24_deb_pkg_gov/R/.Rhistory

513 lines
30 KiB
R
Raw Normal View History

2024-05-08 14:33:03 +00:00
theme_bw()
2024-05-09 22:05:21 +00:00
test_glmer_ranef_D |>
ggplot(aes(x=rank, y=estimate, col = as.factor(ranef_grouping))) +
geom_linerange(aes(ymin= conf.low, ymax= conf.high)) +
2024-05-08 14:33:03 +00:00
theme_bw()
2024-05-09 22:05:21 +00:00
summary(all_gmodel)
all_gmodel <- glmer(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data)
summary(all_gmodel)
test_condvals <- broom.mixed::tidy(all_gmodel, effects = "ran_vals", conf.int = TRUE)
test_glmer_ranef_D <- test_condvals [which(test_condvals $term == "D"),]
has_zero <- function(estimate, low, high){
return(ifelse((low < 0),ifelse((high > 0), 1, 0), 2))
}
test_glmer_ranef_D <- test_glmer_ranef_D |>
mutate(ranef_grouping = has_zero(estimate, conf.low, conf.high)) |>
mutate(rank = rank(estimate))
test_glmer_ranef_D |>
ggplot(aes(x=rank, y=estimate, col = as.factor(ranef_grouping))) +
geom_linerange(aes(ymin= conf.low, ymax= conf.high)) +
2024-05-08 14:33:03 +00:00
theme_bw()
2024-05-09 22:05:21 +00:00
View(test_glmer_ranef_D)
View(test_condvals)
all_gmodel <- glmer(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data)
summary(all_gmodel)
test_condvals <- broom.mixed::tidy(all_gmodel, effects = "ran_vals", conf.int = TRUE)
View(test_condvals)
all_gmodel <- glmer(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, family = Poisson)
all_gmodel <- glmer(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, family = poisson)
summary(all_gmodel)
all_gmodel <- glmer(count ~ D * I(week_offset)+ scaled_project_age + (D | upstream_vcs_link), data=all_actions_data, family = poisson)
summary(all_gmodel)
test_condvals <- broom.mixed::tidy(all_gmodel, effects = "ran_vals", conf.int = TRUE)
test_glmer_ranef_D <- test_condvals [which(test_condvals $term == "D"),]
has_zero <- function(estimate, low, high){
return(ifelse((low < 0),ifelse((high > 0), 1, 0), 2))
}
test_glmer_ranef_D <- test_glmer_ranef_D |>
mutate(ranef_grouping = has_zero(estimate, conf.low, conf.high)) |>
mutate(rank = rank(estimate))
test_glmer_ranef_D |>
ggplot(aes(x=rank, y=estimate, col = as.factor(ranef_grouping))) +
geom_linerange(aes(ymin= conf.low, ymax= conf.high)) +
2024-05-08 14:33:03 +00:00
theme_bw()
2024-05-09 22:05:21 +00:00
all_gmodel <- glmer(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, family = poisson)
all_gmodel <- glmer(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, nAGQ=0, family = poisson)
summary(all_gmodel)
test_condvals <- broom.mixed::tidy(all_gmodel, effects = "ran_vals", conf.int = TRUE)
test_glmer_ranef_D <- test_condvals [which(test_condvals $term == "D"),]
has_zero <- function(estimate, low, high){
return(ifelse((low < 0),ifelse((high > 0), 1, 0), 2))
}
test_glmer_ranef_D <- test_glmer_ranef_D |>
mutate(ranef_grouping = has_zero(estimate, conf.low, conf.high)) |>
mutate(rank = rank(estimate))
test_glmer_ranef_D |>
ggplot(aes(x=rank, y=estimate, col = as.factor(ranef_grouping))) +
geom_linerange(aes(ymin= conf.low, ymax= conf.high)) +
2024-05-08 14:33:03 +00:00
theme_bw()
2024-05-09 22:05:21 +00:00
variance(all_actions_data$log1p_count)
var(all_actions_data$log1p_count)
mean (all_actions_data$log1p_count)
#all_gmodel <- glmer(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, nAGQ=0, family = poisson)
all_gmodel <- glmer.nb(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link),data=all_actions_data)
#all_gmodel <- glmer(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, nAGQ=0, family = poisson)
all_gmodel <- glmer.nb(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link),
control=glmerControl(optimizer="bobyqa",
optCtrl=list(maxfun=2e5)), data=all_actions_data)
