updating population models

This commit is contained in:
mjgaughan 2024-06-23 23:10:17 -04:00
parent b7feac85ab
commit 396b52cd19
11 changed files with 245 additions and 217 deletions

View File

@ -1,204 +1,3 @@
ggtitle("Posterior Predictive Density", subtitle="Non-Democracies") +
theme_bw()
p
#plot of reading_ease
p <- ggplot(readme_df, aes(x=flesch_reading_ease, group=as.factor(subdir))) +
geom_histogram(aes( color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
theme_bw()
p
p <- ggplot(contributing_df, aes(x=reading_time, group=as.factor(subdir))) +
geom_histogram(aes( color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
theme_bw()
p
p <- ggplot(contributing_df, aes(x=mcalpine_eflaw, group=as.factor(subdir))) +
geom_histogram(aes( color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
theme_bw()
p
p <- ggplot(contributing_df, aes(x=linsear_write, group=as.factor(subdir))) +
geom_histogram(aes( color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
theme_bw()
p
head(readme_df)
p0
p0 <- ggplot(contributing_df, aes(x=linsear_write_formula, group=as.factor(subdir))) +
geom_histogram(aes( color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
theme_bw()
p0
p0 <- ggplot(contributing_df, aes(x=linsear_write_formula, group=as.factor(subdir))) +
geom_histogram(aes( color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
xlim(-5, 30) +
theme_bw()
p0
p0 <- ggplot(contributing_df, aes(x=linsear_write_formula, group=as.factor(subdir))) +
geom_histogram(aes( color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
xlim(-10, 30) +
theme_bw()
p0
p0 <- ggplot(contributing_df, aes(x=linsear_write_formula, group=as.factor(subdir))) +
geom_histogram(aes( color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
xlim(-30, 30) +
theme_bw()
p0
p0 <- ggplot(contributing_df, aes(x=flesch_reading_ease, group=as.factor(subdir))) +
geom_histogram(aes( color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
xlim(-30, 30) +
theme_bw()
p0
p0 <- ggplot(contributing_df, aes(x=flesch_reading_ease, group=as.factor(subdir))) +
geom_histogram(aes( color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
xlim(-300, 300) +
theme_bw()
p0
p0 <- ggplot(contributing_df, aes(x=linsear_write_formula, group=as.factor(subdir))) +
geom_histogram(aes( color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
xlim(-30, 30) +
theme_bw()
p0
readme_linsear_plot <- ggplot(readme_df, aes(x=linsear_write_formula, group=as.factor(subdir))) +
geom_histogram(aes( color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
xlim(-30, 30) +
theme_bw()
p0
readme_linsear_plot
readme_linsear_plot <- ggplot(readme_df, aes(x=linsear_write_formula, group=as.factor(subdir))) +
geom_histogram(aes( color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
scale_y_continuous(breaks = seq(0,10,1),labels = paste(seq(0, 10, by = 1), "%", sep = ""))+
xlim(-30, 30) +
theme_bw()
readme_linsear_plot
readme_linsear_plot <- ggplot(readme_df, aes(x=linsear_write_formula, group=as.factor(subdir))) +
geom_histogram(aes( color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
xlim(-30, 30) +
theme_bw()
readme_linsear_plot
readme_linsear_plot <- ggplot(readme_df, aes(x=linsear_write_formula, group=as.factor(subdir))) +
geom_histogram(aes(y = (..count..)/sum(..count..)), color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
readme_linsear_plot <- ggplot(readme_df, aes(x=linsear_write_formula, group=as.factor(subdir))) +
geom_histogram(aes(y = (..count..)/sum(..count..), color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
xlim(-30, 30) +
theme_bw()
readme_linsear_plot
readme_linsear_plot <- ggplot(readme_df, aes(x=linsear_write_formula, group=as.factor(subdir))) +
geom_histogram(aes(color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
xlim(-30, 30) +
theme_bw()
readme_linsear_plot
y = (..count..)/sum(..count..),
y = (..count..)/sum(..count..),
readme_linsear_plot <- ggplot(readme_df, aes(x=linsear_write_formula, group=as.factor(subdir))) +
geom_histogram(aes(y = (..count..)/sum(..count..), color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
xlim(-30, 30) +
theme_bw()
readme_linsear_plot
readme_linsear_plot <- ggplot(readme_df, aes(x=linsear_write_formula, group=as.factor(subdir))) +
geom_histogram(aes(color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="dodge") +
xlim(-30, 30) +
theme_bw()
readme_linsear_plot
readme_linsear_plot <- ggplot(readme_df, aes(x=linsear_write_formula, group=as.factor(subdir))) +
geom_histogram(aes(color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
xlim(-30, 30) +
theme_bw()
readme_linsear_plot
contributing_linsear_plot <- ggplot(contributing_df, aes(x=linsear_write_formula, group=as.factor(subdir))) +
geom_histogram(aes(color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
xlim(-30, 30) +
theme_bw()
contributing_linsear_plot
