1
0
ml_measurement_error_public/simulations/example_3.R

145 lines
4.0 KiB
R

### EXAMPLE 2_b: demonstrates how measurement error can lead to a type sign error in a covariate
### What kind of data invalidates fong + tyler?
### This is the same as example 2, only instead of x->k we have k->x.
### Even when you have a good predictor, if it's biased against a covariate you can get the wrong sign.
### Even when you include the proxy variable in the regression.
### But with some ground truth and multiple imputation, you can fix it.
library(argparser)
library(mecor)
library(ggplot2)
library(data.table)
library(filelock)
library(arrow)
library(Amelia)
library(Zelig)
library(predictionError)
options(amelia.parallel="no",
amelia.ncpus=1)
setDTthreads(40)
source("simulation_base.R")
## SETUP:
### we want to estimate x -> y; x is MAR
### we have x -> k; k -> w; x -> w is used to predict x via the model w.
### A realistic scenario is that we have an NLP model predicting something like "racial harassment" in social media comments
### The labels x are binary, but the model provides a continuous predictor
### simulation:
#### how much power do we get from the model in the first place? (sweeping N and m)
####
## one way to do it is by adding correlation to x.obs and y that isn't in w.
## in other words, the model is missing an important feature of x.obs that's related to y.
simulate_latent_cocause <- function(N, m, B0, Bxy, Bgy, Bkx, Bgx, seed){
set.seed(seed)
## the true value of x
g <- rbinom(N, 1, 0.5)
# make w and y dependent
u <- rnorm(N,0,Bxy)
xprime <- Bgx * g + rnorm(N,0,1)
k <- Bkx*xprime + rnorm(N,0,1.5) + 1.1*Bkx*u
x <- as.integer(logistic(scale(xprime)) > 0.5)
y <- Bxy * x + Bgy * g + rnorm(N, 0, 1) + B0 + u
df <- data.table(x=x,k=k,y=y,g=g)
w.model <- glm(x ~ k,df, family=binomial(link='logit'))
if( m < N){
df <- df[sample(nrow(df), m), x.obs := x]
} else {
df <- df[, x.obs := x]
}
df[, x.obs := x.obs]
w <- predict(w.model, df) + rnorm(N, 0, 1)
## y = B0 + B1x + e
df[,':='(w=w, w_pred = as.integer(w>0.5),u=u)]
return(df)
}
## simulate_latent_cocause_2 <- function(N, m, B0, Bxy, Bgy, Bkx, Bgx, seed){
## set.seed(seed)
## ## the true value of x
## g <- rbinom(N, 1, 0.5)
## # make w and y dependent
## u <- rnorm(N,0,5)
## xprime <- Bgx * g + rnorm(N,0,1)
## k <- Bkx*xprime + rnorm(N,0,3)
## x <- as.integer(logistic(scale(xprime+0.3)) > 0.5)
## y <- Bxy * x + Bgy * g + rnorm(N, 0, 1) + B0 + u
## df <- data.table(x=x,k=k,y=y,g=g)
## w.model <- glm(x ~ k, df, family=binomial(link='logit'))
## if( m < N){
## df <- df[sample(nrow(df), m), x.obs := x]
## } else {
## df <- df[, x.obs := x]
## }
## w <- predict(w.model,data.frame(k=k)) + u
## ## y = B0 + B1x + e
## df[,':='(w=w, w_pred = as.integer(w>0.5),u=u)]
## return(df)
## }
schennach <- function(df){
fwx <- glm(x.obs~w, df, family=binomial(link='logit'))
df[,xstar_pred := predict(fwx, df)]
gxt <- lm(y ~ xstar_pred+g, df)
}
parser <- arg_parser("Simulate data and fit corrected models")
parser <- add_argument(parser, "--N", default=5000, help="number of observations of w")
parser <- add_argument(parser, "--m", default=200, help="m the number of ground truth observations")
parser <- add_argument(parser, "--seed", default=432, help='seed for the rng')
parser <- add_argument(parser, "--outfile", help='output file', default='example_2.feather')
args <- parse_args(parser)
B0 <- 0
Bxy <- 0.2
Bgy <- 0
Bkx <- 2
Bgx <- 0
outline <- run_simulation(simulate_latent_cocause(args$N, args$m, B0, Bxy, Bgy, Bkx, Bgx, args$seed)
,list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy,'Bgy'=Bgy, 'Bkx'=Bkx, 'Bgx'=Bgx, 'seed'=args$seed))
outfile_lock <- lock(paste0(args$outfile, '_lock'),exclusive=TRUE)
if(file.exists(args$outfile)){
logdata <- read_feather(args$outfile)
logdata <- rbind(logdata,as.data.table(outline))
} else {
logdata <- as.data.table(outline)
}
print(outline)
write_feather(logdata, args$outfile)
unlock(outfile_lock)