#all_gmodel <- glmer(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, nAGQ=0, family = poisson)
all_gmodel <- glmer.nb(count ~ D * I(week_offset)+ scaled_project_age + (D | upstream_vcs_link),
control=glmerControl(optimizer="bobyqa",
optCtrl=list(maxfun=2e5)), data=all_actions_data)
summary(all_gmodel)
test_condvals <- broom.mixed::tidy(all_gmodel, effects = "ran_vals", conf.int = TRUE)
test_glmer_ranef_D <- test_condvals [which(test_condvals $term == "D"),]
has_zero <- function(estimate, low, high){
return(ifelse((low < 0),ifelse((high > 0), 1, 0), 2))
}
test_glmer_ranef_D <- test_glmer_ranef_D |>
mutate(ranef_grouping = has_zero(estimate, conf.low, conf.high)) |>
mutate(rank = rank(estimate))
test_glmer_ranef_D |>
ggplot(aes(x=rank, y=estimate, col = as.factor(ranef_grouping))) +
geom_linerange(aes(ymin= conf.low, ymax= conf.high)) +
2024-05-08 14:33:03 +00:00
theme_bw()
2024-05-09 22:05:21 +00:00
#all_gmodel <- glmer(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, nAGQ=0, family = poisson)
#all_gmodel <- glmer.nb(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset) | upstream_vcs_link),
# control=glmerControl(optimizer="bobyqa",
# optCtrl=list(maxfun=2e5)), data=all_actions_data)
all_gmodel <- glmer.nb(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset) | upstream_vcs_link), data=all_actions_data)
#all_gmodel <- glmer(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, nAGQ=0, family = poisson)
#all_gmodel <- glmer.nb(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset) | upstream_vcs_link),
# control=glmerControl(optimizer="bobyqa",
# optCtrl=list(maxfun=2e5)), data=all_actions_data)
all_gmodel <- glmer.nb(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset) | upstream_vcs_link), data=all_actions_data, verbose=TRUE)
#all_gmodel <- glmer(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, nAGQ=0, family = poisson)
#all_gmodel <- glmer.nb(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset) | upstream_vcs_link),
# control=glmerControl(optimizer="bobyqa",
# optCtrl=list(maxfun=2e5)), data=all_actions_data)
all_gmodel <- glmer.nb(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset) | upstream_vcs_link), data=all_actions_data)
#all_gmodel <- glmer(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, nAGQ=0, family = poisson)
#all_gmodel <- glmer.nb(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset) | upstream_vcs_link),
# control=glmerControl(optimizer="bobyqa",
# optCtrl=list(maxfun=2e5)), data=all_actions_data)
all_gmodel <- glmer.nb(count ~ D * I(week_offset)+ scaled_project_age + (D | upstream_vcs_link), data=all_actions_data)
2024-05-12 21:17:52 +00:00
library(tidyverse)
library(plyr)
library(stringr)
try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path)))
#load in data
contrib_df <- read_csv("../final_data/deb_contrib_pop_change.csv")
readme_df <- read_csv("../final_data/deb_readme_pop_change.csv")
#some expansion needs to happens for each project
expand_timeseries <- function(project_row) {
longer <- project_row |>
pivot_longer(cols = ends_with("new"),
names_to = "window",
values_to = "count") |>
unnest(count) |>
mutate(after_doc = as.numeric(str_detect(window, "after"))) |>
mutate(is_collab = as.numeric(str_detect(window, "collab")))
return(longer)
}
expanded_readme_data <- expand_timeseries(readme_df[1,])
for (i in 2:nrow(readme_df)){
expanded_readme_data <- rbind(expanded_readme_data, expand_timeseries(readme_df[i,]))
}
expanded_contrib_data <- expand_timeseries(contrib_df[1,])
for (i in 2:nrow(contrib_df)){
expanded_contrib_data <- rbind(expanded_contrib_data, expand_timeseries(contrib_df[i,]))
}
expanded_readme_data$log1pcount <- log1p(expanded_readme_data$count)
