updating R org

This commit is contained in:
mjgaughan 2024-04-02 18:49:49 -05:00
parent 80ff60b755
commit 66574803a6
24 changed files with 262 additions and 255 deletions

BIN
R/.DS_Store vendored

Binary file not shown.

View File

@ -1,256 +1,3 @@
geom_point() +
geom_smooth(mapping = aes(x=age_of_project, y=total_community))+
xlab("Age of the Project") +
ylab("Underproduction Factor")
g4
g4 <- ggplot(data7, aes(x= (age_of_the_project /12), y=total_community)) +
geom_point() +
geom_smooth(mapping = aes(x=age_of_project, y=total_community))+
xlab("Age of the Project") +
ylab("Underproduction Factor")
g4
g4 <- ggplot(data7, aes(x=age_of_the_project, y=total_community)) +
geom_point() +
geom_smooth(mapping = aes(x=age_of_project, y=total_community))+
xlab("Age of the Project") +
ylab("Underproduction Factor")
g4
g4 <- ggplot(data7, aes(x=age_of_the_project, y=total_community)) +
geom_point() +
geom_smooth(mapping = aes(x=age_of_project, y=total_community))+
xlab("Age of the Project") +
ylab("Underproduction Factor")
g4
g4 <- ggplot(data7, aes(x=age_of_project/12, y=total_community)) +
geom_point() +
geom_smooth(mapping = aes(x=age_of_project, y=total_community))+
xlab("Age of the Proje") +
ylab("Underproduction Factor")
g4
g4 <- ggplot(data7, aes(x=age_of_project/12, y=total_community)) +
geom_point() +
geom_smooth(mapping = aes(x=age_of_project/12, y=total_community))+
xlab("Age of the Proje") +
ylab("Underproduction Factor")
g4
g4 <- ggplot(data7, aes(x=age_of_project/365, y=total_community)) +
geom_point() +
geom_smooth(mapping = aes(x=age_of_project/365, y=total_community))+
xlab("Age of the Proje") +
ylab("Underproduction Factor")
g4
g4 <- ggplot(data7, aes(x=age_of_project/365, y=total_community)) +
geom_point() +
geom_smooth(mapping = aes(x=age_of_project/365, y=total_community))+
xlab("Age of the Project (years)") +
ylab("Contributor Community Population")
g4
g4 <- ggplot(data7, aes(x=age_of_project/365, y=total_community)) +
geom_point() +
geom_smooth(mapping = aes(x=age_of_project/365, y=total_community, color=yellow))+
xlab("Age of the Project (years)") +
ylab("Contributor Community Population")
g4
g4 <- ggplot(data7, aes(x=age_of_project/365, y=total_community)) +
geom_point() +
geom_smooth(mapping = aes(x=age_of_project/365, y=total_community))+
xlab("Age of the Project (years)") +
ylab("Contributor Community Population")
g4
g4 <- ggplot(data7, aes(x=age_of_project/365, y=total_community)) +
geom_point() +
geom_smooth(mapping = aes(x=age_of_project/365, y=total_community))+
xlab("Age of the Project (years)") +
ylab("Contributor Community Population") +
theme_bw()
g4
g4 <- ggplot(data7, aes(x=age_of_project/365, y=total_community)) +
geom_point() +
geom_smooth(mapping = aes(x=age_of_project/365, y=total_community), color="black")+
xlab("Age of the Project (years)") +
ylab("Contributor Community Population") +
theme_bw()
g4
g4 <- ggplot(data7, aes(x=age_of_project/365, y=total_community)) +
geom_point() +
geom_smooth(mapping = aes(x=age_of_project/365, y=total_community), color="yellow")+
xlab("Age of the Project (years)") +
ylab("Contributor Community Population") +
theme_bw()
g4
g4 <- ggplot(data7, aes(x=age_of_project/365, y=total_community)) +
geom_point() +
geom_smooth(mapping = aes(x=age_of_project/365, y=total_community), color="red")+
xlab("Age of the Project (years)") +
ylab("Contributor Community Population") +
