updating topic/outcome relationships

This commit is contained in:
mjgaughan 2024-07-16 11:05:21 -04:00
parent 06c7c922c8
commit 0b3561c70b
4 changed files with 357 additions and 195 deletions

View File

@ -1,198 +1,3 @@
hist(contrib_df$event_gap)
median(contrib_df$event_gap)
1786.431 / 265
1786.431 / 365
sd(contrib_df$event_gap)
sd(contrib_df$event_gap)
max(readme_df$event_gap)
#all_gmodel <- glmer.nb(log1p_count ~ D * week_offset + scaled_project_age + scaled_event_gap + (D * week_offset | upstream_vcs_link),
# control=glmerControl(optimizer="bobyqa",
# optCtrl=list(maxfun=2e5)), nAGQ=0, data=all_actions_data)
all_gmodel <- readRDS("0710_contrib_all.rda")
summary(all_gmodel)
library(tidyverse)
library(texreg)
readme_rdd <- readRDS("final_models/0624_readme_all_rdd.rda")
contrib_rdd <- readRDS("final_models/0710_contrib_all.rda")
contrib_rdd <- readRDS("final_models/0710_contrib_all_rdd.rda")
texreg(list(readme_rdd, contrib_rdd), stars=NULL, digits=3, use.packages=FALSE,
custom.model.names=c( 'README','CONTRIBUTING'),
custom.coef.names=c('(Intercept)', 'Indtroduction', 'Week (Time)', 'Project Age', 'Introduction:Week', 'Event Gap'),
table=FALSE, ci.force = TRUE)
source("~/Desktop/git/24_deb_gov/R/contribCrescAnalysis.R")
#all_gmodel <- readRDS("0710_contrib_all.rda")
summary(all_gmodel)
saveRDS(all_gmodel, "0710_contrib_cresc.rda")
range(all_actions_data$log1p_count)
source("~/Desktop/git/24_deb_gov/R/contribRDDAnalysis.R")
source("~/Desktop/git/24_deb_gov/R/contribRDDAnalysis.R")
all_gmodel <- readRDS("0711_contrib_all.rda")
summary(all_gmodel)
library(tidyverse)
library(texreg)
library(tidyverse)
library(texreg)
readme_rdd <- readRDS("final_models/0624_readme_all_rdd.rda")
contrib_rdd <- readRDS("final_models/0711_contrib_all_rdd.rda")
summary(readme_rdd)
texreg(list(readme_rdd, contrib_rdd), stars=NULL, digits=3, use.packages=FALSE,
custom.model.names=c( 'README','CONTRIBUTING'),
custom.coef.names=c('(Intercept)', 'Indtroduction', 'Week (Time)', 'Project Age', 'Introduction:Week', 'Event Gap'),
table=FALSE, ci.force = TRUE)
contrib_rdd <- readRDS("final_models/0711_contrib_all_rdd.rda")
contrib_rdd <- readRDS("final_models/0711_contrib_all_rdd.rda")
texreg(list(readme_rdd, contrib_rdd), stars=NULL, digits=3, use.packages=FALSE,
custom.model.names=c( 'README','CONTRIBUTING'),
custom.coef.names=c('(Intercept)', 'Indtroduction', 'Week (Time)', 'Project Age', 'Introduction:Week', 'Event Gap'),
table=FALSE, ci.force = TRUE)
texreg(list(readme_rdd, contrib_rdd), stars=NULL, digits=3, use.packages=FALSE,
custom.model.names=c( 'README','CONTRIBUTING'),
custom.coef.names=c('(Intercept)', 'Indtroduction', 'Week (Time)', 'Project Age', 'Introduction:Week'),
table=FALSE, ci.force = TRUE)
readme_groupings <- read.csv('../final_data/deb_readme_interaction_groupings.csv')
contrib_groupings <- read.csv('../final_data/0711_contrib_inter_groupings.csv')
subdirColors <-
setNames( c('firebrick1', 'forestgreen', 'cornflowerblue')
, c(0,1,2) )
readme_g <- readme_groupings |>
ggplot(aes(x=rank, y=estimate, col = as.factor(ranef_grouping))) +
geom_linerange(aes(ymin= conf.low, ymax= conf.high)) +
scale_color_manual(values = subdirColors) +