expanded_contrib_data$log1pcount <- log1p(expanded_contrib_data$count)
expanded_readme_data$logcount <- log(expanded_readme_data$count)
expanded_contrib_data$logcount <- log(expanded_contrib_data$count)
#breaking out the types of population counts
collab_pop_readme <- expanded_readme_data[which(expanded_readme_data$is_collab == 1),]
contrib_pop_readme <- expanded_readme_data[which(expanded_readme_data$is_collab == 0),]
collab_pop_contrib <- expanded_contrib_data[which(expanded_contrib_data$is_collab == 1),]
contrib_pop_contrib <- expanded_contrib_data[which(expanded_contrib_data$is_collab == 0),]
#import models
library(lme4)
library(optimx)
collab_readme_model <- lmer(log1pcount ~ after_doc + (1| upstream_vcs_link), data=collab_pop_readme, REML=FALSE)
collab_readme_model <- glmer.nb(log1pcount ~ after_doc + (1| upstream_vcs_link), data=collab_pop_readme)
summary(collab_readme_model)
crm_residuals <- residuals(collab_readme_model)
qqnorm(crm_residuals)
collab_readme_model <- glmer.nb(log1pcount ~ after_doc + (after_doc| upstream_vcs_link), data=collab_pop_readme)
summary(collab_readme_model)
crm_residuals <- residuals(collab_readme_model)
qqnorm(crm_residuals)
saveRDS(collab_readme_model, "0510_pop_rm_collab.rda")
contrib_readme_model <- glmer.nb(log1pcount ~ after_doc + (after_doc| upstream_vcs_link), data=contrib_pop_readme)
summary(contrib_readme_model)
saveRDS(contrib_readme_model, "0510_pop_rm_contrib.rda")
collab_contrib_model <- glmer.nb(log1pcount ~ after_doc + (after_doc| upstream_vcs_link), data=collab_pop_contrib)
summary(collab_contrib_model)
saveRDS(collab_contrib_model, "0510_pop_contrib_collab.rda")
contrib_contrib_model <- glmer.nb(log1pcount ~ after_doc + (after_doc| upstream_vcs_link), data=contrib_pop_contrib)
summary(contrib_contrib_model)
saveRDS(contrib_contrib_model, "0510_pop_contrib_contrib.rda")
summary(collab_readme_model)
summary(contrib_readme_model)
qqnorm(crm_residuals)
conrm_residuals <- residuals(contrib_readme_model)
qqnorm(conrm_residuals)
summary(collab_contrib_model)
summary(contrib_contrib_model)
library(ggplot2)
expanded_readme_data |>
ggplot(aes(x = after_doc, y = log1pcount, col = as.factor(is_collab))) +
geom_point() + geom_jitter()
expanded_readme_data |>
ggplot(aes(x = after_doc, y = count, col = as.factor(is_collab))) +
geom_point() + geom_jitter()
expanded_readme_data |>
ggplot(aes(x = after_doc, y = log1pcount, col = as.factor(is_collab))) +
geom_point() + geom_jitter()
#primary analysis for cross-sectional community metrics
overall_data <- read_csv('../final_data/deb_full_data.csv',show_col_types = FALSE)
octo_data <- read_csv('../final_data/deb_octo_data.csv', show_col_types = FALSE)
readme_data <- read_csv("../final_data/deb_readme_roster.csv", show_col_types = FALSE)
contributing_data <- read_csv("../final_data/deb_contribfile_roster.csv", show_col_types = FALSE)
overall_data$mmt <- (((overall_data$collaborators * 2)+ overall_data$contributors) / (overall_data$contributors + overall_data$collaborators))
mean(overall_data$mmt)
hist(overall_data$mmt, probability = TRUE)
#age_vector <- overall_data$age_of_project/365
#quantile(age_vector)
overall_data$new.age <- as.numeric(cut(overall_data$age_of_project/365, breaks=c(0,7.524197,10.323056,13.649367,17), labels=c(1,2,3,4)))
table(overall_data$new.age)
overall_data$new.age.factor <- as.factor(overall_data$new.age)
overall_data$scaled_age <- scale(overall_data$age_of_project)
mmtmodel1 <- lm(underproduction_mean ~ mmt + scaled_age, data=overall_data)
summary(mmtmodel1)
qqnorm(residuals(mmtmodel1))
summary(mmtmodel1)
octo_data$scaled_age <- scale(octo_data$age_of_project)
octo_data$mmt <- (((octo_data$collaborators * 2)+ octo_data$contributors) / (octo_data$contributors + octo_data$collaborators))