theme_bw()
g4
library(readr)
data6 <-read_csv('../kk_final_commentlist.csv', show_col_types=FALSE)
data6$total_community = data6$contributors + data6$collaborators
median(data6$total_community)
cor.test(data6$total_community, data6$age_of_project)
library(readr)
library(ggplot2)
data1 <- read_csv('../power_data_111023_mmt.csv',show_col_types = FALSE)
data1$up.fac.mean <- pmin(python_labeled, same_labeled, na.rm=TRUE)
data1$old_milestones <- data1$milestones
data1$new_milestones <- as.numeric(data1$milestones > 0) + 1
data1$new.age <- as.numeric(cut(data1$age/365, breaks=c(0,9,12,15,17), labels=c(1,2,3,4)))
data1$new.formal.score <- data1$mmt / (data1$new_milestones/data1$new.age)
data1$new.age.factor <- as.factor(data1$new.age)
g2 <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) +
geom_point() +
geom_smooth(mapping = aes(x=mmt, y=underproduction_mean, color=new.age.factor),
method='lm', formula= y~x)
g2
data1$up.fac.mean <- pmin(python_labeled, same_labeled, na.rm=TRUE)
data1 <- read_csv('../power_data_111023_mmt.csv',show_col_types = FALSE)
data2 <- read_csv('../inst_all_packages_full_results.csv')
#d$nd <- to_logical(d$not.damaging, custom_true=c("Y"))
#levels(d$source) <- c("IP-based Editors", "New Editors", "Registered Editors", "Tor-based Editors")
python_labeled <- as.numeric(data2$up.fac.mean[match(paste('python',tolower(data1$pkg), sep = "-"), data2$pkg)])
same_labeled <- as.numeric(data2$up.fac.mean[match(tolower(data1$pkg), data2$pkg)])
data1$up.fac.mean <- pmin(python_labeled, same_labeled, na.rm=TRUE)
data1$old_milestones <- data1$milestones
data1$new_milestones <- as.numeric(data1$milestones > 0) + 1
data1$new.age.factor <- as.factor(data1$new.age)
data1$new.age <- as.numeric(cut(data1$age/365, breaks=c(0,9,12,15,17), labels=c(1,2,3,4)))
data1$new.formal.score <- data1$mmt / (data1$new_milestones/data1$new.age)
data1$new.age.factor <- as.factor(data1$new.age)
g2 <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) +
geom_point() +
geom_smooth(mapping = aes(x=mmt, y=underproduction_mean, color=new.age.factor),
method='lm', formula= y~x)
g2
data1 <- read_csv('../power_data_111023_mmt.csv',show_col_types = FALSE)
data2 <- read_csv('../inst_all_packages_full_results.csv')
#d$nd <- to_logical(d$not.damaging, custom_true=c("Y"))
#levels(d$source) <- c("IP-based Editors", "New Editors", "Registered Editors", "Tor-based Editors")
python_labeled <- as.numeric(data2$up.fac.mean[match(paste('python',tolower(data1$pkg), sep = "-"), data2$pkg)])
same_labeled <- as.numeric(data2$up.fac.mean[match(tolower(data1$pkg), data2$pkg)])
data1$up.fac.mean <- pmin(python_labeled, same_labeled, na.rm=TRUE)
data1$old_milestones <- data1$milestones
data1$new_milestones <- as.numeric(data1$milestones > 0) + 1
# (2) - Run the model on the pilot data
data1$formal.score <- data1$mmt / (data1$old_milestones/data1$age)
data1$new.age <- as.numeric(cut(data1$age/365, breaks=c(0,9,12,15,17), labels=c(1,2,3,4)))
data1$new.formal.score <- data1$mmt / (data1$new_milestones/data1$new.age)
g2 <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) +
geom_point() +
geom_smooth(mapping = aes(x=mmt, y=up.fac.mean, color=new.age.factor),
method='lm', formula= y~x)
g2
data1$new.age <- as.numeric(cut(data1$age/365, breaks=c(0,9,12,15,17), labels=c(1,2,3,4)))
data1$new.formal.score <- data1$mmt / (data1$new_milestones/data1$new.age)