contributing_linsear_plot <- ggplot(contributing_df, aes(x=linsear_write_formula, group=as.factor(subdir))) +
geom_density(aes(color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
xlim(-30, 30) +
theme_bw()
contributing_linsear_plot
readme_linsear_plot <- ggplot(readme_df, aes(x=linsear_write_formula, group=as.factor(subdir))) +
geom_density(aes(color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
xlim(-30, 30) +
theme_bw()
readme_linsear_plot
contributing_linsear_plot
contributing_reading_time_plot <- ggplot(contributing_df, aes(x=linsear_write_formula, group=as.factor(subdir))) +
geom_density(aes(color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
xlim(-30, 30) +
theme_bw()
contributing_reading_time_plot
contributing_reading_time_plot
contributing_reading_time_plot <- ggplot(contributing_df, aes(x=reading_time, group=as.factor(subdir))) +
geom_density(aes(color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
xlim(-30, 30) +
theme_bw()
contributing_reading_time_plot
contributing_reading_time_plot <- ggplot(contributing_df, aes(x=reading_time, group=as.factor(subdir))) +
geom_density(aes(color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
xlim(-10, 50) +
theme_bw()
contributing_reading_time_plot
contributing_reading_time_plot <- ggplot(contributing_df, aes(x=reading_time, group=as.factor(subdir))) +
geom_density(aes(color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
xlim(-10, 70) +
theme_bw()
contributing_reading_time_plot
contributing_reading_time_plot <- ggplot(contributing_df, aes(x=reading_time, group=as.factor(subdir))) +
geom_density(aes(color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
xlim(-10, 80) +
theme_bw()
contributing_reading_time_plot
contributing_reading_time_plot <- ggplot(contributing_df, aes(x=reading_time, group=as.factor(subdir))) +
geom_density(aes(color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
xlim(-10, 90) +
theme_bw()
contributing_reading_time_plot
contributing_mcalpine_eflaw <- ggplot(contributing_df, aes(x=mcalpine_eflaw, group=as.factor(subdir))) +
geom_density(aes(color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
xlim(-10, 90) +
theme_bw()
contributing_mcalpine_eflaw
contributing_mcalpine_eflaw <- ggplot(contributing_df, aes(x=mcalpine_eflaw, group=as.factor(subdir))) +
geom_density(aes(color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
xlim(-10, 70) +
theme_bw()
contributing_mcalpine_eflaw
contributing_reading_ease <- ggplot(contributing_df, aes(x=flesch_reading_ease, group=as.factor(subdir))) +
geom_density(aes(color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
xlim(-10, 70) +
theme_bw()
contributing_reading_ease
contributing_reading_ease <- ggplot(contributing_df, aes(x=flesch_reading_ease, group=as.factor(subdir))) +
geom_density(aes(color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
xlim(-10, 90) +
theme_bw()
contributing_reading_ease
grid.arrange(contributing_reading_ease, contributing_linsear_plot, contributing_mcalpine_eflaw, contributing_reading_time_plot, nrow = 2)
library(gridExtra)
grid.arrange(contributing_reading_ease, contributing_linsear_plot, contributing_mcalpine_eflaw, contributing_reading_time_plot, nrow = 2)
# plotting contributing linsear writing formula
contributing_linsear_plot <- ggplot(contributing_df, aes(x=linsear_write_formula, group=as.factor(subdir))) +
geom_density(aes(color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
xlim(-30, 30) +
theme_bw(legend.position="none")
# plotting contributing reading time
contributing_reading_time_plot <- ggplot(contributing_df, aes(x=reading_time, group=as.factor(subdir))) +
geom_density(aes(color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
xlim(-10, 90) +
theme_bw(legend.position="none")
# plotting contributing mcalpine eflaw
contributing_mcalpine_eflaw <- ggplot(contributing_df, aes(x=mcalpine_eflaw, group=as.factor(subdir))) +
geom_density(aes(color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
xlim(-10, 70) +
theme_bw(legend.position="none")
# plotting contributing reading ease
contributing_reading_ease <- ggplot(contributing_df, aes(x=flesch_reading_ease, group=as.factor(subdir))) +
geom_density(aes(color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
theme(legend.position = "top") +
xlim(-10, 90) +
theme_bw()
contributing_reading_ease
grid.arrange(contributing_reading_ease, contributing_linsear_plot, contributing_mcalpine_eflaw, contributing_reading_time_plot, nrow = 2)
# plotting contributing mcalpine eflaw
contributing_mcalpine_eflaw <- ggplot(contributing_df, aes(x=mcalpine_eflaw, group=as.factor(subdir))) +
geom_density(aes(color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
xlim(-10, 70) +
theme(legend.position="none")+
theme_bw()
# plotting contributing reading ease
contributing_reading_ease <- ggplot(contributing_df, aes(x=flesch_reading_ease, group=as.factor(subdir))) +
