From 59fd70c34d6f7b88f7c546fa34890cea1b4b6727 Mon Sep 17 00:00:00 2001 From: Kaylea Champion Date: Tue, 14 Nov 2023 08:39:43 -0800 Subject: [PATCH] adds this to view --- R/powerAnalysis.orig.R | 54 ++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 54 insertions(+) create mode 100644 R/powerAnalysis.orig.R diff --git a/R/powerAnalysis.orig.R b/R/powerAnalysis.orig.R new file mode 100644 index 0000000..222032b --- /dev/null +++ b/R/powerAnalysis.orig.R @@ -0,0 +1,54 @@ +# This is semi-generic code for doing a power analysis of a logistic regression with 4 +# levels in a factor +# when there's some pilot values already available and defined +#modelled heavily the simulation example explained in: +#http://meeting.spsp.org/2016/sites/default/files/Lane%2C%20Hennes%2C%20West%20SPSP%20Power%20Workshop%202016.pdf + +library('batman') +library('reshape') + +l2p <- function(b) { + odds <- exp(b) + prob <- odds/(1+odds) + return(prob) +} + + +makeData <- function(n) { #make a random dataset of size n + #4 group IDs + tDF <- data.frame( + Group0=rbinom(n=n, size=1, prob=l2p(pilot.b0)), #ASK: what about se in pilot data? + Group1=rbinom(n=n, size=1, prob=l2p(pilot.b0 + pilot.b1)), # shouldn't my probs + Group2=rbinom(n=n, size=1, prob=l2p(pilot.b0 + pilot.b2)), # include se? + Group3=rbinom(n=n, size=1, prob=l2p(pilot.b0 + pilot.b3))) + sDF <- melt(tDF, id.vars = 0) #AKA the index is the unique id, as far as that goes + colnames(sDF) <- c('source', 'nd') + + return(sDF) +} + +powerCheck <- function(n, nSims) { #run a power calculation on the dataset given + #set up some empty arrays b/c R + signif0 <- rep(NA, nSims) + signif1 <- rep(NA, nSims) + signif2 <- rep(NA, nSims) + signif3 <- rep(NA, nSims) + signifM <- rep(NA, nSims) + for (s in 1:nSims) { # repeatedly we will.... + simData <- makeData(n) # make some data + m1.sim <- glm(nd ~ source, # give the anticipated regression a try + family=binomial(link="logit"), data=simData) + p0 <- coef(summary(m1.sim))[1,4] + p1 <- coef(summary(m1.sim))[2,4] + p2 <- coef(summary(m1.sim))[3,4] + p3 <- coef(summary(m1.sim))[4,4] + signif0[s] <- p0 <=.05 + signif1[s] <- p1 <=.05 + signif2[s] <- p2 <=.05 + signif3[s] <- p3 <=.05 + signifM[s] <- p0 <=.05 & p1 <=.05 & p2 <=.05 & p3 <=.05 + } + power <- c(mean(signif0), mean(signif1), mean(signif2), mean(signif3), mean(signifM)) + return(power) +} +