octo_data$issue_mmt <- ((octo_data$issue_contrib_count * 2) + (octo_data$total_contrib - octo_data$issue_contrib_count)) / (octo_data$total_contrib)
octo_data$wiki_mmt <- ((octo_data$wiki_contrib_count * 2) + (octo_data$total_contrib - octo_data$wiki_contrib_count)) / (octo_data$total_contrib)
g4 <- ggplot(octo_data)
g4
#below are the models for the octo data, there should be analysis for each one
octo_mmtmodel1 <- lm(underproduction_mean ~ mmt + new.age.factor, data=octo_data)
summary(octo_mmtmodel1)
#below are the models for the octo data, there should be analysis for each one
octo_mmtmodel1 <- lm(underproduction_mean ~ mmt + scaled_age, data=octo_data)
summary(octo_mmtmodel1)
issue_mmtmodel1 <- lm(underproduction_mean ~ issue_mmt + scaled_age, data=octo_data)
summary(issue_mmtmodel1)
sqrt_issue_mmtmodel1 <- lm(underproduction_mean ~ sqrt_issue_mmt + scaled_age, data=octo_data)
wiki_mmtmodel1 <- lm(underproduction_mean ~ wiki_mmt + scaled_age, data=octo_data)
summary(wiki_mmtmodel1)
qqnorm(residuals(issue_mmtmodel1))
qqnorm(residuals(wiki_mmtmodel1))
texreg(list(octo_mmtmodel1, issue_mmtmodel1, wiki_mmtmodel1), stars=NULL, digits=2,
custom.model.names=c( 'M1: MMT','M2: issue contrib.', 'M3: wiki_contrib.' ),
custom.coef.names=c('(Intercept)', 'MMT', 'Issues', 'Age-2', 'Age-3', 'Age-4', 'Wiki'),
use.packages=FALSE, table=FALSE, ci.force = TRUE)
library(texreg) #my little "lib"
texreg(list(octo_mmtmodel1, issue_mmtmodel1, wiki_mmtmodel1), stars=NULL, digits=2,
custom.model.names=c( 'M1: MMT','M2: issue contrib.', 'M3: wiki_contrib.' ),
custom.coef.names=c('(Intercept)', 'MMT', 'Issues', 'Age-2', 'Age-3', 'Age-4', 'Wiki'),
use.packages=FALSE, table=FALSE, ci.force = TRUE)
texreg(list(octo_mmtmodel1, issue_mmtmodel1, wiki_mmtmodel1), stars=NULL, digits=2,
custom.model.names=c( 'M1: MMT','M2: issue contrib.', 'M3: wiki_contrib.' ),
custom.coef.names=c('(Intercept)', 'MMT', 'Issues', 'scaled_age', 'Wiki'),
use.packages=FALSE, table=FALSE, ci.force = TRUE)
summary(octo_mmtmodel1)
summary(wiki_mmtmodel1)
#left skewed data, need to transform
sum(is.na(octo_data$wiki_mmt))
#left skewed data, need to transform
sum(is.na(octo_data$issue_mmt))
#left skewed data, need to transform
sum(is.na(octo_data$mmt))
test_frame <- na.omit(octo_data)
#left skewed data, need to transform
sum(is.na(octo_data$issue_contrib_count))
#left skewed data, need to transform
sum(is.na(octo_data$wiki_contrib_count))
octo_data$issue_mmt <- ((octo_data$issue_contrib_count * 2) + (octo_data$total_contrib - octo_data$issue_contrib_count)) / (octo_data$total_contrib)
#left skewed data, need to transform
typeof(octo_data$wiki_contrib_count)
View(octo_data)
octo_data$issue_mmt <- ((octo_data$issue_contrib_count * 2) + (octo_data$api_contrib_count + octo_data$file_contrib_count + octo_data$wiki_contrib_count)) / (octo_data$api_contrib_count + octo_data$file_contrib_count + octo_data$wiki_contrib_count + octo_data$issue_contrib_count)
sum(is.na(octo_data$issue_mmt))
octo_data$issue_mmt <- ((octo_data$issue_contrib_count * 2) + (octo_data$total_contrib - octo_data$issue_contrib_count)) / (octo_data$total_contrib)
sum(is.na(octo_data$issue_mmt))
sum(octo_data$total_contrib == 0)
#clean octo data
octo_data <- filter(octo_data, total_contrib == 0)
sum(octo_data$total_contrib == 0)
octo_data <- read_csv('../final_data/deb_octo_data.csv', show_col_types = FALSE)
#clean octo data
octo_data <- filter(octo_data, total_contrib != 0)
octo_data$scaled_age <- scale(octo_data$age_of_project)
octo_data$mmt <- (((octo_data$collaborators * 2)+ octo_data$contributors) / (octo_data$contributors + octo_data$collaborators))
