2024-04-15 14:38:41 +00:00
|
|
|
# this is the file with the lmer multi-level rddAnalysis
|
2024-04-16 00:36:11 +00:00
|
|
|
library(tidyverse)
|
2024-04-19 19:30:41 +00:00
|
|
|
library(plyr)
|
2024-04-15 14:38:41 +00:00
|
|
|
# 0 loading the readme data in
|
|
|
|
try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path)))
|
|
|
|
readme_df <- read_csv("../final_data/deb_readme_did.csv")
|
|
|
|
# 1 preprocessing
|
2024-04-19 21:04:06 +00:00
|
|
|
#colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new")
|
|
|
|
col_order <- c("upstream_vcs_link", "age_of_project", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new")
|
2024-04-15 14:38:41 +00:00
|
|
|
readme_df <- readme_df[,col_order]
|
|
|
|
readme_df$ct_before_all <- str_split(gsub("[][]","", readme_df$before_all_ct), ", ")
|
|
|
|
readme_df$ct_after_all <- str_split(gsub("[][]","", readme_df$after_all_ct), ", ")
|
|
|
|
readme_df$ct_before_mrg <- str_split(gsub("[][]","", readme_df$before_mrg_ct), ", ")
|
|
|
|
readme_df$ct_after_mrg <- str_split(gsub("[][]","", readme_df$after_mrg_ct), ", ")
|
|
|
|
drop <- c("before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct")
|
|
|
|
readme_df = readme_df[,!(names(readme_df) %in% drop)]
|
|
|
|
# 2 some expansion needs to happens for each project
|
|
|
|
expand_timeseries <- function(project_row) {
|
|
|
|
longer <- project_row |>
|
|
|
|
pivot_longer(cols = starts_with("ct"),
|
|
|
|
names_to = "window",
|
|
|
|
values_to = "count") |>
|
|
|
|
unnest(count)
|
|
|
|
longer$observation_type <- gsub("^.*_", "", longer$window)
|
|
|
|
longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type)))
|
|
|
|
longer$count <- as.numeric(longer$count)
|
|
|
|
#longer <- longer[which(longer$observation_type == "all"),]
|
|
|
|
return(longer)
|
|
|
|
}
|
|
|
|
expanded_data <- expand_timeseries(readme_df[1,])
|
|
|
|
for (i in 2:nrow(readme_df)){
|
|
|
|
expanded_data <- rbind(expanded_data, expand_timeseries(readme_df[i,]))
|
|
|
|
}
|
2024-04-16 16:43:32 +00:00
|
|
|
#filter out the windows of time that we're looking at
|
2024-04-15 14:38:41 +00:00
|
|
|
window_num <- 8
|
2024-04-21 03:13:13 +00:00
|
|
|
windowed_data <- expanded_data |>
|
2024-04-23 18:59:06 +00:00
|
|
|
filter(week >= (27 - window_num) & week <= (27 + window_num)) |>
|
|
|
|
mutate(D = ifelse(week > 27, 1, 0))
|
2024-04-20 16:09:35 +00:00
|
|
|
#scale the age numbers
|
2024-04-21 03:13:13 +00:00
|
|
|
windowed_data$scaled_project_age <- scale(windowed_data$age_of_project)
|
2024-04-23 18:59:06 +00:00
|
|
|
windowed_data$week_offset <- windowed_data$week - 27
|
2024-04-19 21:04:06 +00:00
|
|
|
#separate out the cleaning d
|
2024-04-21 03:13:13 +00:00
|
|
|
all_actions_data <- windowed_data[which(windowed_data$observation_type == "all"),]
|
|
|
|
mrg_actions_data <- windowed_data[which(windowed_data$observation_type == "mrg"),]
|
2024-04-20 02:07:06 +00:00
|
|
|
#find some EDA to identify which types of models might be the best for this
|
2024-04-24 17:59:07 +00:00
|
|
|
hist(log(all_actions_data$count))
|
2024-04-20 02:07:06 +00:00
|
|
|
median(all_actions_data$count)
|
|
|
|
table(all_actions_data$count)
|
|
|
|
var(all_actions_data$count)
|
|
|
|
qqnorm(all_actions_data$count)
|
|
|
|
y <- qunif(ppoints(length(all_actions_data$count)))
|
|
|
|
qqplot(all_actions_data$count, y)
|
2024-04-24 17:59:07 +00:00
|
|
|
all_actions_data$logged_count <- log(all_actions_data$count)
|
|
|
|
all_actions_data$log1p_count <- log1p(all_actions_data$count)
|
2024-04-15 14:38:41 +00:00
|
|
|
# 3 rdd in lmer analysis
|
2024-04-16 16:43:32 +00:00
|
|
|
# rdd: https://rpubs.com/phle/r_tutorial_regression_discontinuity_design
|
|
|
|
# lmer: https://www.youtube.com/watch?v=LzAwEKrn2Mc
|
2024-04-15 14:38:41 +00:00
|
|
|
library(lme4)
|
2024-04-22 15:41:14 +00:00
|
|
|
# https://www.bristol.ac.uk/cmm/learning/videos/random-intercepts.html#exvar
|
