1
0
ml_measurement_error_public/simulations/example_2_B.R

277 lines
11 KiB
R

### EXAMPLE 2_b: demonstrates how measurement error can lead to a type sign error in a covariate
### This is the same as example 2, only instead of x->k we have k->x.
### Even when you have a good predictor, if it's biased against a covariate you can get the wrong sign.
### Even when you include the proxy variable in the regression.
### But with some ground truth and multiple imputation, you can fix it.
library(argparser)
library(mecor)
library(ggplot2)
library(data.table)
library(filelock)
library(arrow)
library(Amelia)
library(Zelig)
library(predictionError)
options(amelia.parallel="no",
amelia.ncpus=1)
source("simulation_base.R")
## SETUP:
### we want to estimate x -> y; x is MAR
### we have x -> k; k -> w; x -> w is used to predict x via the model w.
### A realistic scenario is that we have an NLP model predicting something like "racial harassment" in social media comments
### The labels x are binary, but the model provides a continuous predictor
### simulation:
#### how much power do we get from the model in the first place? (sweeping N and m)
####
logistic <- function(x) {1/(1+exp(-1*x))}
simulate_latent_cocause <- function(N, m, B0, Bxy, Bgy, Bkx, Bgx, seed){
set.seed(seed)
## the true value of x
g <- rbinom(N, 1, 0.5)
xprime <- Bgx * g + rnorm(N,0,1)
k <- Bkx*xprime + rnorm(N,0,3)
x <- as.integer(logistic(scale(xprime)) > 0.5)
y <- Bxy * x + Bgy * g + rnorm(N, 0, 2) + B0
df <- data.table(x=x,k=k,y=y,g=g)
if( m < N){
df <- df[sample(nrow(df), m), x.obs := x]
} else {
df <- df[, x.obs := x]
}
w.model <- glm(x ~ k,df, family=binomial(link='logit'))
w <- predict(w.model,data.frame(k=k)) + rnorm(N,0,1)
## y = B0 + B1x + e
df[,':='(w=w, w_pred = as.integer(w>0.5))]
return(df)
}
schennach <- function(df){
fwx <- glm(x.obs~w, df, family=binomial(link='logit'))
df[,xstar_pred := predict(fwx, df)]
gxt <- lm(y ~ xstar_pred+g, df)
}
parser <- arg_parser("Simulate data and fit corrected models")
parser <- add_argument(parser, "--N", default=100, help="number of observations of w")
parser <- add_argument(parser, "--m", default=20, help="m the number of ground truth observations")
parser <- add_argument(parser, "--seed", default=4321, help='seed for the rng')
parser <- add_argument(parser, "--outfile", help='output file', default='example_2_B.feather')
args <- parse_args(parser)
rows <- list()
B0 <- 0
Bxy <- 0.2
Bgy <- -0.2
Bkx <- 1
Bgx <- 3
outline <- run_simulation(simulate_latent_cocause(args$N, args$m, B0, Bxy, Bgy, Bkx, Bgx, args$seed)
,list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy,'Bgy'=Bgy, 'Bkx'=Bkx, 'Bgx'=Bgx, 'seed'=args$seed))
outfile_lock <- lock(paste0(args$outfile, '_lock'),exclusive=TRUE)
if(file.exists(args$outfile)){
logdata <- read_feather(args$outfile)
logdata <- rbind(logdata,as.data.table(outline))
} else {
logdata <- as.data.table(outline)
}
print(outline)
write_feather(logdata, args$outfile)
unlock(outfile_lock)
## Ns <- c(1e6, 5e4, 1000)
## ms <- c(100, 250, 500, 1000)
## seeds <- 1:500
## rowssets <- list()
## library(doParallel)
## options(mc.cores = parallel::detectCores())
## cl <- makeCluster(20)
## registerDoParallel(cl)
## ## library(future)
## ## plan(multiprocess,workers=40,gc=TRUE)
## for(N in Ns){
## print(N)
## for(m in ms){
## if(N>m){
## new.rows <- foreach(iter=seeds, .combine=rbind, .packages = c('mecor','Amelia','Zelig','predictionError','data.table'),