octo_data$issue_mmt <- ((octo_data$issue_contrib_count * 2) + (octo_data$total_contrib - octo_data$issue_contrib_count)) / (octo_data$total_contrib)
#right skewed data, need to transform
octo_data$wiki_mmt <- ((octo_data$wiki_contrib_count * 2) + (octo_data$total_contrib - octo_data$wiki_contrib_count)) / (octo_data$total_contrib)
#below are the models for the octo data, there should be analysis for each one
octo_mmtmodel1 <- lm(underproduction_mean ~ mmt + scaled_age, data=octo_data)
summary(octo_mmtmodel1)
issue_mmtmodel1 <- lm(underproduction_mean ~ issue_mmt + scaled_age, data=octo_data)
issue_mmtmodel1 <- lm(underproduction_mean ~ issue_mmt + scaled_age, data=octo_data)
qqnorm(residuals(issue_mmtmodel1))
sqrt_issue_mmtmodel1 <- lm(underproduction_mean ~ sqrt_issue_mmt + scaled_age, data=octo_data)
wiki_mmtmodel1 <- lm(underproduction_mean ~ wiki_mmt + scaled_age, data=octo_data)
summary(wiki_mmtmodel1)
qqnorm(residuals(wiki_mmtmodel1))
texreg(list(octo_mmtmodel1, issue_mmtmodel1, wiki_mmtmodel1), stars=NULL, digits=2,
custom.model.names=c( 'M1: MMT','M2: issue contrib.', 'M3: wiki_contrib.' ),
custom.coef.names=c('(Intercept)', 'MMT', 'Issues', 'scaled_age', 'Wiki'),
use.packages=FALSE, table=FALSE, ci.force = TRUE)
texreg(list(octo_mmtmodel1, issue_mmtmodel1, wiki_mmtmodel1), stars=NULL, digits=2,
custom.model.names=c( 'M1: MMT','M2: issue contrib.', 'M3: wiki contrib.' ),
custom.coef.names=c('(Intercept)', 'MMT', 'scaled_age', 'Issue MMT', 'Wiki MMT'),
use.packages=FALSE, table=FALSE, ci.force = TRUE)
qqnorm(residuals(wiki_mmtmodel1))
View(octo_data)
#TODO: find the overlap between projects with octo data and projects with readmes or contributings
readme_did_roster <- read_csv("../final_data/deb_readme_did.csv", show_col_types = FALSE)
contrib_did_roster <- read_csv("../final_data/deb_contrib_did.csv", show_col_types = FALSE)
octo_data |>
mutate(has_readme = as.numeric(upstream_vcs_link %in% readme_did_roster$upstream_vcs_link))
View(octo_data)
octo_data <- octo_data |>
mutate(has_readme = as.numeric(upstream_vcs_link %in% readme_did_roster$upstream_vcs_link)) |>
mutate(has_contrib = as.numeric(upstream_vcs_link %in% contrib_did_roster$upstream_vcs_link))
View(octo_data)
#below here is the analysis for the readme.md data
cor.test(octo_data$mmt, octo_data$has_readme)
cor.test(octo_data$mmt, octo_data$has_contributing)
cor.test(octo_data$mmt, octo_data$has_contrib)
issues_expansion <- lm(issue_mmt ~ has_readme + scaled_age, data=octo_data)
summary(issues_expansion)
issues_expansion <- lm(issue_mmt ~ has_contrib + scaled_age, data=octo_data)
summary(issues_expansion)
#below here is the analysis for the readme.md data
cor.test(octo_data$mmt, octo_data$scaled_age)
#below here is the analysis for the readme.md data
cor.test(octo_data$mmt, octo_data$scaled_age)
octo_mmtmodel1 <- lm(underproduction_mean ~ mmt + scaled_age + has_readme + has_contributing, data=octo_data)
octo_data <- octo_data |>
mutate(has_readme = as.numeric(upstream_vcs_link %in% readme_did_roster$upstream_vcs_link)) |>
mutate(has_contrib = as.numeric(upstream_vcs_link %in% contrib_did_roster$upstream_vcs_link))
octo_mmtmodel1 <- lm(underproduction_mean ~ mmt + scaled_age + has_readme + has_contributing, data=octo_data)
octo_mmtmodel1 <- lm(underproduction_mean ~ mmt + scaled_age + has_readme + has_contrib, data=octo_data)
summary(octo_mmtmodel1)
issue_mmtmodel1 <- lm(underproduction_mean ~ issue_mmt + scaled_age + has_readme + has_contrib, data=octo_data)
summary(issue_mmtmodel1)
wiki_mmtmodel1 <- lm(underproduction_mean ~ wiki_mmt + scaled_age + has_readme + has_contrib, data=octo_data)
summary(wiki_mmtmodel1)
texreg(list(octo_mmtmodel1, issue_mmtmodel1, wiki_mmtmodel1), stars=NULL, digits=2,