geom_density(aes(color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
@ -510,3 +309,204 @@ theme_bw() +
theme(legend.position = "top")
contributing_reading_ease
grid.arrange(contributing_reading_ease, contributing_reading_time_plot,readme_reading_ease, readme_reading_time_plot, nrow = 2)
library(tidyverse)
library(plyr)
library(gridExtra)
library(ggpubr)
# script for the analysis of document readability metrics
# readability metrics will be studied controlled by their length
# gaughan@u.northwestern.edu
# loading in the data
try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path)))
readme_df <- read_csv("../text_analysis/draft_readability_readme.csv")
contributing_df <- read_csv("../text_analysis/draft_readability_contributing.csv")
#getting basic stats for the readme readability
median(readme_df$flesch_reading_ease)
median(readme_df$linsear_write_formula)
median(contributing_df$reading_time)
median(contributing_df$linsear_write_formula)
#plotting readme reading ease
readme_reading_ease <- ggplot(readme_df, aes(x=flesch_reading_ease, group=as.factor(subdir))) +
geom_density(aes(color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
scale_color_manual(values = subdirColors) +
xlim(-10, 90) +
ylab("readme density") +
guides(fill="none", color="none")+
theme_bw()
readme_reading_ease
#plotting readme reading time
readme_reading_time_plot <- ggplot(readme_df, aes(x=reading_time, group=as.factor(subdir))) +
geom_density(aes(color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
scale_color_manual(values = subdirColors) +
xlim(-10, 90) +
ylab("readme density") +
guides(fill="none", color="none")+
theme_bw()
# establishing the color scheme
subdirColors <-
setNames( c('firebrick1', 'forestgreen', 'cornflowerblue')
, levels(contributing_df$subdir) )
#plotting readme reading ease
readme_reading_ease <- ggplot(readme_df, aes(x=flesch_reading_ease, group=as.factor(subdir))) +
geom_density(aes(color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
scale_color_manual(values = subdirColors) +
xlim(-10, 90) +
ylab("readme density") +
guides(fill="none", color="none")+
theme_bw()
#plotting readme reading time
readme_reading_time_plot <- ggplot(readme_df, aes(x=reading_time, group=as.factor(subdir))) +
geom_density(aes(color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
scale_color_manual(values = subdirColors) +
xlim(-10, 90) +
ylab("readme density") +
guides(fill="none", color="none")+
theme_bw()
# plotting contributing reading time
contributing_reading_time_plot <- ggplot(contributing_df, aes(x=reading_time, group=as.factor(subdir))) +
geom_density(aes(color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
xlim(-10, 90) +
ylab("contributing density") +
guides(fill="none", color="none")+
theme_bw()
# plotting contributing reading ease
contributing_reading_ease <- ggplot(contributing_df, aes(x=flesch_reading_ease, group=as.factor(subdir))) +
geom_density(aes(color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
scale_color_manual(values = subdirColors) +
ylab("contributing density") +
xlim(-10, 90) +
theme_bw() +
theme(legend.position = "top")
contributing_reading_ease
grid.arrange(contributing_reading_ease, contributing_reading_time_plot,readme_reading_ease, readme_reading_time_plot, nrow = 2)
# plotting contributing linsear writing formula
contributing_linsear_plot <- ggplot(contributing_df, aes(x=linsear_write_formula, group=as.factor(subdir))) +
geom_density(aes(color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
xlim(-30, 30) +
guides(fill="none", color="none")+
theme_bw()
# plotting contributing reading time
contributing_reading_time_plot <- ggplot(contributing_df, aes(x=reading_time, group=as.factor(subdir))) +
geom_density(aes(color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
xlim(-10, 90) +
ylab("contributing density") +
guides(fill="none", color="none")+
theme_bw()
# plotting contributing mcalpine eflaw
contributing_mcalpine_eflaw <- ggplot(contributing_df, aes(x=mcalpine_eflaw, group=as.factor(subdir))) +
geom_density(aes(color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
xlim(-10, 70) +
guides(fill="none", color="none")+
theme_bw()
grid.arrange(contributing_reading_ease, contributing_reading_time_plot,contributing_linsear_plot, contributing_mcalpine_eflaw readme_reading_ease, readme_reading_time_plot, nrow = 2)
grid.arrange(contributing_reading_ease, contributing_reading_time_plot,contributing_linsear_plot, contributing_mcalpine_eflaw, readme_reading_ease, readme_reading_time_plot, nrow = 2)
readme_linsear_plot <- ggplot(readme_df, aes(x=linsear_write_formula, group=as.factor(subdir))) +
geom_density(aes(color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
scale_color_manual(values = subdirColors) +
xlim(-10, 30) +