2024-04-24 21:55:40 +00:00
|
|
|
library(optimx)
|
2024-05-07 23:40:38 +00:00
|
|
|
library(lattice)
|
2024-04-24 21:55:40 +00:00
|
|
|
all_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE, control = lmerControl(
|
|
|
|
optimizer ='optimx', optCtrl=list(method='L-BFGS-B')))
|
2024-05-08 23:58:43 +00:00
|
|
|
summary_of_all <- summary(all_model)
|
2024-04-25 01:55:56 +00:00
|
|
|
#identifying the quartiles of effect for D
|
2024-05-08 23:58:43 +00:00
|
|
|
all_model_ranef_condvar <- ranef(all_model, condVar = TRUE)
|
|
|
|
all_model_ranef <- ranef(all_model, condVar = FALSE)
|
|
|
|
attr(all_model_ranef_condvar$upstream_vcs_link, "postVar")
|
|
|
|
|
|
|
|
all_coefficients <- coef(all_model)
|
|
|
|
all_standard_errors <- sqrt(diag(vcov(all_model)))[1]
|
|
|
|
#all_conf_intervals <- cbind(all_coefficients - 1.96 * all_standard_errors,
|
|
|
|
# all_coefficients + 1.96 * all_standard_errors)
|
|
|
|
|
|
|
|
df_ranefs <- as.data.frame(all_model_ranef_condvar)
|
|
|
|
df_rn_no_cv <- as.data.frame(all_model_ranef)
|
2024-05-08 14:33:03 +00:00
|
|
|
D_df_ranef <- df_ranefs[which(df_ranefs$term == "D"),]
|
|
|
|
#below this groups the ranefs
|
2024-05-08 23:58:43 +00:00
|
|
|
"""
|
2024-05-08 14:33:03 +00:00
|
|
|
has_zero <- function(condval, condsd){
|
|
|
|
bounds <- condsd * 1.96
|
|
|
|
return(ifelse(((condval - bounds) < 0),ifelse(((condval + bounds) > 0), 1, 0), 2))
|
|
|
|
}
|
|
|
|
df_ranefs <- df_ranefs |>
|
|
|
|
mutate(ranef_grouping = has_zero(condval, condsd)) |>
|
|
|
|
mutate(rank = rank(condval))
|
2024-05-08 23:58:43 +00:00
|
|
|
D_df_ranef <- df_ranefs[which(df_ranefs$term == ),]
|
|
|
|
D_df_ranef <- D_df_ranef |>
|
|
|
|
mutate(rank = rank(condval))
|
2024-05-08 14:33:03 +00:00
|
|
|
hist(D_df_ranef$ranef_grouping)
|
|
|
|
#plot the ranefs
|
|
|
|
library(ggplot2)
|
|
|
|
D_df_ranef |>
|
|
|
|
ggplot(aes(x=rank, y=condval, col = as.factor(ranef_grouping))) +
|
|
|
|
geom_linerange(aes(ymin= condval - (1.96 * condsd), ymax= condval + (1.96 * condsd))) +
|
2024-05-08 23:58:43 +00:00
|
|
|
theme_bw()
|
|
|
|
"""
|
2024-05-07 23:40:38 +00:00
|
|
|
#d_effect_ranef_all <- all_model_ranef$upstream_vcs_link
|
|
|
|
#d_effect_ranef_all$quartile <- ntile(d_effect_ranef_all$condval, 4)
|
2024-04-25 01:55:56 +00:00
|
|
|
#model residuals
|
2024-04-23 18:59:06 +00:00
|
|
|
all_residuals <- residuals(all_model)
|
|
|
|
qqnorm(all_residuals)
|
2024-04-25 01:55:56 +00:00
|
|
|
# mrg behavior for this
|
|
|
|
mrg_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE, control = lmerControl(
|
|
|
|
optimizer ='optimx', optCtrl=list(method='L-BFGS-B')))
|
2024-04-23 18:59:06 +00:00
|
|
|
summary(mrg_model)
|
2024-04-25 01:55:56 +00:00
|
|
|
#identifying the quartiles of effect for D
|
2024-05-07 23:40:38 +00:00
|
|
|
mrg_model_ranef <- ranef(mrg_model, condVar=TRUE)
|
2024-05-08 14:33:03 +00:00
|
|
|
df_mrg_ranefs <- as.data.frame(mrg_model_ranef)
|
2024-05-07 23:40:38 +00:00
|
|
|
dotplot(mrg_model_ranef)
|
2024-04-25 01:55:56 +00:00
|
|
|
d_effect_ranef_mrg <- mrg_model_ranef[mrg_model_ranef$term=="D",]
|
|
|
|
d_effect_ranef_mrg$quartile <- ntile(d_effect_ranef_mrg$condval, 4)
|
2024-05-08 14:33:03 +00:00
|
|
|
#doing similar random effect analysis for this
|
|
|
|
df_mrg_ranefs <- df_mrg_ranefs |>
|
|
|
|
mutate(ranef_grouping = has_zero(condval, condsd)) |>
|
|
|
|
mutate(rank = rank(condval))
|
|
|
|
D_df_mrg_ranefs <- df_mrg_ranefs[which(df_mrg_ranefs$term == "D"),]
|
|
|
|
D_df_mrg_ranefs |>
|
|
|
|
ggplot(aes(x=rank, y=condval, col = as.factor(ranef_grouping))) +
|
|
|
|
geom_linerange(aes(ymin= condval - (1.96 * condsd), ymax= condval + (1.96 * condsd)))
|
2024-04-25 01:55:56 +00:00
|
|
|
#merge model residuals
|
2024-04-23 18:59:06 +00:00
|
|
|
mrg_residuals <- residuals(mrg_model)
|
|
|
|
qqnorm(mrg_residuals)
|
2024-05-07 23:40:38 +00:00
|
|
|
# Performance:
|