custom.model.names=c( 'M1: MMT','M2: issue contrib.', 'M3: wiki contrib.' ),
custom.coef.names=c('(Intercept)', 'MMT', 'scaled_age', 'has readme', 'has contrib', 'Issue MMT', 'Wiki MMT'),
use.packages=FALSE, table=FALSE, ci.force = TRUE)
qqnorm(residuals(issue_mmtmodel1))
qqnorm(residuals(wiki_mmtmodel1))
#below here is the analysis for the readme.md data
cor.test(octo_data$mmt, octo_data$issue_mmt)
#below here is the analysis for the readme.md data
cor.test(octo_data$mmt, octo_data$wiki_mmt)
#below here is the analysis for the readme.md data
cor.test(octo_data$mmt, octo_data$has_readme)
cor.test(octo_data$has_readme, octo_data$has_contrib)
library(readr)
library(ggplot2)
library(tidyverse)
#primary analysis for cross-sectional community metrics
overall_data <- read_csv('../final_data/deb_full_data.csv',show_col_types = FALSE)
octo_data <- read_csv('../final_data/deb_octo_data.csv', show_col_types = FALSE)
readme_data <- read_csv("../final_data/deb_readme_roster.csv", show_col_types = FALSE)
contributing_data <- read_csv("../final_data/deb_contribfile_roster.csv", show_col_types = FALSE)
overall_data$mmt <- (((overall_data$collaborators * 2)+ overall_data$contributors) / (overall_data$contributors + overall_data$collaborators))
mean(overall_data$mmt)
hist(overall_data$mmt, probability = TRUE)
mmtmodel1 <- lm(underproduction_mean ~ mmt + scaled_age, data=overall_data)
overall_data$scaled_age <- scale(overall_data$age_of_project)
mmtmodel1 <- lm(underproduction_mean ~ mmt + scaled_age, data=overall_data)
summary(mmtmodel1)
#clean octo data
octo_data <- filter(octo_data, total_contrib != 0)
octo_data$scaled_age <- scale(octo_data$age_of_project)
octo_data$mmt <- (((octo_data$collaborators * 2)+ octo_data$contributors) / (octo_data$contributors + octo_data$collaborators))
octo_data$issue_mmt <- ((octo_data$issue_contrib_count * 2) + (octo_data$total_contrib - octo_data$issue_contrib_count)) / (octo_data$total_contrib)
#right skewed data, need to transform
octo_data$wiki_mmt <- ((octo_data$wiki_contrib_count * 2) + (octo_data$total_contrib - octo_data$wiki_contrib_count)) / (octo_data$total_contrib)
octo_mmtmodel1 <- lm(underproduction_mean ~ mmt + scaled_age + has_readme + has_contrib, data=octo_data)
#find the overlap between projects with octo data and projects with readmes or contributings
readme_did_roster <- read_csv("../final_data/deb_readme_did.csv", show_col_types = FALSE)
contrib_did_roster <- read_csv("../final_data/deb_contrib_did.csv", show_col_types = FALSE)
octo_data <- octo_data |>
mutate(has_readme = as.numeric(upstream_vcs_link %in% readme_did_roster$upstream_vcs_link)) |>
mutate(has_contrib = as.numeric(upstream_vcs_link %in% contrib_did_roster$upstream_vcs_link))
octo_mmtmodel1 <- lm(underproduction_mean ~ mmt + scaled_age + has_readme + has_contrib, data=octo_data)
summary(octo_mmtmodel1)
mmt_outcome_model <- lm(mmt ~ scaled_age + has_readme + has_contrib, data = octo_data)
summary(mmt_outcome_model)
mmt_outcome_model <- lm(issue_mmt ~ scaled_age + has_readme + has_contrib, data = octo_data)
summary(mmt_outcome_model)
mmt_outcome_model <- lm(wiki_mmt ~ scaled_age + has_readme + has_contrib, data = octo_data)
summary(mmt_outcome_model)
mmt_outcome_model <- lm(issue_mmt ~ scaled_age + has_readme + has_contrib, data = octo_data)
summary(mmt_outcome_model)
mmt_outcome_model <- lm(mmt ~ scaled_age + has_readme + has_contrib, data = octo_data)
summary(mmt_outcome_model)
overall_data <- overall_data |>
mutate(has_readme = as.numeric(upstream_vcs_link %in% readme_did_roster$upstream_vcs_link)) |>
mutate(has_contrib = as.numeric(upstream_vcs_link %in% contrib_did_roster$upstream_vcs_link))
all_mmt_outcome_model <- lm(mmt ~ scaled_age + has_readme + has_contrib, data = overall_data)