data1$new.age.factor <- as.factor(data1$new.age)
g2 <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) +
geom_point() +
geom_smooth(mapping = aes(x=mmt, y=up.fac.mean, color=new.age.factor),
method='lm', formula= y~x)
g2
g2 <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) +
geom_point() +
geom_smooth(mapping = aes(x=mmt, y=up.fac.mean, color=new.age.factor),
method='lm', formula= y~x, se=FALSE)
g2
g2 <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) +
geom_point() +
geom_smooth(mapping = aes(x=mmt, y=up.fac.mean, color=new.age.factor),
method='lm', formula= y~x, se=FALSE)+
xlab("MMT") +
ylab("Underproduction Factor") +
theme_bw()
g2
g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) +
geom_point() +
#geom_smooth( method="lm", formula=(y~x), colour = "orange")+
geom_abline(intercept=coef(mmtmodel1)[1], slope=coef(mmtmodel1)[2], colour = "orange", size=1)+
geom_errorbar(aes(ymin=y-yerr, ymax=y+yerr), width=0.09)+
labs(x="MMT", y="Mean Underproduction Factor", color = "Project Age Group") +
theme_bw()
g
g2 <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) +
geom_point() +
geom_smooth(mapping = aes(x=mmt, y=up.fac.mean, color=new.age.factor),
method='lm', formula= y~x, se=FALSE)+
labs(x="MMT", y="Mean Underproduction Factor", color = "Project Age Group") +
theme_bw()
g2
g2 <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) +
geom_point() +
geom_smooth(mapping = aes(x=mmt, y=up.fac.mean, color=new.age.factor),
method='lm', formula= y~x, se=FALSE)+
labs(x="MMT", y="Mean Underproduction Factor", color = "Project Age Group") +
scale_colour_manual(values=colors_legend, labels=c("0-9y", "9-12y", "12-15y","15-16y")) +
theme_bw()
g2
g2 <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) +
geom_point() +
geom_smooth(mapping = aes(x=mmt, y=up.fac.mean, color=new.age.factor),
method='lm', formula= y~x, se=FALSE)+
labs(x="MMT", y="Mean Underproduction Factor", color = "Project Age Group") +
scale_colour_manual(values=colors_legend, labels=c("0-9y", "9-12y", "12-15y","15-16y")) +
theme_bw() +
theme(legend.position = c(0.05, 0.05), legend.justification = c("left", "bottom"))
g2
g2 <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) +
geom_smooth(mapping = aes(x=mmt, y=up.fac.mean, color=new.age.factor),
method='lm', formula= y~x, se=FALSE)+
labs(x="MMT", y="Mean Underproduction Factor", color = "Project Age Group") +
scale_colour_manual(values=colors_legend, labels=c("0-9y", "9-12y", "12-15y","15-16y")) +
theme_bw() +
theme(legend.position = c(0.05, 0.05), legend.justification = c("left", "bottom"))
g2
g2 <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) +
geom_smooth(mapping = aes(x=mmt, y=up.fac.mean, color=new.age.factor),
method='lm', formula= y~x, se=FALSE)+
labs(x="MMT", y="Mean Underproduction Factor", color = "Project Age Group") +
scale_colour_manual(values=colors_legend, labels=c("0-9y", "9-12y", "12-15y","15-16y")) +
theme_bw() +
theme(legend.position = c(0.05, 0.05), legend.justification = c("left", "bottom"))
g2
g2 <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) +
geom_smooth(mapping = aes(x=mmt, y=up.fac.mean, color=new.age.factor),
method='lm', formula= y~x, se=FALSE)+
labs(x="MMT", y="Mean Underproduction Factor", color = "Project Age Group") +
theme_bw() +
theme(legend.position = c(0.05, 0.05), legend.justification = c("left", "bottom"))
g2