guides(fill="none", color="none")+
theme_bw()
readme_g
contrib_g <- contrib_groupings |>
ggplot(aes(x=rank, y=estimate, col = as.factor(ranef_grouping))) +
geom_linerange(aes(ymin= conf.low, ymax= conf.high)) +
scale_color_manual(values = subdirColors) +
theme_bw() +
theme(legend.position = "top")
contrib_g
library(gridExtra)
grid.arrange(contrib_g, readme_g, nrow = 1)
source("~/Desktop/git/24_deb_gov/R/contribRDDAnalysis.R")
source("~/Desktop/git/24_deb_gov/R/documentReadabilityAnalysis.R")
contrib_pop_df <- read_csv("../final_data/deb_contrib_pop_change.csv")
contrib_df <- read_csv("../final_data/deb_contrib_did.csv")
View(contrib_pop_df)
contrib_readability_df <- read_csv('../text_analysis/dwo_readability_contributing.csv')
View(contrib_readability_df)
View(contrib_pop_df)
View(contrib_readability_df)
View(contrib_pop_df)
View(contrib_readability_df)
View(contrib_pop_df)
View(contrib_pop_df)
View(contrib_df)
View(contrib_pop_df)
View(contrib_readability_df)
View(contrib_pop_df)
#concat dataframes into central data
contrib_df_total <- contrib_pop_df |>
mutate(project_name = str_split(upstream_vcs_link, pattern="/")[-1])
View(contrib_pop_df)
View(contrib_readability_df)
View(contrib_readability_df)
contrib_df_total <- contrib_readability_df |>
mutate(project_name = str_split(filename, pattern="_")[-2])
View(contrib_readability_df)
contrib_df_total <- contrib_readability_df |>
mutate(project_name = str_split(filename, pattern="_"))
View(contrib_df_total)
contrib_df_total <- contrib_readability_df |>
mutate(project_name = str_split(filename, pattern="_")[0])
contrib_df_total <- contrib_readability_df |>
mutate(project_name = str_split(filename, pattern="_")[1])
View(contrib_df_total)
contrib_df_total <- contrib_readability_df |>
mutate(project_name = str_split(filename, pattern="_")[1] |>
sapply("[[", 1))
View(contrib_df_total)
contrib_df_total <- contrib_readability_df |>
mutate(project_name = str_split(filename, pattern="_"))
View(contrib_df_total)
contrib_df_total <- contrib_readability_df |>
mutate(project_name_array = str_split(filename, pattern="_")) |>
mutate(projes_name = project_name_array[1])
View(contrib_df_total)
View(contrib_readability_df)
View(contrib_pop_df)
#concat dataframes into central data
contrib_pop_df <- contrib_pop_df %>%
mutate(first_element = map_chr(upstream_vcs_link, ~ {
parts <- str_split(.x, pattern = "/")[[1]]
if (length(parts) >= 1) {
parts[1] # Extract the first element after splitting
} else {
NA_character_
}
}))
View(contrib_pop_df)
contrib_df_total <- contrib_readability_df |>
mutate(project_name = map_chr(filename, ~ {
parts <- str_split(.x, pattern = "_")[[1]]
if (length(parts) >= 1) {
parts[1]
} else {
NA_character_
}
}))
contrib_df <- read_csv("../final_data/deb_contrib_did.csv")
contrib_pop_df <- read_csv("../final_data/deb_contrib_pop_change.csv")
contrib_readability_df <- read_csv('../text_analysis/dwo_readability_contributing.csv')
contrib_df_total <- contrib_readability_df |>
mutate(project_name = map_chr(filename, ~ {
parts <- str_split(.x, pattern = "_")[[1]]
if (length(parts) >= 1) {
parts[1]
} else {
NA_character_
}
}))
View(contrib_df_total)
contrib_pop_df <- contrib_pop_df |>