summary(all_mmt_outcome_model)
#pulling in the group data for the ranef coefficients
rm_grouping <- read_csv('../051224_readme_grouped.csv',show_col_types = FALSE)
#pulling in the group data for the ranef coefficients
rm_grouping <- read_csv('051224_readme_grouped.csv',show_col_types = FALSE)
contrib_grouping <- read_csv('051224_contrib_grouped.csv', show_col_types = FALSE)
View(contrib_grouping)
View(rm_grouping)
View(readme_did_roster)
grouped_rm <- left_join(rm_grouping, overall_data, by = c("level","upstream_vcs_link"))
rm_grouping <- rm_grouping |>
rename(upstream_vcs_link = level)
View(rm_grouping)
grouped_rm <- left_join(rm_grouping, overall_data, by="upstream_vcs_link")
View(grouped_rm)
contrib_grouping <- contrib_grouping |>
rename(upstream_vcs_link = level)
grouped_contrib <- left_join(contrib_grouping, overall_data, by="upstream_vcs_link")
View(grouped_rm)
#analyses
cor.test(grouped_rm$mmt, grouped_rm$ranef_grouping)
cor.test(grouped_contrib$mmt, grouped_contrib$ranef_grouping)
#analyses
cor.test(grouped_rm$underproduction_mean, grouped_rm$ranef_grouping)
cor.test(grouped_contrib$underproduction_mean, grouped_contrib$ranef_grouping)
#analyses
cor.test(grouped_rm$underproduction_mean, grouped_rm$estimate)
cor.test(grouped_contrib$underproduction_mean, grouped_contrib$estimate)
View(grouped_rm)
#test with linear model
grouping_model <- lm(underproduction_mean ~ estimate + scaled_age, data=grouped_rm)
summary(grouping_model)
#test with linear model
grouping_model <- lm(underproduction_mean ~ estimate + mmt + scaled_age, data=grouped_rm)
summary(grouping_model)
#test with linear model
grouping_model <- lm(underproduction_mean ~ ranef_grouping + mmt + scaled_age, data=grouped_rm)
summary(grouping_model)
grouping_model_contrib <- lm(underproduction_mean ~ ranef_grouping + mmt + scaled_age, data=grouped_contrib)
summary(grouping_model_contrib)
#test with linear model
grouping_model_rm <- lm(underproduction_mean ~ estimate + mmt + scaled_age, data=grouped_rm)
summary(grouping_model_rm)
grouping_model_contrib <- lm(underproduction_mean ~ estimate + mmt + scaled_age, data=grouped_contrib)
summary(grouping_model_contrib)
#test with linear model
grouping_model_rm <- glm.nb(underproduction_mean ~ ranef_grouping + mmt + scaled_age, data=grouped_rm)
#pulling in the group data for the ranef coefficients
rm_grouping <- read_csv('051224_readme_grouped.csv',show_col_types = FALSE)
contrib_grouping <- read_csv('051224_contrib_grouped.csv', show_col_types = FALSE)
rm_grouping <- rm_grouping |>
rename(upstream_vcs_link = level)|>
mutate(factored_group = as.factor(ranef_grouping))
contrib_grouping <- contrib_grouping |>
rename(upstream_vcs_link = level) |>
mutate(factored_group = as.factor(ranef_grouping))
grouped_rm <- left_join(rm_grouping, overall_data, by="upstream_vcs_link")
grouped_contrib <- left_join(contrib_grouping, overall_data, by="upstream_vcs_link")
#analyses
cor.test(grouped_rm$underproduction_mean, grouped_rm$factored_group)
#test with linear model
grouping_model_rm <- lm(underproduction_mean ~ factored_group + mmt + scaled_age, data=grouped_rm)
summary(grouping_model_rm)
grouping_model_contrib <- lm(underproduction_mean ~ factored_group + mmt + scaled_age, data=grouped_contrib)
summary(grouping_model_contrib)
summary(grouping_model_rm)
grouping_model_contrib <- lm(underproduction_mean ~ factored_group + mmt + scaled_age, data=grouped_contrib)
summary(grouping_model_contrib)
qqnorm(residuals(grouping_model_rm))
qqnorm(residuals(grouping_model_contrib))
rm_did <- read_csv('../final_data/deb_readme_did.csv',show_col_types = FALSE)
contrib_did <- read_csv('../final_data/deb_contrib_did.csv', show_col_types = FALSE)
