From 634f60b6a8d3fabd96d38dbbf1b55ab9b3aa44ad Mon Sep 17 00:00:00 2001 From: mjgaughan Date: Tue, 23 Apr 2024 09:55:37 -0500 Subject: [PATCH] recent updates to model formula --- R/.Rhistory | 132 +++++++++++++++++++++--------------------- R/readmeRDDAnalysis.R | 3 +- 2 files changed, 68 insertions(+), 67 deletions(-) diff --git a/R/.Rhistory b/R/.Rhistory index 08586d1..a4c3e0d 100644 --- a/R/.Rhistory +++ b/R/.Rhistory @@ -1,69 +1,3 @@ -names_to = "window", -values_to = "count") |> -unnest(count) -longer$observation_type <- gsub("^.*_", "", longer$window) -longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type))) -longer$count <- as.numeric(longer$count) -#longer <- longer[which(longer$observation_type == "all"),] -return(longer) -} -expanded_data <- expand_timeseries(readme_df[1,]) -for (i in 2:nrow(readme_df)){ -expanded_data <- rbind(expanded_data, expand_timeseries(readme_df[i,])) -} -View(expanded_data) -# this is the file with the lmer multi-level rddAnalysis -library(tidyverse) -library(plyr) -# 0 loading the readme data in -try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path))) -readme_df <- read_csv("../final_data/deb_readme_did.csv") -# 1 preprocessing -#colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new") -col_order <- c("upstream_vcs_link", "age_of_project", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new") -readme_df <- readme_df[,col_order] -readme_df$ct_before_all <- str_split(gsub("[][]","", readme_df$before_all_ct), ", ") -readme_df$ct_after_all <- str_split(gsub("[][]","", readme_df$after_all_ct), ", ") -readme_df$ct_before_mrg <- str_split(gsub("[][]","", readme_df$before_mrg_ct), ", ") -readme_df$ct_after_mrg <- str_split(gsub("[][]","", readme_df$after_mrg_ct), ", ") -drop <- c("before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct") -readme_df = readme_df[,!(names(readme_df) %in% drop)] -# 2 some expansion needs to happens for each project -expand_timeseries <- function(project_row) { -longer <- project_row |> -pivot_longer(cols = starts_with("ct"), -names_to = "window", -values_to = "count") |> -unnest(count) -longer$observation_type <- gsub("^.*_", "", longer$window) -longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type))) -longer$count <- as.numeric(longer$count) -#longer <- longer[which(longer$observation_type == "all"),] -return(longer) -} -expanded_data <- expand_timeseries(readme_df[1,]) -for (i in 2:nrow(readme_df)){ -expanded_data <- rbind(expanded_data, expand_timeseries(readme_df[i,])) -} -#filter out the windows of time that we're looking at -window_num <- 8 -expanded_data <- expanded_data |> -filter(week >= (26 - window_num) & week <= (26 + window_num)) |> -mutate(D = ifelse(week > 26, 1, 0)) -#separate out the cleaning -all_actions_data <- expanded_data[which(expanded_data$observation_type == "all"),] -mrg_actions_data <- expanded_data[which(expanded_data$observation_type == "mrg"),] -draft_all_model <- lmer(count ~ D * I(week - 26) + (1|upstream_vcs_link), REML=FALSE, data=all_actions_data) -summary(draft_all_model) -# 3 rdd in lmer analysis -# rdd: https://rpubs.com/phle/r_tutorial_regression_discontinuity_design -# lmer: https://www.youtube.com/watch?v=LzAwEKrn2Mc -library(lme4) -draft_all_model <- lmer(count ~ D * I(week - 26) + (1|upstream_vcs_link), REML=FALSE, data=all_actions_data) -summary(draft_all_model) -draft_all_model <- lmer(count ~ D * I(week - 26) + age_of_project + (1|upstream_vcs_link), REML=FALSE, data=all_actions_data) -summary(draft_all_model) -ICC(outcome="count", group="upstream_vcs_link", data=all_actions_data) # need to calculate inter-class correlation coefficient? library(merTools) ICC(outcome="count", group="upstream_vcs_link", data=all_actions_data) @@ -510,3 +444,69 @@ poisson_mrg_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_pr summary(poisson_mrg_model) poisson_mrg_residuals <- residuals(poisson_mrg_model) qqnorm(poisson_mrg_residuals) +# this is the file with the lmer multi-level rddAnalysis +library(tidyverse) +library(plyr) +# 0 loading the readme data in +try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path))) +readme_df <- read_csv("../final_data/deb_readme_did.csv") +# 1 preprocessing +#colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new") +col_order <- c("upstream_vcs_link", "age_of_project", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new") +readme_df <- readme_df[,col_order] +readme_df$ct_before_all <- str_split(gsub("[][]","", readme_df$before_all_ct), ", ") +readme_df$ct_after_all <- str_split(gsub("[][]","", readme_df$after_all_ct), ", ") +readme_df$ct_before_mrg <- str_split(gsub("[][]","", readme_df$before_mrg_ct), ", ") +readme_df$ct_after_mrg <- str_split(gsub("[][]","", readme_df$after_mrg_ct), ", ") +drop <- c("before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct") +readme_df = readme_df[,!