mutate(project_name = map_chr(upstream_vcs_link, ~ {
parts <- str_split(.x, pattern = "/")[[1]]
if (length(parts) >= 1) {
parts[-1]
} else {
NA_character_
}
}))
parts[length(parts)]
contrib_pop_df <- contrib_pop_df |>
mutate(project_name = map_chr(upstream_vcs_link, ~ {
parts <- str_split(.x, pattern = "/")[[1]]
if (length(parts) >= 1) {
parts[length(parts)]
} else {
NA_character_
}
}))
View(contrib_pop_df)
source("~/Desktop/git/24_deb_gov/R/docChar_outcomes.R")
source("~/Desktop/git/24_deb_gov/R/docChar_outcomes.R")
contrib_total_df <- contrib_pop_df |>
left_join(contrib_readability_df, by="project_name")
View(contrib_total_df)
# test regressions
lm1 <- glm.nb(after_contrib_new ~ word_count, data = contrib_total_df)
# test regressions
library(MASS)
lm1 <- glm.nb(after_contrib_new ~ word_count, data = contrib_total_df)
summary(lm1)
View(contrib_total_df)
contrib_total_df <- contrib_pop_df |>
join(contrib_readability_df, by="project_name")
View(contrib_total_df)
View(contrib_readability_df)
qqnorm(residuals(lm1))
source("~/Desktop/git/24_deb_gov/R/docChar_outcomes.R")
lm1 <- glm.nb(after_contrib_new ~ linsear_write, data = contrib_total_df)
lm1 <- glm.nb(after_contrib_new ~ linsear, data = contrib_total_df)
View(contrib_total_df)
lm1 <- glm.nb(after_contrib_new ~ linsear_write_formula, data = contrib_total_df)
qqnorm(residuals(lm1))
summary(lm1) summary(lm1)
lm1 <- glm.nb(after_contrib_new ~ reading_time, data = contrib_total_df) lm1 <- glm.nb(after_contrib_new ~ reading_time, data = contrib_total_df)
qqnorm(residuals(lm1)) qqnorm(residuals(lm1))
@ -510,3 +315,198 @@ summary(lm1)
lm1 <- glm.nb(summed_count ~ reading_time + linsear_write_formula + flesch_reading_ease + mcalpine_eflaw + word_count, data = contrib_total_df) lm1 <- glm.nb(summed_count ~ reading_time + linsear_write_formula + flesch_reading_ease + mcalpine_eflaw + word_count, data = contrib_total_df)
qqnorm(residuals(lm1)) qqnorm(residuals(lm1))
summary(lm1) summary(lm1)
contrib_topics_df <- read_csv("../text_analysis/contrib_file_topic_distributions.csv")
library(tidyverse)
contrib_topics_df <- read_csv("../text_analysis/contrib_file_topic_distributions.csv")
View(contrib_topics_df)
source("~/Desktop/git/24_deb_gov/R/contrib_topic_outcomes.R")
source("~/Desktop/git/24_deb_gov/R/contrib_topic_outcomes.R")
source("~/Desktop/git/24_deb_gov/R/contrib_docChar_outcomes.R")
source("~/Desktop/git/24_deb_gov/R/contrib_topic_outcomes.R")
source("~/Desktop/git/24_deb_gov/R/contrib_topic_outcomes.R")
source("~/Desktop/git/24_deb_gov/R/contrib_topic_outcomes.R")
lm1 <- glm.nb(summed_count ~ t0 + t1 + t2 + t3, data = contrib_total_df)
#running regressions
library(MASS)
lm1 <- glm.nb(summed_count ~ t0 + t1 + t2 + t3, data = contrib_total_df)
source("~/Desktop/git/24_deb_gov/R/contrib_topic_outcomes.R")
library(stringr)
library(plyr)
contrib_topics_df <- read_csv("../text_analysis/contrib_file_topic_distributions.csv")
contrib_df <- read_csv("../final_data/deb_contrib_did.csv")
contrib_pop_df <- read_csv("../final_data/deb_contrib_pop_change.csv")
#get the contribution count
#some preprocessing and expansion
col_order <- c("upstream_vcs_link", "age_in_days", "first_commit", "first_commit_dt", "event_gap", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new")