grouped_rm <- left_join(grouped_rm, rm_did, by="upstream_vcs_link")
grouped_contrib <- left_join(grouped_contrib, contrib_did, by="upstream_vcs_link")
#calculate in terms of July 6, 2020
typeof(event_date)
#calculate in terms of July 6, 2020
typeof(grouped_rm$event_date)
#calculate in terms of July 6, 2020
typeof(as.Date(grouped_rm$event_date))
how_long_has_file <- as.Date("2020-07-06") - as.Date(grouped_rm$event_date)
how_long_has_file <- difftime(as.Date("2020-07-06"), as.Date(grouped_rm$event_date))
how_long_has_file <- difftime(as.Date("2020-07-06"), as.Date(grouped_rm$event_date), units = "days")
#calculate in terms of July 6, 2020
grouped_rm$event_date
#calculate in terms of July 6, 2020
dates <- as.POSIXct(grouped_rm$event_date,tz="UTC")
dates
typeof(dates)
how_long_has_file <- difftime(as.Date("2020-07-06"), as.Date(grouped_rm$event_date), units = "days")
#calculate in terms of July 6, 2020
dtparts = t(as.data.frame(strsplit(grouped_rm$event_date,' ')))
#calculate in terms of July 6, 2020
dtparts = t(as.data.frame(strsplit(grouped_rm$event_date,' ')))
#calculate in terms of July 6, 2020
dtparts = t(as.data.frame(strsplit(as.character(grouped_rm$event_date),' ')))
View(dtparts)
thetimes = chron(dates=dtparts[,1],times=dtparts[,2],
+ format=c('y-m-d','h:m:s'))
thetimes = chron(dates=dtparts[,1],times=dtparts[,2], format=c('y-m-d','h:m:s'))
#calculate in terms of July 6, 2020
library(chron)
dtparts = t(as.data.frame(strsplit(as.character(grouped_rm$event_date),' ')))
thetimes = chron(dates=dtparts[,1],times=dtparts[,2], format=c('y-m-d','h:m:s'))
typeof(thetimes)
grouped_rm <- grouped_rm |>
mutate(formatted_event_time = chron(dates=dtparts[,1],times=dtparts[,2], format=c('y-m-d','h:m:s'))) |>
mutate(event_delta = difftime(as.chron("2020-07-06"), formatted_event_time, units = "days"))
View(grouped_rm)
#test with linear model
grouping_model_rm <- lm(underproduction_mean ~ event_delta*factored_group + mmt + scaled_age, data=grouped_rm)
summary(grouping_model_rm)
#now doing it for the contrib_data
contrib_dtparts = t(as.data.frame(strsplit(as.character(grouped_contrib$event_date),' ')))
grouped_contrib <- grouped_contrib |>
mutate(formatted_event_time = chron(dates=contrib_dtparts[,1],times=contrib_dtparts[,2], format=c('y-m-d','h:m:s'))) |>
mutate(event_delta = difftime(as.chron("2020-07-06"), formatted_event_time, units = "days"))
grouping_model_contrib <- lm(underproduction_mean ~ event_delta*factored_group + mmt + scaled_age, data=grouped_contrib)
summary(grouping_model_contrib)
summary(grouping_model_rm)
qqnorm(residuals(grouping_model_rm))
grouping_model_contrib <- lm(underproduction_mean ~ event_delta*factored_group + mmt + scaled_age, data=grouped_contrib)
summary(grouping_model_contrib)
qqnorm(residuals(grouping_model_contrib))
qqnorm(residuals(grouping_model_rm))
qqnorm(residuals(grouping_model_contrib))
issues_expansion <- lm(issue_mmt ~ as.factor(has_contrib) + scaled_age, data=octo_data)
summary(issues_expansion)
govdoc_mmt <- lm(mmt ~ as.factor(has_contrib) + scaled_age, data=octo_data)
summary(govdoc_mmt)
govdoc_mmt <- lm(mmt ~ as.factor(has_readme) + scaled_age, data=octo_data)
summary(govdoc_mmt)
govdoc_issuesmmt <- lm(issue_mmt ~ as.factor(has_readme) + scaled_age, data=octo_data)
summary(govdoc_issuesmmt)
mmt_outcome_model <- lm(mmt ~ scaled_age + as.factor(has_readme) + as.factor(has_contrib), data = octo_data)
summary(mmt_outcome_model)
all_mmt_outcome_model <- lm(mmt ~ scaled_age + as.factor(has_readme) + as.factor(has_contrib), data = overall_data)
summary(all_mmt_outcome_model)
govdoc_issuesmmt <- lm(issue_mmt ~ scaled_age + as.factor(has_readme) + as.factor(has_contrib), data=octo_data)
summary(govdoc_issuesmmt)