g2 <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) +
geom_smooth(mapping = aes(x=mmt, y=up.fac.mean, color=new.age.factor),
method='lm', formula= y~x, se=FALSE)+
labs(x="MMT", y="Mean Underproduction Factor", color = "Project Age Group") +
scale_colour_manual(values=color_legend, labels=c("0-9y", "9-12y", "12-15y","15-16y")) +
theme_bw() +
theme(legend.position = c(0.05, 0.05), legend.justification = c("left", "bottom"))
g2
g2 <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) +
geom_smooth(mapping = aes(x=mmt, y=up.fac.mean, color=new.age.factor),
method='lm', formula= y~x, se=FALSE)+
labs(x="MMT", y="Mean Underproduction Factor", color = "Project Age Group") +
scale_colour_manual( labels=c("0-9y", "9-12y", "12-15y","15-16y")) +
theme_bw() +
theme(legend.position = c(0.05, 0.05), legend.justification = c("left", "bottom"))
g2
g2 <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) +
geom_smooth(mapping = aes(x=mmt, y=up.fac.mean, color=new.age.factor),
method='lm', formula= y~x, se=FALSE)+
labs(x="MMT", y="Mean Underproduction Factor", color = "Project Age Group") +
scale_colour_manual(values=legend, labels=c("0-9y", "9-12y", "12-15y","15-16y")) +
theme_bw() +
theme(legend.position = c(0.05, 0.05), legend.justification = c("left", "bottom"))
g2
g2 <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) +
geom_smooth(mapping = aes(x=mmt, y=up.fac.mean, color=new.age.factor),
method='lm', formula= y~x, se=FALSE)+
labs(x="MMT", y="Mean Underproduction Factor", color = "Project Age Group") +
scale_colour_manual(values=legend.values, labels=c("0-9y", "9-12y", "12-15y","15-16y")) +
theme_bw() +
theme(legend.position = c(0.05, 0.05), legend.justification = c("left", "bottom"))
g2
g2 <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) +
geom_smooth(mapping = aes(x=mmt, y=up.fac.mean, color=new.age.factor),
method='lm', formula= y~x, se=FALSE)+
labs(x="MMT", y="Mean Underproduction Factor", color = "Project Age Group") +
theme_bw() +
@ -510,3 +257,256 @@ hist(contributing_data$new.age)
119 / 528
171/ 528
162 / 528
octo_data <- read_csv('../new_denom_032624.csv', show_col_types = FALSE)
rm(list=ls())
set.seed(424242)
library(readr)
library(ggplot2)
library(tidyverse)
readme_data <- read_csv("../final_data/deb_readme_roster.csv", show_col_types = FALSE)
octo_data <- read_csv('../new_denom_032624.csv', show_col_types = FALSE)
# below this is the analysis for the octo data
octo_data$new.age <- as.numeric(cut(octo_data$age_of_project/365, breaks=c(0,7.524197,10.323056,13.649367,17), labels=c(1,2,3,4)))
octo_data <- read_csv('../new_denom_032624.csv', show_col_types = FALSE)
# below this is the analysis for the octo data
octo_data$new.age <- as.numeric(cut(octo_data$age_of_project/365, breaks=c(0,7.524197,10.323056,13.649367,17), labels=c(1,2,3,4)))
table(octo_data$new.age)
octo_data$new.age.factor <- as.factor(octo_data$new.age)
hist(octo_data$new.age)
octo_data$mmt <- (((octo_data$collaborators * 2)+ octo_data$contributors) / (octo_data$contributors + octo_data$collaborators))
mean(octo_data$mmt)
hist(octo_data$mmt, probability = TRUE)
head(octo_data)
#TODO: the counts here aren't unique, need to go back and calculate so that no overlap between the counts
#i.e. needs to be a total contrib number that is not attached to the high level counts
octo_data$issue_mmt <- (((octo_data$issue_contrib_count * 2) + (octo_data$total_contrib - octo_data$issue_contrib_count)) / (octo_data$total_contrib))