contrib_df <- contrib_df[,col_order]
contrib_df$ct_before_all <- str_split(gsub("[][]","", contrib_df$before_all_ct), ", ")
contrib_df$ct_after_all <- str_split(gsub("[][]","", contrib_df$after_all_ct), ", ")
contrib_df$ct_before_mrg <- str_split(gsub("[][]","", contrib_df$before_mrg_ct), ", ")
contrib_df$ct_after_mrg <- str_split(gsub("[][]","", contrib_df$after_mrg_ct), ", ")
drop <- c("before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct")
contrib_df = contrib_df[,!(names(contrib_df) %in% drop)]
# 2 some expansion needs to happens for each project
expand_timeseries <- function(project_row) {
longer <- project_row |>
pivot_longer(cols = starts_with("ct"),
names_to = "window",
values_to = "count") |>
unnest(count)
longer$observation_type <- gsub("^.*_", "", longer$window)
longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type)))
longer$count <- as.numeric(longer$count)
#longer <- longer[which(longer$observation_type == "all"),]
return(longer)
}
expanded_data <- expand_timeseries(contrib_df[1,])
for (i in 2:nrow(contrib_df)){
expanded_data <- rbind(expanded_data, expand_timeseries(contrib_df[i,]))
}
#filter out the windows of time that we're looking at
window_num <- 8
windowed_data <- expanded_data |>
filter(week >= (27 - window_num) & week <= (27 + window_num)) |>
mutate(D = ifelse(week > 27, 1, 0))
summed_data <- windowed_data |>
filter(D==1) |>
group_by(upstream_vcs_link) |>
summarise_at(vars(count), list(summed_count=sum))
#concat dataframes into central data
contrib_pop_df <- contrib_pop_df |>
mutate(project_name = map_chr(upstream_vcs_link, ~ {
parts <- str_split(.x, pattern = "/")[[1]]
if (length(parts) >= 1) {
parts[length(parts)]
} else {
NA_character_
}
}))
contrib_topic_df <- contrib_topic_df |>
mutate(project_name = map_chr(filename, ~ {
parts <- str_split(.x, pattern = "_")[[1]]
if (length(parts) >= 1) {
paste(head(parts, -1), collapse="_")
} else {
NA_character_
}
}))
contrib_topics_df <- contrib_topics_df |>
mutate(project_name = map_chr(filename, ~ {
parts <- str_split(.x, pattern = "_")[[1]]
if (length(parts) >= 1) {
paste(head(parts, -1), collapse="_")
} else {
NA_character_
}
}))
contrib_total_df <- contrib_pop_df |>
join(contrib_topics_df, by="project_name")
contrib_total_df <- contrib_total_df|>
join(summed_data, by="upstream_vcs_link")
#outcome variable that is number of commits by number of new contributors
contrib_total_df$commit_by_contrib = contrib_total_df$summed_count * contrib_total_df$after_contrib_new
contrib_total_df$logged_outcome = log1p(contrib_total_df$commit_by_contrib)
#running regressions
library(MASS)
lm1 <- glm.nb(summed_count ~ t0 + t1 + t2 + t3, data = contrib_total_df)
qqnorm(residuals(lm1))
summary(lm1)
View(contrib_total_df)
lm1 <- glm.nb(summed_count ~ t3, data = contrib_total_df)
qqnorm(residuals(lm1))
summary(lm1)
lm1 <- glm.nb(summed_count ~ t3 + t2 + t1, data = contrib_total_df)
qqnorm(residuals(lm1))
summary(lm1)
lm1 <- glm.nb(summed_count ~ t3 + t2 + t1 + t0, data = contrib_total_df)
qqnorm(residuals(lm1))
summary(lm1)
lm1 <- glm.nb(summed_count ~ t0 + t1 + t2 + t3, data = contrib_total_df)
qqnorm(residuals(lm1))