ylab("readme density") +
guides(fill="none", color="none")+
theme_bw()
# plotting contributing linsear writing formula
contributing_linsear_plot <- ggplot(contributing_df, aes(x=linsear_write_formula, group=as.factor(subdir))) +
geom_density(aes(color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
xlim(-10, 30) +
guides(fill="none", color="none")+
theme_bw()
readme_mcalpine_eflaw <- ggplot(readme_df, aes(x=mcalpine_eflaw, group=as.factor(subdir))) +
geom_density(aes(color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
xlim(-10, 60) +
guides(fill="none", color="none")+
theme_bw()
grid.arrange(contributing_reading_ease, contributing_reading_time_plot,contributing_linsear_plot, contributing_mcalpine_eflaw, readme_reading_ease, readme_reading_time_plot, readme_linsear_plot, readme_mcalpine_eflaw, nrow = 2)
# plotting contributing mcalpine eflaw
contributing_mcalpine_eflaw <- ggplot(contributing_df, aes(x=mcalpine_eflaw, group=as.factor(subdir))) +
scale_color_manual(values = subdirColors) +
geom_density(aes(color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
xlim(-10, 60) +
guides(fill="none", color="none")+
theme_bw()
#plotting readme reading ease
readme_reading_ease <- ggplot(readme_df, aes(x=flesch_reading_ease, group=as.factor(subdir))) +
geom_density(aes(color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
scale_color_manual(values = subdirColors) +
xlim(-5, 90) +
ylab("readme density") +
guides(fill="none", color="none")+
theme_bw()
#plotting readme reading time
readme_reading_time_plot <- ggplot(readme_df, aes(x=reading_time, group=as.factor(subdir))) +
geom_density(aes(color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
scale_color_manual(values = subdirColors) +
xlim(-5, 90) +
ylab("readme density") +
guides(fill="none", color="none")+
theme_bw()
readme_linsear_plot <- ggplot(readme_df, aes(x=linsear_write_formula, group=as.factor(subdir))) +
geom_density(aes(color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
scale_color_manual(values = subdirColors) +
xlim(-5, 30) +
ylab("readme density") +
guides(fill="none", color="none")+
theme_bw()
readme_mcalpine_eflaw <- ggplot(readme_df, aes(x=mcalpine_eflaw, group=as.factor(subdir))) +
scale_color_manual(values = subdirColors) +
geom_density(aes(color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
xlim(-5, 60) +
guides(fill="none", color="none")+
theme_bw()
# plotting contributing linsear writing formula
contributing_linsear_plot <- ggplot(contributing_df, aes(x=linsear_write_formula, group=as.factor(subdir))) +
scale_color_manual(values = subdirColors) +
geom_density(aes(color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
xlim(-5, 30) +
guides(fill="none", color="none")+
theme_bw()
# plotting contributing reading time
contributing_reading_time_plot <- ggplot(contributing_df, aes(x=reading_time, group=as.factor(subdir))) +
scale_color_manual(values = subdirColors) +
geom_density(aes(color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
xlim(-5, 90) +
ylab("contributing density") +
guides(fill="none", color="none")+
theme_bw()
# plotting contributing mcalpine eflaw
contributing_mcalpine_eflaw <- ggplot(contributing_df, aes(x=mcalpine_eflaw, group=as.factor(subdir))) +
scale_color_manual(values = subdirColors) +
geom_density(aes(color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
xlim(-5, 60) +
guides(fill="none", color="none")+
theme_bw()
# plotting contributing reading ease
contributing_reading_ease <- ggplot(contributing_df, aes(x=flesch_reading_ease, group=as.factor(subdir))) +
geom_density(aes(color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
scale_color_manual(values = subdirColors) +
ylab("contributing density") +
xlim(-5, 90) +
theme_bw() +
theme(legend.position = "top")
grid.arrange(contributing_reading_ease, contributing_reading_time_plot,contributing_linsear_plot, contributing_mcalpine_eflaw, readme_reading_ease, readme_reading_time_plot, readme_linsear_plot, readme_mcalpine_eflaw, nrow = 2)
library(tidyverse)
library(plyr)
library(stringr)
try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path)))
#load in data
contrib_df <- read_csv("../final_data/deb_contrib_pop_change.csv")
View(contrib_df)
expanded_contrib_data <- expand_timeseries(contrib_df[1,])
for (i in 2:nrow(contrib_df)){
expanded_contrib_data <- rbind(expanded_contrib_data, expand_timeseries(contrib_df[i,]))
}
#some expansion needs to happens for each project
expand_timeseries <- function(project_row) {
longer <- project_row |>
pivot_longer(cols = ends_with("new"),
names_to = "window",
values_to = "count") |>
unnest(count) |>
mutate(after_doc = as.numeric(str_detect(window, "after"))) |>
mutate(is_collab = as.numeric(str_detect(window, "collab")))
return(longer)
}
expanded_contrib_data <- expand_timeseries(contrib_df[1,])
View(expanded_contrib_data)