hist(octo_data$issue_mmt, probability = TRUE)
#TODO: the counts here aren't unique, need to go back and calculate so that no overlap between the counts
#i.e. needs to be a total contrib number that is not attached to the high level counts
octo_data$issue_mmt <- ((octo_data$issue_contrib_count * 2) + (octo_data$total_contrib - octo_data$issue_contrib_count)) / (octo_data$total_contrib)
hist(octo_data$issue_mmt, probability = TRUE)
max(octo_data$issue_mmt)
max(octo_data$issue_mmt)
median(octo_data$issue_mmt)
median(octo_data$issue_mmt)
min(octo_data$issue_mmt)
hist(octo_data$total_contrib)
mean(octo_data$total_contrib)
median(octo_data$total_contrib)
median(octo_data$contributors)
median(octo_data$collaborators)
median(octo_data$total_contrib)
#TODO: the counts here aren't unique, need to go back and calculate so that no overlap between the counts
#i.e. needs to be a total contrib number that is not attached to the high level counts
octo_data$issue_mmt <- ((octo_data$issue_contrib_count * 2) + (octo_data$total_contrib - octo_data$issue_contrib_count)) / (octo_data$total_contrib)
hist(octo_data$issue_mmt, probability = TRUE)
hist(octo_data$issue_mmt)
octo_data$wiki_mmt <- ((octo_data$wiki_contrib_count * 2) + (octo_data$total_contrib - octo_data$wiki_contrib_count)) / (octo_data$total_contrib)
hist(octo_data$wiki_mmt)
min(octo_data$wiki_mmt)
median(octo_data$wiki_mmt)
#TODO: the counts here aren't unique, need to go back and calculate so that no overlap between the counts
#i.e. needs to be a total contrib number that is not attached to the high level counts
octo_data$issue_mmt <- ((octo_data$issue_contrib_count * 2) + (octo_data$total_contrib - octo_data$issue_contrib_count)) / (octo_data$total_contrib)
hist(octo_data$issue_mmt)
octo_data$mmt <- (((octo_data$collaborators * 2)+ octo_data$contributors) / (octo_data$contributors + octo_data$collaborators))
mean(octo_data$mmt)
hist(octo_data$mmt)
median(octo_data$total_contrib)
#TODO: the counts here aren't unique, need to go back and calculate so that no overlap between the counts
#i.e. needs to be a total contrib number that is not attached to the high level counts
octo_data$issue_mmt <- ((octo_data$issue_contrib_count * 2) + (octo_data$total_contrib - octo_data$issue_contrib_count)) / (octo_data$total_contrib)
hist(octo_data$issue_mmt)
max(octo_data$issue_mmt)
maximum(octo_data$issue_mmt)
octo_data$wiki_mmt <- ((octo_data$wiki_contrib_count * 2) + (octo_data$total_contrib - octo_data$wiki_contrib_count)) / (octo_data$total_contrib)
hist(octo_data$wiki_mmt)
median(octo_data$wiki_mmt)
#below are the models for the octo data, there should be analysis for each one
octo_mmtmodel1 <- lm(underproduction_mean ~ mmt + new.age.factor, data=octo_data)
summary(octo_mmtmodel1)
#TODO: the counts here aren't unique, need to go back and calculate so that no overlap between the counts
#i.e. needs to be a total contrib number that is not attached to the high level counts
octo_data$issue_mmt <- ((octo_data$issue_contrib_count * 2) + (octo_data$total_contrib - octo_data$issue_contrib_count)) / (octo_data$total_contrib)
hist(octo_data$issue_mmt)
maximum(octo_data$issue_mmt)
typeof(octo_data$issue_mmt)
length(octo_data$issue_mmt)
#TODO: the counts here aren't unique, need to go back and calculate so that no overlap between the counts