summary(lm1)
lm1 <- lm(summed_count ~ t0 + t1 + t2 + t3, data = contrib_total_df)
qqnorm(residuals(lm1))
summary(lm1)
lm1 <- glm.nb(summed_count ~ t0 + t1 + t2 + t3, data = contrib_total_df)
qqnorm(residuals(lm1))
summary(lm1)
lm1 <- glm.nb(summed_count ~ t1 + t2 + t3, data = contrib_total_df)
qqnorm(residuals(lm1))
summary(lm1)
lm1 <- glm.nb(summed_count ~ t3, data = contrib_total_df)
qqnorm(residuals(lm1))
summary(lm1)
lm1 <- glm.nb(commit_by_contrib ~ t3, data = contrib_total_df)
qqnorm(residuals(lm1))
summary(lm1)
lm1 <- glm.nb(commit_by_contrib ~ t1 + t2 +t3, data = contrib_total_df)
qqnorm(residuals(lm1))
summary(lm1)
lm1 <- glm.nb(commit_by_contrib ~ t3, data = contrib_total_df)
qqnorm(residuals(lm1))
summary(lm1)
lm1 <- glm.nb(commit_by_contrib ~ t2, data = contrib_total_df)
qqnorm(residuals(lm1))
summary(lm1)
lm1 <- glm.nb(commit_by_contrib ~ t1, data = contrib_total_df)
qqnorm(residuals(lm1))
summary(lm1)
lm1 <- glm.nb(commit_by_contrib ~ t3, data = contrib_total_df)
qqnorm(residuals(lm1))
summary(lm1)
source("~/Desktop/git/24_deb_gov/R/readme_topic_outcomes.R")
#outcome variable that is number of commits by number of new readmeutors
readme_total_df$commit_by_contrib = readme_total_df$summed_count *readme_total_df$after_contrib_new
readme_total_df$logged_outcome = log1p(readme_total_df$commit_by_readme)
#running regressions
library(MASS)
lm1 <- glm.nb(commit_by_readme ~ t3, data = readme_total_df)
lm1 <- glm.nb(commit_by_contrib ~ t3, data = readme_total_df)
qqnorm(residuals(lm1))
summary(lm1)
lm1 <- glm.nb(commit_by_contrib ~ t0, data = readme_total_df)
qqnorm(residuals(lm1))
summary(lm1)
lm1 <- glm.nb(commit_by_contrib ~ t1, data = readme_total_df)
qqnorm(residuals(lm1))
summary(lm1)
lm1 <- glm.nb(commit_by_contrib ~ t7, data = readme_total_df)
qqnorm(residuals(lm1))
summary(lm1)
lm1 <- glm.nb(commit_by_contrib ~ t0+t1+t7, data = readme_total_df)
qqnorm(residuals(lm1))
summary(lm1)
lm1 <- glm.nb(commit_by_contrib ~ t0+t1+t2+t7, data = readme_total_df)
qqnorm(residuals(lm1))
summary(lm1)
lm1 <- glm.nb(commit_by_contrib ~ t0+t1+t2+t7+t3, data = readme_total_df)
qqnorm(residuals(lm1))
summary(lm1)
lm1 <- glm.nb(commit_by_contrib ~ t0+t1+t2+t7+t3 + t4, data = readme_total_df)
qqnorm(residuals(lm1))
summary(lm1)
lm1 <- glm.nb(commit_by_contrib ~ t0+t1+t2+t7+t3 +t4 + t5 + t6, data = readme_total_df)
qqnorm(residuals(lm1))
summary(lm1)
lm1 <- glm.nb(commit_by_contrib ~ t0+t1+t2+t7+t3 +t4 + t5, data = readme_total_df)
qqnorm(residuals(lm1))
summary(lm1)
source("~/Desktop/git/24_deb_gov/R/contrib_topic_outcomes.R")
lm1 <- glm.nb(commit_by_contrib ~ t3, data = contrib_total_df)
qqnorm(residuals(lm1))
summary(lm1)
lm1 <- glm.nb(commit_by_contrib ~ t0+ t1+ t3, data = contrib_total_df)
qqnorm(residuals(lm1))
summary(lm1)
lm1 <- glm.nb(commit_by_contrib ~ t0+ t1+ t2+ t3, data = contrib_total_df)
qqnorm(residuals(lm1))
summary(lm1)
lm1 <- glm.nb(commit_by_contrib ~ t1+ t2+ t3, data = contrib_total_df)
qqnorm(residuals(lm1))
summary(lm1)
lm1 <- glm.nb(commit_by_contrib ~ t1+ t3, data = contrib_total_df)
qqnorm(residuals(lm1))
summary(lm1)
lm1 <- glm.nb(commit_by_contrib ~ t2+ t3, data = contrib_total_df)
qqnorm(residuals(lm1))
summary(lm1)