## .export = c("run_simulation","simulate_latent_cocause","logistic","N","m","B0","Bxy","Bgy","Bkx","Bgx")) %dopar%
## {run_simulation(simulate_latent_cocause(N, m, B0, Bxy, Bgy, Bkx, Bgx, iter)
## ,list('N'=N,'m'=m,'B0'=B0,'Bxy'=Bxy,'Bgy'=Bgy, 'Bkx'=Bkx, 'Bgx'=Bgx, 'seed'=iter))}
## rowsets <- append(rowssets, list(data.table(new.rows)))
## }
## }
## ## rows <- append(rows, list(future({run_simulation(simulate_latent_cocause(N, m, B0, Bxy, Bgy, Bkx, Bgx, seed)
## }
## ,list(N=N,m=m,B0=B0,Bxy=Bxy,Bgy=Bgy, Bkx=Bkx, Bgx=Bgx, seed=seed))w},
## packages=c('mecor','Amelia','Zelig','predictionError'),
## seed=TRUE)))
## df <- rbindlist(rowsets)
## write_feather(df,"example_2B_simulation.feather")
## run_simulation <- function(N, m, B0, Bxy, Bgy, Bkx, Bgx, seed){
## result <- list()
## df <- simulate_latent_cocause(N, m, B0, Bxy, Bgy, Bkx, Bgx, seed)
## result <- append(result, list(N=N,
## m=m,
## B0=B0,
## Bxy=Bxy,
## Bgy=Bgy,
## Bkx=Bkx,
## seed=seed))
## (accuracy <- df[,.(mean(w_pred==x))])
## result <- append(result, list(accuracy=accuracy))
## (model.true <- lm(y ~ x + g, data=df))
## true.ci.Bxy <- confint(model.true)['x',]
## true.ci.Bgy <- confint(model.true)['g',]
## result <- append(result, list(Bxy.est.true=coef(model.true)['x'],
## Bgy.est.true=coef(model.true)['g'],
## Bxy.ci.upper.true = true.ci.Bxy[2],
## Bxy.ci.lower.true = true.ci.Bxy[1],
## Bgy.ci.upper.true = true.ci.Bgy[2],
## Bgy.ci.lower.true = true.ci.Bgy[1]))
## (model.feasible <- lm(y~x.obs+g,data=df))
## feasible.ci.Bxy <- confint(model.feasible)['x.obs',]
## result <- append(result, list(Bxy.est.feasible=coef(model.feasible)['x.obs'],
## Bxy.ci.upper.feasible = feasible.ci.Bxy[2],
## Bxy.ci.lower.feasible = feasible.ci.Bxy[1]))
## feasible.ci.Bgy <- confint(model.feasible)['g',]
## result <- append(result, list(Bgy.est.feasible=coef(model.feasible)['g'],
## Bgy.ci.upper.feasible = feasible.ci.Bgy[2],
## Bgy.ci.lower.feasible = feasible.ci.Bgy[1]))
## (model.naive <- lm(y~w+g, data=df))
## naive.ci.Bxy <- confint(model.naive)['w',]
## naive.ci.Bgy <- confint(model.naive)['g',]
## result <- append(result, list(Bxy.est.naive=coef(model.naive)['w'],
## Bgy.est.naive=coef(model.naive)['g'],
## Bxy.ci.upper.naive = naive.ci.Bxy[2],
## Bxy.ci.lower.naive = naive.ci.Bxy[1],
## Bgy.ci.upper.naive = naive.ci.Bgy[2],
## Bgy.ci.lower.naive = naive.ci.Bgy[1]))
## ## multiple imputation when k is observed
## ## amelia does great at this one.