View File

@ -30,7 +30,7 @@ readme_linsear_plot <- ggplot(readme_df, aes(x=linsear_write_formula, group=as.f
readme_reading_ease <- ggplot(readme_df, aes(x=flesch_reading_ease, group=as.factor(subdir))) +
geom_density(aes(color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
scale_color_manual(values = subdirColors) +
xlim(-10, 90) +
xlim(-5, 90) +
ylab("readme density") +
guides(fill="none", color="none")+
theme_bw()
@ -39,10 +39,24 @@ readme_reading_ease
readme_reading_time_plot <- ggplot(readme_df, aes(x=reading_time, group=as.factor(subdir))) +
geom_density(aes(color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
scale_color_manual(values = subdirColors) +
xlim(-10, 90) +
xlim(-5, 90) +
ylab("readme density") +
guides(fill="none", color="none")+
theme_bw()
readme_linsear_plot <- ggplot(readme_df, aes(x=linsear_write_formula, group=as.factor(subdir))) +
geom_density(aes(color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
scale_color_manual(values = subdirColors) +
xlim(-5, 30) +
ylab("readme density") +
guides(fill="none", color="none")+
theme_bw()
readme_mcalpine_eflaw <- ggplot(readme_df, aes(x=mcalpine_eflaw, group=as.factor(subdir))) +
scale_color_manual(values = subdirColors) +
geom_density(aes(color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
xlim(-5, 60) +
guides(fill="none", color="none")+
theme_bw()
#theme(axis.title.y=element_blank())
#plot of reading_ease
#readme_df <- readme_df |>
@ -57,21 +71,24 @@ median(contributing_df$reading_time)
median(contributing_df$linsear_write_formula)
# plotting contributing linsear writing formula
contributing_linsear_plot <- ggplot(contributing_df, aes(x=linsear_write_formula, group=as.factor(subdir))) +
scale_color_manual(values = subdirColors) +
geom_density(aes(color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
xlim(-30, 30) +
xlim(-5, 30) +
guides(fill="none", color="none")+
theme_bw()
# plotting contributing reading time
contributing_reading_time_plot <- ggplot(contributing_df, aes(x=reading_time, group=as.factor(subdir))) +
scale_color_manual(values = subdirColors) +
geom_density(aes(color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
xlim(-10, 90) +
xlim(-5, 90) +
ylab("contributing density") +
guides(fill="none", color="none")+
theme_bw()
# plotting contributing mcalpine eflaw
contributing_mcalpine_eflaw <- ggplot(contributing_df, aes(x=mcalpine_eflaw, group=as.factor(subdir))) +
scale_color_manual(values = subdirColors) +
geom_density(aes(color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
xlim(-10, 70) +
xlim(-5, 60) +
guides(fill="none", color="none")+
theme_bw()
# plotting contributing reading ease
@ -79,8 +96,8 @@ contributing_reading_ease <- ggplot(contributing_df, aes(x=flesch_reading_ease,
geom_density(aes(color = as.factor(subdir), fill=as.factor(subdir)), alpha=0.2, position="identity") +
scale_color_manual(values = subdirColors) +
ylab("contributing density") +
xlim(-10, 90) +
xlim(-5, 90) +
theme_bw() +
theme(legend.position = "top")
contributing_reading_ease
grid.arrange(contributing_reading_ease, contributing_reading_time_plot,readme_reading_ease, readme_reading_time_plot, nrow = 2)
grid.arrange(contributing_reading_ease, contributing_reading_time_plot,contributing_linsear_plot, contributing_mcalpine_eflaw, readme_reading_ease, readme_reading_time_plot, readme_linsear_plot, readme_mcalpine_eflaw, nrow = 2)

