binning age and trying to figure out power
This commit is contained in:
parent
68653a6470
commit
27856dfd2d
@ -34,12 +34,19 @@ table(data1$milestones)
|
|||||||
hist(data1$old_mmt) #inequality of participation
|
hist(data1$old_mmt) #inequality of participation
|
||||||
hist(data1$formal.score)
|
hist(data1$formal.score)
|
||||||
hist(data1$age/365)
|
hist(data1$age/365)
|
||||||
|
|
||||||
|
data1$new.age <- as.numeric(cut(data1$age/365, breaks=c(0,9,12,15,17), labels=c(1,2,3,4)))
|
||||||
|
data1$formal.score <- data1$mmt / (data1$milestones/data1$new.age)
|
||||||
|
hist(as.numeric(data1$new.age))
|
||||||
|
table(data1$formal.score)
|
||||||
kmodel1 <- lm(up.fac.mean ~ mmt, data=data1)
|
kmodel1 <- lm(up.fac.mean ~ mmt, data=data1)
|
||||||
summary(kmodel1)
|
summary(kmodel1)
|
||||||
kmodel1 <- lm(up.fac.mean ~ old_mmt, data=data1)
|
kmodel1 <- lm(up.fac.mean ~ old_mmt, data=data1)
|
||||||
summary(kmodel1)
|
summary(kmodel1)
|
||||||
kmodel1 <- lm(up.fac.mean ~ formal.score, data=data1)
|
kmodel1 <- lm(up.fac.mean ~ formal.score, data=data1)
|
||||||
summary(kmodel1)
|
summary(kmodel1)
|
||||||
|
kmodel1 <- lm(up.fac.mean ~ new.age, data=data1)
|
||||||
|
summary(kmodel1)
|
||||||
hist(data1$formal.score)
|
hist(data1$formal.score)
|
||||||
cor.test(data1$formal.score, data1$up.fac.mean)
|
cor.test(data1$formal.score, data1$up.fac.mean)
|
||||||
cor.test(data1$mmt, data1$up.fac.mean)
|
cor.test(data1$mmt, data1$up.fac.mean)
|
||||||
@ -52,13 +59,13 @@ g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) +
|
|||||||
g
|
g
|
||||||
|
|
||||||
data2 <- subset(data1, (data1$age / 365) < 14 )
|
data2 <- subset(data1, (data1$age / 365) < 14 )
|
||||||
hist(data2$age)
|
hist(floor(data2$age))
|
||||||
g <- ggplot(data2, aes(x=formal.score, y=up.fac.mean)) +
|
g <- ggplot(data2, aes(x=formal.score, y=up.fac.mean)) +
|
||||||
geom_point() +
|
geom_point() +
|
||||||
geom_smooth()
|
geom_smooth()
|
||||||
g
|
g
|
||||||
|
|
||||||
data2$yearsOld <- data2$age / 365
|
data2$yearsOld <- floor(data2$age / 365)
|
||||||
|
|
||||||
kmodel2 <- lm(up.fac.mean ~ mmt + milestones + age, data=data1)
|
kmodel2 <- lm(up.fac.mean ~ mmt + milestones + age, data=data1)
|
||||||
kmodel5 <- lm(up.fac.mean ~ mmt + milestones, data=data1)
|
kmodel5 <- lm(up.fac.mean ~ mmt + milestones, data=data1)
|
||||||
|
@ -55,6 +55,7 @@ powerCheck <- function(n, nSims) { #run a power calculation on the dataset given
|
|||||||
simData <- makeDataNew(n) # make some data
|
simData <- makeDataNew(n) # make some data
|
||||||
## outcome goes here --v
|
## outcome goes here --v
|
||||||
# e.g. simData$up.fac.mean <- (usefuleffsizeA * mmt) + (usefuleffsizeB * milestones) + rnorm(n=1, mean=0, sd=1) ##plus some noise
|
# e.g. simData$up.fac.mean <- (usefuleffsizeA * mmt) + (usefuleffsizeB * milestones) + rnorm(n=1, mean=0, sd=1) ##plus some noise
|
||||||
|
simData$up.fac.mean <- (2 * simData$mmt) + (1.5 * simData$milestones) + rnorm(n=1, mean=0, sd=1)
|
||||||
#have updated for kkex through here, now need to look at the underproduction work
|
#have updated for kkex through here, now need to look at the underproduction work
|
||||||
#m1.sim <- lm(up.fac.mean ~ ((mmt)/ (milestones/age)), data=simData)
|
#m1.sim <- lm(up.fac.mean ~ ((mmt)/ (milestones/age)), data=simData)
|
||||||
## could leave age out for now?
|
## could leave age out for now?
|
||||||
@ -84,7 +85,7 @@ powerCheck2 <- function(n, nSims) { #run a power calculation on the dataset give
|
|||||||
#have updated for kkex through here, now need to look at the underproduction work
|
#have updated for kkex through here, now need to look at the underproduction work
|
||||||
#m1.sim <- lm(up.fac.mean ~ ((mmt)/ (milestones/age)), data=simData)
|
#m1.sim <- lm(up.fac.mean ~ ((mmt)/ (milestones/age)), data=simData)
|
||||||
## outcome goes here --v
|
## outcome goes here --v
|
||||||
## e.g. simData$up.fac.mean <- (usefuleffsizeC * formal.score) + rnorm(1, mean=0, sd=1) ##plus some noise
|
simData$up.fac.mean <- (0.5 * simData$formal.score) + rnorm(1, mean=0, sd=1) ##plus some noise
|
||||||
m1.sim <- lm(up.fac.mean ~ formal.score, data=simData)
|
m1.sim <- lm(up.fac.mean ~ formal.score, data=simData)
|
||||||
p0 <- coef(summary(m1.sim))[1,4]
|
p0 <- coef(summary(m1.sim))[1,4]
|
||||||
p1 <- coef(summary(m1.sim))[2,4]
|
p1 <- coef(summary(m1.sim))[2,4]
|
||||||
|
Loading…
Reference in New Issue
Block a user