## amelia.out.k <- amelia(df, m=200, p2s=0, idvars=c('x','w_pred'),noms=c("x.obs","g"),lgstc=c('w'))
## mod.amelia.k <- zelig(y~x.obs+g, model='ls', data=amelia.out.k$imputations, cite=FALSE)
## (coefse <- combine_coef_se(mod.amelia.k, messages=FALSE))
## est.x.mi <- coefse['x.obs','Estimate']
## est.x.se <- coefse['x.obs','Std.Error']
## result <- append(result,
## list(Bxy.est.amelia.full = est.x.mi,
## Bxy.ci.upper.amelia.full = est.x.mi + 1.96 * est.x.se,
## Bxy.ci.lower.amelia.full = est.x.mi - 1.96 * est.x.se
## ))
## est.g.mi <- coefse['g','Estimate']
## est.g.se <- coefse['g','Std.Error']
## result <- append(result,
## list(Bgy.est.amelia.full = est.g.mi,
## Bgy.ci.upper.amelia.full = est.g.mi + 1.96 * est.g.se,
## Bgy.ci.lower.amelia.full = est.g.mi - 1.96 * est.g.se
## ))
## ## What if we can't observe k -- most realistic scenario. We can't include all the ML features in a model.
## amelia.out.nok <- amelia(df, m=200, p2s=0, idvars=c("x","k"), noms=c("x.obs",'g'),lgstc = c("w"))
## mod.amelia.nok <- zelig(y~x.obs+g, model='ls', data=amelia.out.nok$imputations, cite=FALSE)
## (coefse <- combine_coef_se(mod.amelia.nok, messages=FALSE))
## est.x.mi <- coefse['x.obs','Estimate']
## est.x.se <- coefse['x.obs','Std.Error']
## result <- append(result,
## list(Bxy.est.amelia.nok = est.x.mi,
## Bxy.ci.upper.amelia.nok = est.x.mi + 1.96 * est.x.se,
## Bxy.ci.lower.amelia.nok = est.x.mi - 1.96 * est.x.se
## ))
## est.g.mi <- coefse['g','Estimate']
## est.g.se <- coefse['g','Std.Error']
## result <- append(result,
## list(Bgy.est.amelia.nok = est.g.mi,
## Bgy.ci.upper.amelia.nok = est.g.mi + 1.96 * est.g.se,
## Bgy.ci.lower.amelia.nok = est.g.mi - 1.96 * est.g.se
## ))
## p <- v <- train <- rep(0,N)
## M <- m
## p[(M+1):(N)] <- 1
## v[1:(M)] <- 1
## df <- df[order(x.obs)]
## y <- df[,y]
## x <- df[,x.obs]
## g <- df[,g]
## w <- df[,w]
## # gmm gets pretty close
## (gmm.res <- predicted_covariates(y, x, g, w, v, train, p, max_iter=100, verbose=FALSE))
## result <- append(result,
## list(Bxy.est.gmm = gmm.res$beta[1,1],
## Bxy.ci.upper.gmm = gmm.res$confint[1,2],
## Bxy.ci.lower.gmm = gmm.res$confint[1,1]))
## result <- append(result,
## list(Bgy.est.gmm = gmm.res$beta[2,1],
## Bgy.ci.upper.gmm = gmm.res$confint[2,2],
## Bgy.ci.lower.gmm = gmm.res$confint[2,1]))
## mod.calibrated.mle <- mecor(y ~ MeasError(w, reference = x.obs) + g, df, B=400, method='efficient')
## (mod.calibrated.mle)
## (mecor.ci <- summary(mod.calibrated.mle)$c$ci['x.obs',])
## result <- append(result, list(
## Bxy.est.mecor = mecor.ci['Estimate'],
## Bxy.upper.mecor = mecor.ci['UCI'],
## Bxy.lower.mecor = mecor.ci['LCI'])
## )
## (mecor.ci <- summary(mod.calibrated.mle)$c$ci['g',])
## result <- append(result, list(
## Bxy.est.mecor = mecor.ci['Estimate'],
## Bxy.upper.mecor = mecor.ci['UCI'],
## Bxy.lower.mecor = mecor.ci['LCI'])
## )
## return(result)
## }