View File

@ -0,0 +1,80 @@
library(stringr)
library(plyr)
contrib_topics_df <- read_csv("../text_analysis/contrib_file_topic_distributions.csv")
contrib_df <- read_csv("../final_data/deb_contrib_did.csv")
contrib_pop_df <- read_csv("../final_data/deb_contrib_pop_change.csv")
#get the contribution count
#some preprocessing and expansion
col_order <- c("upstream_vcs_link", "age_in_days", "first_commit", "first_commit_dt", "event_gap", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new")
contrib_df <- contrib_df[,col_order]
contrib_df$ct_before_all <- str_split(gsub("[][]","", contrib_df$before_all_ct), ", ")
contrib_df$ct_after_all <- str_split(gsub("[][]","", contrib_df$after_all_ct), ", ")
contrib_df$ct_before_mrg <- str_split(gsub("[][]","", contrib_df$before_mrg_ct), ", ")
contrib_df$ct_after_mrg <- str_split(gsub("[][]","", contrib_df$after_mrg_ct), ", ")
drop <- c("before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct")
contrib_df = contrib_df[,!(names(contrib_df) %in% drop)]
# 2 some expansion needs to happens for each project
expand_timeseries <- function(project_row) {
longer <- project_row |>
pivot_longer(cols = starts_with("ct"),
names_to = "window",
values_to = "count") |>
unnest(count)
longer$observation_type <- gsub("^.*_", "", longer$window)
longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type)))
longer$count <- as.numeric(longer$count)
#longer <- longer[which(longer$observation_type == "all"),]
return(longer)
}
expanded_data <- expand_timeseries(contrib_df[1,])
for (i in 2:nrow(contrib_df)){
expanded_data <- rbind(expanded_data, expand_timeseries(contrib_df[i,]))
}
#filter out the windows of time that we're looking at
window_num <- 8
windowed_data <- expanded_data |>
filter(week >= (27 - window_num) & week <= (27 + window_num)) |>
mutate(D = ifelse(week > 27, 1, 0))
summed_data <- windowed_data |>
filter(D==1) |>
group_by(upstream_vcs_link) |>
summarise_at(vars(count), list(summed_count=sum))
#concat dataframes into central data
contrib_pop_df <- contrib_pop_df |>
mutate(project_name = map_chr(upstream_vcs_link, ~ {
parts <- str_split(.x, pattern = "/")[[1]]
if (length(parts) >= 1) {
parts[length(parts)]
} else {
NA_character_
}
}))
contrib_topics_df <- contrib_topics_df |>
mutate(project_name = map_chr(filename, ~ {
parts <- str_split(.x, pattern = "_")[[1]]
if (length(parts) >= 1) {
paste(head(parts, -1), collapse="_")
} else {
NA_character_
}
}))
contrib_total_df <- contrib_pop_df |>
join(contrib_topics_df, by="project_name")
contrib_total_df <- contrib_total_df|>
join(summed_data, by="upstream_vcs_link")
#outcome variable that is number of commits by number of new contributors
contrib_total_df$commit_by_contrib = contrib_total_df$summed_count * contrib_total_df$after_contrib_new
contrib_total_df$logged_outcome = log1p(contrib_total_df$commit_by_contrib)
#running regressions
library(MASS)
lm1 <- glm.nb(commit_by_contrib ~ t2+ t3, data = contrib_total_df)
qqnorm(residuals(lm1))
summary(lm1)

View File

@ -99,3 +99,5 @@ library(MASS)
lm1 <- glm.nb(logged_outcome~ reading_time + linsear_write_formula + flesch_reading_ease + mcalpine_eflaw + word_count, data = readme_total_df) lm1 <- glm.nb(logged_outcome~ reading_time + linsear_write_formula + flesch_reading_ease + mcalpine_eflaw + word_count, data = readme_total_df)
