diff --git a/R/.Rhistory b/R/.Rhistory index 000d063..74b9299 100644 --- a/R/.Rhistory +++ b/R/.Rhistory @@ -1,92 +1,3 @@ -} -#filter out the windows of time that we're looking at -window_num <- 8 -windowed_data <- expanded_data |> -filter(week >= (27 - window_num) & week <= (27 + window_num)) |> -mutate(D = ifelse(week > 27, 1, 0)) -#scale the age numbers -windowed_data$scaled_project_age <- scale(windowed_data$age_of_project) -windowed_data$week_offset <- windowed_data$week - 27 -#separate out the cleaning d -all_actions_data <- windowed_data[which(windowed_data$observation_type == "all"),] -mrg_actions_data <- windowed_data[which(windowed_data$observation_type == "mrg"),] -# 3 rdd in lmer analysis -# rdd: https://rpubs.com/phle/r_tutorial_regression_discontinuity_design -# lmer: https://www.youtube.com/watch?v=LzAwEKrn2Mc -library(lme4) -# https://www.bristol.ac.uk/cmm/learning/videos/random-intercepts.html#exvar -#making some random data -sampled_data <- readme_df[sample(nrow(readme_df), 220), ] -expanded_sample_data <- expand_timeseries(sampled_data[1,]) -for (i in 2:nrow(sampled_data)){ -expanded_sample_data <- rbind(expanded_sample_data, expand_timeseries(sampled_data[i,])) -} -windowed_sample_data <- expanded_sample_data |> -filter(week >= (27 - window_num) & week <= (27 + window_num)) |> -mutate(D = ifelse(week > 27, 1, 0)) -windowed_sample_data$scaled_project_age <- scale(windowed_sample_data$age_of_project) -windowed_sample_data$week_offset <- windowed_sample_data$week - 27 -all_actions_sample_data <- windowed_sample_data[which(windowed_sample_data$observation_type == "all"),] -#test model -test_model <- lmer(count ~ D * I(week_offset) + scaled_project_age + (D * I(week_offset)|upstream_vcs_link), data=all_actions_sample_data, REML=FALSE) -summary(test_model) -#plot results -p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link), show.legend = FALSE) + -geom_point(size=3, show.legend = FALSE) + -geom_line(aes(y=predict(test_model), group=upstream_vcs_link), show.legend = FALSE) + -theme_bw() -p -## -all_model <- lmer(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE) -summary(all_model) -# https://www.bristol.ac.uk/cmm/learning/videos/random-intercepts.html#exvar -#making some random data -sampled_data <- readme_df[sample(nrow(readme_df), 220), ] -expanded_sample_data <- expand_timeseries(sampled_data[1,]) -for (i in 2:nrow(sampled_data)){ -expanded_sample_data <- rbind(expanded_sample_data, expand_timeseries(sampled_data[i,])) -} -windowed_sample_data <- expanded_sample_data |> -filter(week >= (27 - window_num) & week <= (27 + window_num)) |> -mutate(D = ifelse(week > 27, 1, 0)) -windowed_sample_data$scaled_project_age <- scale(windowed_sample_data$age_of_project) -windowed_sample_data$week_offset <- windowed_sample_data$week - 27 -all_actions_sample_data <- windowed_sample_data[which(windowed_sample_data$observation_type == "all"),] -#test model -test_model <- lmer(count ~ D * I(week_offset) + scaled_project_age + (D * I(week_offset)|upstream_vcs_link), data=all_actions_sample_data, REML=FALSE) -summary(test_model) -#plot results -p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link), show.legend = FALSE) + -geom_point(size=3, show.legend = FALSE) + -geom_line(aes(y=predict(test_model), group=upstream_vcs_link), show.legend = FALSE) + -theme_bw() -p -#test model -test_model <- lmer(count ~ D * I(week_offset) + scaled_project_age + (week_offset|upstream_vcs_link), data=all_actions_sample_data, REML=FALSE) -summary(test_model) -#plot results -p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link), show.legend = FALSE) + -geom_point(size=3, show.legend = FALSE) + -geom_line(aes(y=predict(test_model), group=upstream_vcs_link), show.legend = FALSE) + -theme_bw() -p -#test model -test_model <- lmer(count ~ D * I(week_offset) + scaled_project_age + (D * I(week_offset)|upstream_vcs_link), data=all_actions_sample_data, REML=FALSE) -summary(test_model) -#plot results -p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link), show.legend = FALSE) + -geom_point(size=3, show.legend = FALSE) + -geom_line(aes(y=predict(test_model), group=upstream_vcs_link), show.legend = FALSE) + -theme_bw() -p -# https://www.bristol.ac.uk/cmm/learning/videos/random-intercepts.html#exvar -#making some random data -sampled_data <- readme_df[sample(nrow(readme_df), 220), ] -expanded_sample_data <- expand_timeseries(sampled_data[1,]) -for (i in 2:nrow(sampled_data)){ -expanded_sample_data <- rbind(expanded_sample_data, expand_timeseries(sampled_data[i,])) -} -windowed_sample_data <- expanded_sample_data |> filter(week >= (27 - window_num) & week <= (27 + window_num)) |> mutate(D = ifelse(week > 27, 1, 0)) windowed_sample_data$scaled_project_age <- scale(windowed_sample_data$age_of_project) @@ -510,3 +421,92 @@ View(d_effect_ranef_all) mrg_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE, control = lmerControl( optimizer ='optimx', optCtrl=list(method='L-BFGS-B'))) summary(mrg_model) +library(tidyverse) +library(plyr) +#get the contrib data instead +try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path))) +contrib_df <- read_csv("../final_data/deb_contrib_did.csv") +#some preprocessing and expansion +col_order <- c("upstream_vcs_link", "age_of_project", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new") +contrib_df <- contrib_df[,col_order] +contrib_df$ct_before_all <- str_split(gsub("[][]","", contrib_df$before_all_ct), ", ") +contrib_df$ct_after_all <- str_split(gsub("[][]","", contrib_df$after_all_ct), ", ") +contrib_df$ct_before_mrg <- str_split(gsub("[][]","", contrib_df$before_mrg_ct), ", ") +contrib_df$ct_after_mrg <- str_split(gsub("[][]","", contrib_df$after_mrg_ct), ", ") +drop <- c("before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct") +contrib_df = contrib_df[,!(names(contrib_df) %in% drop)] +# 2 some expansion needs to happens for each project +expand_timeseries <- function(project_row) { +longer <- project_row |> +pivot_longer(cols = starts_with("ct"), +names_to = "window", +values_to = "count") |> +unnest(count) +longer$observation_type <- gsub("^.*_", "", longer$window) +longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type))) +longer$count <- as.numeric(longer$count) +#longer <- longer[which(longer$observation_type == "all"),] +return(longer) +} +expanded_data <- expand_timeseries(contrib_df[1,]) +for (i in 2:nrow(contrib_df)){ +expanded_data <- rbind(expanded_data, expand_timeseries(contrib_df[i,])) +} +#filter out the windows of time that we're looking at +window_num <- 8 +windowed_data <- expanded_data |> +filter(week >= (27 - window_num) & week <= (27 + window_num)) |> +mutate(D = ifelse(week > 27, 1, 0)) +#scale the age numbers +windowed_data$scaled_project_age <- scale(windowed_data$age_of_project) +windowed_data$week_offset <- windowed_data$week - 27 +#separate out the cleaning d +all_actions_data <- windowed_data[which(windowed_data$observation_type == "all"),] +mrg_actions_data <- windowed_data[which(windowed_data$observation_type == "mrg"),] +#EDA? +#TKTK --------------------- +#imports for models +library(lme4) +library(optimx) +#models -- TKTK need to be fixed +all_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE, control = lmerControl( +optimizer ='optimx', optCtrl=list(method='L-BFGS-B'))) +#EDA? +hist(log(all_actions_data$count)) +all_actions_data$logged_count <- log(all_actions_data$count) +all_actions_data$log1p_count <- log1p(all_actions_data$count) +#models -- TKTK need to be fixed +all_model <- lmer(logged_count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE, control = lmerControl( +optimizer ='optimx', optCtrl=list(method='L-BFGS-B'))) +#models -- TKTK need to be fixed +all_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE, control = lmerControl( +optimizer ='optimx', optCtrl=list(method='L-BFGS-B'))) +summary(all_model) +#models -- TKTK need to be fixed +all_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (week_offset| upstream_vcs_link), data=all_actions_data, REML=FALSE, control = lmerControl( +optimizer ='optimx', optCtrl=list(method='L-BFGS-B'))) +summary(all_model) +#models -- TKTK need to be fixed +all_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE) +week_offset +#models -- TKTK need to be fixed +all_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (week_offset| upstream_vcs_link), data=all_actions_data, REML=FALSE, control = lmerControl( +optimizer ='optimx', optCtrl=list(method='L-BFGS-B'))) +summary(all_model) +# mrg behavior for this +mrg_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE, control = lmerControl( +optimizer ='optimx', optCtrl=list(method='L-BFGS-B'))) +# mrg behavior for this +mrg_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (week_offset | upstream_vcs_link), data=all_actions_data, REML=FALSE, control = lmerControl( +optimizer ='optimx', optCtrl=list(method='L-BFGS-B'))) +summary(mrg_model) +# mrg behavior for this +mrg_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (week_offset | upstream_vcs_link), data=mrg_actions_data, REML=FALSE, control = lmerControl( +optimizer ='optimx', optCtrl=list(method='L-BFGS-B'))) +# now for merge +mrg_actions_data$logged_count <- log(mrg_actions_data$count) +mrg_actions_data$log1p_count <- log1p(mrg_actions_data$count) +# mrg behavior for this +mrg_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (week_offset | upstream_vcs_link), data=mrg_actions_data, REML=FALSE, control = lmerControl( +optimizer ='optimx', optCtrl=list(method='L-BFGS-B'))) +summary(mrg_model) diff --git a/R/contribRDDAnalysis.R b/R/contribRDDAnalysis.R index b0a84af..90d970c 100644 --- a/R/contribRDDAnalysis.R +++ b/R/contribRDDAnalysis.R @@ -41,12 +41,18 @@ windowed_data$week_offset <- windowed_data$week - 27 all_actions_data <- windowed_data[which(windowed_data$observation_type == "all"),] mrg_actions_data <- windowed_data[which(windowed_data$observation_type == "mrg"),] #EDA? +hist(log(all_actions_data$count)) +all_actions_data$logged_count <- log(all_actions_data$count) +all_actions_data$log1p_count <- log1p(all_actions_data$count) +# now for merge +mrg_actions_data$logged_count <- log(mrg_actions_data$count) +mrg_actions_data$log1p_count <- log1p(mrg_actions_data$count) #TKTK --------------------- #imports for models library(lme4) library(optimx) #models -- TKTK need to be fixed -all_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE, control = lmerControl( +all_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (week_offset| upstream_vcs_link), data=all_actions_data, REML=FALSE, control = lmerControl( optimizer ='optimx', optCtrl=list(method='L-BFGS-B'))) summary(all_model) #identifying the quartiles of effect for D @@ -57,7 +63,7 @@ d_effect_ranef_all$quartile <- ntile(d_effect_ranef_all$condval, 4) all_residuals <- residuals(all_model) qqnorm(all_residuals) # mrg behavior for this -mrg_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE, control = lmerControl( +mrg_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (week_offset | upstream_vcs_link), data=mrg_actions_data, REML=FALSE, control = lmerControl( optimizer ='optimx', optCtrl=list(method='L-BFGS-B'))) summary(mrg_model) #identifying the quartiles of effect for D