24_deb_pkg_gov/R/readme_topic_outcomes.R

94 lines
3.9 KiB
R
Raw Permalink Normal View History

2024-07-16 15:05:21 +00:00
library(stringr)
2024-08-24 22:04:46 +00:00
library(tidyverse)
2024-07-16 15:05:21 +00:00
readme_topics_df <- read_csv("../text_analysis/readme_file_topic_distributions.csv")
2024-08-24 22:04:46 +00:00
colMeans(subset(readme_topics_df, select = -filename))
2024-07-16 15:05:21 +00:00
readme_df <- read_csv("../final_data/deb_readme_did.csv")
readme_pop_df <- read_csv("../final_data/deb_readme_pop_change.csv")
#get the readmeution count
#some preprocessing and expansion
col_order <- c("upstream_vcs_link", "age_in_days", "first_commit", "first_commit_dt", "event_gap", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new")
readme_df <- readme_df[,col_order]
readme_df$ct_before_all <- str_split(gsub("[][]","", readme_df$before_all_ct), ", ")
readme_df$ct_after_all <- str_split(gsub("[][]","", readme_df$after_all_ct), ", ")
readme_df$ct_before_mrg <- str_split(gsub("[][]","", readme_df$before_mrg_ct), ", ")
readme_df$ct_after_mrg <- str_split(gsub("[][]","", readme_df$after_mrg_ct), ", ")
drop <- c("before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct")
readme_df = readme_df[,!(names(readme_df) %in% drop)]
# 2 some expansion needs to happens for each project
expand_timeseries <- function(project_row) {
longer <- project_row |>
pivot_longer(cols = starts_with("ct"),
names_to = "window",
values_to = "count") |>
unnest(count)
longer$observation_type <- gsub("^.*_", "", longer$window)
longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type)))
longer$count <- as.numeric(longer$count)
#longer <- longer[which(longer$observation_type == "all"),]
return(longer)
}
expanded_data <- expand_timeseries(readme_df[1,])
for (i in 2:nrow(readme_df)){
expanded_data <- rbind(expanded_data, expand_timeseries(readme_df[i,]))
}
#filter out the windows of time that we're looking at
window_num <- 8
windowed_data <- expanded_data |>
filter(week >= (27 - window_num) & week <= (27 + window_num)) |>
mutate(D = ifelse(week > 27, 1, 0))
summed_data <- windowed_data |>
filter(D==1) |>
group_by(upstream_vcs_link) |>
summarise_at(vars(count), list(summed_count=sum))
#concat dataframes into central data
readme_pop_df <- readme_pop_df |>
mutate(project_name = map_chr(upstream_vcs_link, ~ {
parts <- str_split(.x, pattern = "/")[[1]]
if (length(parts) >= 1) {
parts[length(parts)]
} else {
NA_character_
}
}))
readme_topics_df <- readme_topics_df |>
mutate(project_name = map_chr(filename, ~ {
parts <- str_split(.x, pattern = "_")[[1]]
if (length(parts) >= 1) {
paste(head(parts, -1), collapse="_")
} else {
NA_character_
}
}))
readme_total_df <- readme_pop_df |>
join(readme_topics_df, by="project_name")
readme_total_df <- readme_total_df|>
join(summed_data, by="upstream_vcs_link")
#outcome variable that is number of commits by number of new readmeutors
readme_total_df$commit_by_contrib = readme_total_df$summed_count *readme_total_df$after_contrib_new
2024-08-24 22:04:46 +00:00
readme_total_df$logged_outcome = log1p(readme_total_df$commit_by_contrib)
readme_total_df$logged_contrib = log1p(readme_total_df$after_contrib_new)
readme_total_df$logged_commits = log1p(readme_total_df$summed_count)
2024-07-16 15:05:21 +00:00
#running regressions
library(MASS)
2024-08-24 22:04:46 +00:00
lm1 <- glm.nb(logged_contrib~ t0+t1+t2+t7+t3 +t6 + t5, data = readme_total_df)
2024-07-16 15:05:21 +00:00
qqnorm(residuals(lm1))
summary(lm1)
2024-08-24 22:04:46 +00:00
#saveRDS(lm1, "0725_topic_contriboutcome_readme.rda")
contrib_ <- glm.nb(logged_contrib~ t0+t1+t2+t3+ t5 +t6 +t7, data = readme_total_df)
commit_ <- glm.nb(logged_commits~ t0+t1+t2+t3+ t5 +t6 +t7, data = readme_total_df)
library(texreg)
texreg(list(contrib_, commit_), stars=NULL, digits=3, use.packages=FALSE,
custom.model.names=c( 'Contributions','Commits'),
custom.coef.names=c('(Intercept)', 'Topic 1', 'Topic 2', 'Topic 3', 'Topic 4', 'Topic 6', 'Topic 7', 'Topic 8'),
table=FALSE, ci.force = TRUE)