24_deb_pkg_gov/R/stale_scripts/powerAnalysis.orig.R

55 lines
1.9 KiB
R
Raw Normal View History

2023-11-14 16:39:43 +00:00
# This is semi-generic code for doing a power analysis of a logistic regression with 4
# levels in a factor
# when there's some pilot values already available and defined
#modelled heavily the simulation example explained in:
#http://meeting.spsp.org/2016/sites/default/files/Lane%2C%20Hennes%2C%20West%20SPSP%20Power%20Workshop%202016.pdf
library('batman')
library('reshape')
l2p <- function(b) {
odds <- exp(b)
prob <- odds/(1+odds)
return(prob)
}
makeData <- function(n) { #make a random dataset of size n
#4 group IDs
tDF <- data.frame(
Group0=rbinom(n=n, size=1, prob=l2p(pilot.b0)), #ASK: what about se in pilot data?
Group1=rbinom(n=n, size=1, prob=l2p(pilot.b0 + pilot.b1)), # shouldn't my probs
Group2=rbinom(n=n, size=1, prob=l2p(pilot.b0 + pilot.b2)), # include se?
Group3=rbinom(n=n, size=1, prob=l2p(pilot.b0 + pilot.b3)))
sDF <- melt(tDF, id.vars = 0) #AKA the index is the unique id, as far as that goes
colnames(sDF) <- c('source', 'nd')
return(sDF)
}
powerCheck <- function(n, nSims) { #run a power calculation on the dataset given
#set up some empty arrays b/c R
signif0 <- rep(NA, nSims)
signif1 <- rep(NA, nSims)
signif2 <- rep(NA, nSims)
signif3 <- rep(NA, nSims)
signifM <- rep(NA, nSims)
for (s in 1:nSims) { # repeatedly we will....
simData <- makeData(n) # make some data
m1.sim <- glm(nd ~ source, # give the anticipated regression a try
family=binomial(link="logit"), data=simData)
p0 <- coef(summary(m1.sim))[1,4]
p1 <- coef(summary(m1.sim))[2,4]
p2 <- coef(summary(m1.sim))[3,4]
p3 <- coef(summary(m1.sim))[4,4]
signif0[s] <- p0 <=.05
signif1[s] <- p1 <=.05
signif2[s] <- p2 <=.05
signif3[s] <- p3 <=.05
signifM[s] <- p0 <=.05 & p1 <=.05 & p2 <=.05 & p3 <=.05
}
power <- c(mean(signif0), mean(signif1), mean(signif2), mean(signif3), mean(signifM))
return(power)
}