(names(readme_df) %in% drop)] +# 2 some expansion needs to happens for each project +expand_timeseries <- function(project_row) { +longer <- project_row |> +pivot_longer(cols = starts_with("ct"), +names_to = "window", +values_to = "count") |> +unnest(count) +longer$observation_type <- gsub("^.*_", "", longer$window) +longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type))) +longer$count <- as.numeric(longer$count) +#longer <- longer[which(longer$observation_type == "all"),] +return(longer) +} +expanded_data <- expand_timeseries(readme_df[1,]) +for (i in 2:nrow(readme_df)){ +expanded_data <- rbind(expanded_data, expand_timeseries(readme_df[i,])) +} +#filter out the windows of time that we're looking at +window_num <- 8 +windowed_data <- expanded_data |> +filter(week >= (26 - window_num) & week <= (26 + window_num)) |> +mutate(D = ifelse(week > 26, 1, 0)) +#scale the age numbers +windowed_data$scaled_project_age <- scale(windowed_data$age_of_project) +#separate out the cleaning d +all_actions_data <- windowed_data[which(windowed_data$observation_type == "all"),] +mrg_actions_data <- windowed_data[which(windowed_data$observation_type == "mrg"),] +# https://www.bristol.ac.uk/cmm/learning/videos/random-intercepts.html#exvar +# (1 |upstream_vcs_link) or (week | upstream_vcs_link) +poisson_all_model <- glmer(count ~ (D + I(week - 26) + D:I(week - 26) + scaled_project_age | upstream_vcs_link) + (1 |upstream_vcs_link), data=all_actions_data, family = poisson(link = "log")) +# 3 rdd in lmer analysis +# rdd: https://rpubs.com/phle/r_tutorial_regression_discontinuity_design +# lmer: https://www.youtube.com/watch?v=LzAwEKrn2Mc +library(lme4) +# https://www.bristol.ac.uk/cmm/learning/videos/random-intercepts.html#exvar +# (1 |upstream_vcs_link) or (week | upstream_vcs_link) +poisson_all_model <- glmer(count ~ (D + I(week - 26) + D:I(week - 26) + scaled_project_age | upstream_vcs_link) + (1 |upstream_vcs_link), data=all_actions_data, family = poisson(link = "log")) +# https://www.bristol.ac.uk/cmm/learning/videos/random-intercepts.html#exvar +# (1 |upstream_vcs_link) or (week | upstream_vcs_link) +poisson_all_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (D + I(week - 26) + D:I(week - 26) + scaled_project_age | upstream_vcs_link) + (1 |upstream_vcs_link), data=all_actions_data, family = poisson(link = "log")) +# https://www.bristol.ac.uk/cmm/learning/videos/random-intercepts.html#exvar +# (1 |upstream_vcs_link) or (week | upstream_vcs_link) +poisson_all_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (D | upstream_vcs_link) + (1 |upstream_vcs_link), data=all_actions_data, family = poisson(link = "log")) +summary(poisson_all_model) +# https://www.bristol.ac.uk/cmm/learning/videos/random-intercepts.html#exvar +# (D |upstream_vcs_link) or (week | upstream_vcs_link) +poisson_all_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (week | upstream_vcs_link) + (1 |upstream_vcs_link), data=all_actions_data, family = poisson(link = "log")) +summary(poisson_all_model) +poisson_residuals <- residuals(poisson_all_model) +qqnorm(poisson_residuals) diff --git a/R/readmeRDDAnalysis.R b/R/readmeRDDAnalysis.R index 33a8ae7..a57e4e3 100644 --- a/R/readmeRDDAnalysis.R +++ b/R/readmeRDDAnalysis.R @@ -54,7 +54,8 @@ qqplot(all_actions_data$count, y) # lmer: https://www.youtube.com/watch?v=LzAwEKrn2Mc library(lme4) # https://www.bristol.ac.uk/cmm/learning/videos/random-intercepts.html#exvar -poisson_all_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (week |upstream_vcs_link), data=all_actions_data, family = poisson(link = "log")) +# (D |upstream_vcs_link) or (week | upstream_vcs_link) +poisson_all_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (week || upstream_vcs_link), data=all_actions_data, family = poisson(link = "log")) summary(poisson_all_model) poisson_residuals <- residuals(poisson_all_model) qqnorm(poisson_residuals)