulations/RemembR/R/RemembeR.R")
change.remember.file("iv_perspective_example.RDS")
source('load_perspective_data.R')
source("../simulations/measerr_methods.R")
remember(accuracies, "civil_comments_accuracies")
remember(f1s, "civil_comments_f1s")
remember(positive_cases, "civil_comments_positive_cases")
remember(proportions_cases, "civil_comments_proportions_cases")
remember(cortab, "civil_comments_cortab")
remember(nrow(df), 'n.annotated.comments')
# for reproducibility
set.seed(1)
## another simple enough example: is P(toxic | funny and white) > P(toxic | funny nand white)? Or, are funny comments more toxic when people disclose that they are white?
compare_iv_models <-function(pred_formula, outcome_formula, proxy_formula, truth_formula, df, sample.prop, sample.size, remember_prefix){
if(is.null(sample.prop)){
sample.prop <- sample.size / nrow(df)
}
if(is.null(sample.size)){
sample.size <- nrow(df) * sample.prop
}
remember(sample.size, paste0(remember_prefix, "sample.size"))
remember(sample.prop, paste0(remember_prefix, "sample.prop"))
remember(pred_formula, paste0(remember_prefix, "pred_formula"))
remember(outcome_formula, paste0(remember_prefix, 'outcome_formula'))
remember(proxy_formula, paste0(remember_prefix, 'proxy_formula'))
remember(truth_formula, paste0(remember_prefix, 'truth_formula'))
pred_model <- glm(pred_formula, df, family=binomial(link='logit'))
remember(coef(pred_model), paste0(remember_prefix, "coef_pred_model"))
remember(diag(vcov((pred_model))), paste0(remember_prefix, "se_pred_model"))
coder_model <- glm(outcome_formula, df, family=binomial(link='logit'))
remember(coef(coder_model), paste0(remember_prefix, "coef_coder_model"))
remember(diag(vcov((coder_model))), paste0(remember_prefix, "se_coder_model"))
df_measerr_method <- copy(df)[sample(1:.N, sample.size), toxicity_coded_1 := toxicity_coded]
df_measerr_method <- df_measerr_method[,toxicity_coded := toxicity_coded_1]
sample_model <- glm(outcome_formula, df_measerr_method, family=binomial(link='logit'))
remember(coef(sample_model), paste0(remember_prefix, "coef_sample_model"))
remember(diag(vcov((sample_model))), paste0(remember_prefix, "se_sample_model"))
measerr_model <- measerr_mle(df_measerr_method, outcome_formula, outcome_family=binomial(link='logit'), proxy_formula=proxy_formula, proxy_family=binomial(link='logit'),truth_formula=truth_formula, truth_family=binomial(link='logit'))
inv_hessian = solve(measerr_model$hessian)
stderr = diag(inv_hessian)
remember(stderr, paste0(remember_prefix, "measerr_model_stderr"))
remember(measerr_model$par, paste0(remember_prefix, "measerr_model_par"))
}
## print("running first iv example")
## sample.prop <- 0.05
## compare_iv_models(white ~ toxicity_pred*funny,
## outcome_formula = white ~ toxicity_coded*funny,
## proxy_formula = toxicity_pred ~ toxicity_coded*funny*white,
## truth_formula = toxicity_coded ~ 1,
## df=df,
## sample.prop=sample.prop,
## remember_prefix='cc_ex_tox.funny.white')
pred_formula <- race_disclosed ~ likes * toxicity_pred
outcome_formula <- race_disclosed ~ likes * toxicity_coded
proxy_formula <- toxicity_pred ~ toxicity_coded * race_disclosed * likes
truth_formula <- toxicity_coded ~ 1
print("running first example")
compare_iv_models(pred_formula = pred_formula,
outcome_formula = outcome_formula,
proxy_formula = proxy_formula,
truth_formula = truth_formula,
df=df,
sample.prop=0.01,
sample.size=NULL,
remember_prefix='cc_ex_tox.likes.race_disclosed')
print("running second example")
compare_iv_models(pred_formula = pred_formula,
outcome_formula = outcome_formula,
proxy_formula = proxy_formula,
truth_formula = truth_formula,
df=df,
sample.prop=NULL,
sample.size=10000,
remember_prefix='cc_ex_tox.likes.race_disclosed.medsamp')
print("running third example")
compare_iv_models(pred_formula = race_disclosed ~ likes * toxicity_pred,
outcome_formula = race_disclosed ~ likes * toxicity_coded,
proxy_formula = toxicity_pred ~ toxicity_coded + race_disclosed,
truth_formula = toxicity_coded ~ 1,
df=df,
sample.prop=0.05,
sample.size=NULL,
remember_prefix='cc_ex_tox.likes.race_disclosed.largesamp')