qqnorm(residuals(lm1)) qqnorm(residuals(lm1))
summary(lm1) summary(lm1)

80
R/readme_topic_outcomes.R Normal file
View File

@ -0,0 +1,80 @@
library(stringr)
library(plyr)
readme_topics_df <- read_csv("../text_analysis/readme_file_topic_distributions.csv")
readme_df <- read_csv("../final_data/deb_readme_did.csv")
readme_pop_df <- read_csv("../final_data/deb_readme_pop_change.csv")
#get the readmeution count
#some preprocessing and expansion
col_order <- c("upstream_vcs_link", "age_in_days", "first_commit", "first_commit_dt", "event_gap", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new")
readme_df <- readme_df[,col_order]
readme_df$ct_before_all <- str_split(gsub("[][]","", readme_df$before_all_ct), ", ")
readme_df$ct_after_all <- str_split(gsub("[][]","", readme_df$after_all_ct), ", ")
readme_df$ct_before_mrg <- str_split(gsub("[][]","", readme_df$before_mrg_ct), ", ")
readme_df$ct_after_mrg <- str_split(gsub("[][]","", readme_df$after_mrg_ct), ", ")
drop <- c("before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct")
readme_df = readme_df[,!(names(readme_df) %in% drop)]
# 2 some expansion needs to happens for each project
expand_timeseries <- function(project_row) {
longer <- project_row |>
pivot_longer(cols = starts_with("ct"),
names_to = "window",
values_to = "count") |>
unnest(count)
longer$observation_type <- gsub("^.*_", "", longer$window)
longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type)))
longer$count <- as.numeric(longer$count)
#longer <- longer[which(longer$observation_type == "all"),]
return(longer)
}
expanded_data <- expand_timeseries(readme_df[1,])
for (i in 2:nrow(readme_df)){
expanded_data <- rbind(expanded_data, expand_timeseries(readme_df[i,]))
}
#filter out the windows of time that we're looking at
window_num <- 8
windowed_data <- expanded_data |>
filter(week >= (27 - window_num) & week <= (27 + window_num)) |>
mutate(D = ifelse(week > 27, 1, 0))
summed_data <- windowed_data |>
filter(D==1) |>
group_by(upstream_vcs_link) |>
summarise_at(vars(count), list(summed_count=sum))
#concat dataframes into central data
readme_pop_df <- readme_pop_df |>
mutate(project_name = map_chr(upstream_vcs_link, ~ {
parts <- str_split(.x, pattern = "/")[[1]]
if (length(parts) >= 1) {
parts[length(parts)]
} else {
NA_character_
}
}))
readme_topics_df <- readme_topics_df |>
mutate(project_name = map_chr(filename, ~ {
parts <- str_split(.x, pattern = "_")[[1]]
if (length(parts) >= 1) {
paste(head(parts, -1), collapse="_")
} else {
NA_character_
}
}))
readme_total_df <- readme_pop_df |>
join(readme_topics_df, by="project_name")
readme_total_df <- readme_total_df|>
join(summed_data, by="upstream_vcs_link")
#outcome variable that is number of commits by number of new readmeutors
readme_total_df$commit_by_contrib = readme_total_df$summed_count *readme_total_df$after_contrib_new
readme_total_df$logged_outcome = log1p(readme_total_df$commit_by_readme)
#running regressions
library(MASS)
lm1 <- glm.nb(commit_by_contrib ~ t0+t1+t2+t7+t3 +t4 + t5, data = readme_total_df)
qqnorm(residuals(lm1))
summary(lm1)