Binary file not shown.

Before

Width:  |  Height:  |  Size: 97 KiB

After

Width:  |  Height:  |  Size: 149 KiB

BIN
R/final_models/.DS_Store vendored Normal file

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -36,28 +36,39 @@ contrib_pop_contrib <- expanded_contrib_data[which(expanded_contrib_data$is_coll
#import models
library(lme4)
library(optimx)
collab_readme_model <- glmer.nb(log1pcount ~ after_doc + (after_doc| upstream_vcs_link), data=collab_pop_readme)
library(MASS)
simple_collab_readme_model <- glm.nb(count ~ as.factor(after_doc), data=collab_pop_readme)
summary(simple_collab_readme_model)
qqnorm(residuals(simple_collab_readme_model))
#
cor.test(collab_pop_readme$count, collab_pop_readme$after_doc)
# I don't think MLM is the right one
collab_readme_model <- glmer.nb(log1pcount ~ as.factor(after_doc) + (after_doc| upstream_vcs_link), data=collab_pop_readme)
summary(collab_readme_model)
saveRDS(collab_readme_model, "0510_pop_rm_collab.rda")
saveRDS(collab_readme_model, "final_models/0623_pop_rm_collab.rda")
crm_residuals <- residuals(collab_readme_model)
qqnorm(crm_residuals)
contrib_readme_model <- glmer.nb(log1pcount ~ after_doc + (after_doc| upstream_vcs_link), data=contrib_pop_readme)
summary(contrib_readme_model)
saveRDS(contrib_readme_model, "0510_pop_rm_contrib.rda")
saveRDS(contrib_readme_model, "final_models/0623_pop_rm_contrib.rda")
#contrib_readme_model <- load("final_models/0510_pop_rm_contrib.rda")
conrm_residuals <- residuals(contrib_readme_model)
qqnorm(conrm_residuals)
collab_contrib_model <- glmer.nb(log1pcount ~ after_doc + (after_doc| upstream_vcs_link), data=collab_pop_contrib)
summary(collab_contrib_model)
saveRDS(collab_contrib_model, "0510_pop_contrib_collab.rda")
saveRDS(collab_contrib_model, "final_models/0623_pop_contrib_collab.rda")
contrib_contrib_model <- glmer.nb(log1pcount ~ after_doc + (after_doc| upstream_vcs_link), data=contrib_pop_contrib)
summary(contrib_contrib_model)
saveRDS(contrib_contrib_model, "0510_pop_contrib_contrib.rda")
saveRDS(contrib_contrib_model, "final_models/0623_pop_contrib_contrib.rda")
library(ggplot2)
contrib_pop_readme |>
ggplot(aes(x = after_doc, y = log1pcount)) +
expanded_readme_data |>
ggplot(aes(x = after_doc, y = log1pcount, col = as.factor(is_collab))) +
geom_point() + geom_jitter()
ggplot(aes(x = after_doc, y = log1pcount, col = as.factor(after_doc))) +
geom_violin()
expanded_contrib_data |>
ggplot(aes(x = after_doc, y = count, col = as.factor(is_collab))) +
geom_point() + geom_jitter()
ggplot(aes(x = after_doc, y = count, col = as.factor(after_doc))) +
geom_violin()