#i.e. needs to be a total contrib number that is not attached to the high level counts
octo_data$issue_mmt <- ((octo_data$issue_contrib_count * 2) + (octo_data$total_contrib - octo_data$issue_contrib_count)) / (octo_data$total_contrib)
hist(octo_data$issue_mmt)
length(octo_data$issue_mmt)
sum(octo_data$issue_mmt > 2)
length(octo_data$issue_mmt > 2)
length(octo_data$issue_mmt > 2.0)
median(octo_data$wiki_mmt)
typeof(octo_data$issue_mmt)
median(octo_data$issue_mmt, na.rm = TRUE)
median(octo_data$issue_contrib_count)
octo_data <- na.omit(octo_data$issue_contrib_count)
median(octo_data$issue_contrib_count)
octo_data <- read_csv('../new_denom_032624.csv', show_col_types = FALSE)
# below this is the analysis for the octo data
octo_data$new.age <- as.numeric(cut(octo_data$age_of_project/365, breaks=c(0,7.524197,10.323056,13.649367,17), labels=c(1,2,3,4)))
table(octo_data$new.age)
octo_data$new.age.factor <- as.factor(octo_data$new.age)
hist(octo_data$new.age)
octo_data$mmt <- (((octo_data$collaborators * 2)+ octo_data$contributors) / (octo_data$contributors + octo_data$collaborators))
mean(octo_data$mmt)
hist(octo_data$mmt)
head(octo_data)
median(octo_data$issue_contrib_count)
octo_data <- na.omit(octo_data)
median(octo_data$issue_contrib_count)
#TODO: the counts here aren't unique, need to go back and calculate so that no overlap between the counts
#i.e. needs to be a total contrib number that is not attached to the high level counts
octo_data$issue_mmt <- ((octo_data$issue_contrib_count * 2) + (octo_data$total_contrib - octo_data$issue_contrib_count)) / (octo_data$total_contrib)
hist(octo_data$issue_mmt)
median(octo_data$issue_mmt, na.rm = TRUE)
length(octo_data$issue_mmt > 2.0)
length(octo_data$issue_mmt > 2.0)
length(octo_data$issue_mmt > 2)
median(octo_data$issue_mmt)
, na.rm = TRUE
median(octo_data$issue_mmt, na.rm = TRUE)
length(octo_data$issue_mmt > 2)
length(octo_data$issue_mmt > 2)
length(octo_data$issue_mmt > 2.0)
max(octo_data$issue_mmt, na.rm = TRUE)
octo_data$new_mmt <- (((octo_data$collaborators * 2)+ (octo_data$total_contrib - octo_data$collaborators)) / (octo_data$total_contrib))
hist(octo_data$new_mmt)
octo_data$mmt <- (((octo_data$collaborators * 2)+ octo_data$contributors) / (octo_data$contributors + octo_data$collaborators))
mean(octo_data$mmt)
hist(octo_data$mmt)
#TODO: there's an issue with calculating this but somehow not an issue with the wiki one
octo_data$issue_mmt <- ((octo_data$issue_contrib_count * 2) + (octo_data$total_contrib - octo_data$issue_contrib_count)) / (octo_data$total_contrib)
hist(octo_data$issue_mmt)
octo_data$wiki_mmt <- ((octo_data$wiki_contrib_count * 2) + (octo_data$total_contrib - octo_data$wiki_contrib_count)) / (octo_data$total_contrib)
hist(octo_data$wiki_mmt)
hist(octo_data$issue_mmt)
length(octo_data$issue_mmt > 2.0)
octo_data[which(octo_data$issue_contrib_count > octo_data$total_contrib)]
octo_data[which(octo_data$issue_contrib_count > octo_data$total_contrib),]
octo_data[which(octo_data$issue_contrib_count > octo_data$total_contrib),]$issue_contrib_count
octo_data <- read_csv('../new_denom_032624_stripped.csv', show_col_types = FALSE)
# below this is the analysis for the octo data
octo_data$new.age <- as.numeric(cut(octo_data$age_of_project/365, breaks=c(0,7.524197,10.323056,13.649367,17), labels=c(1,2,3,4)))
table(octo_data$new.age)
octo_data$new.age.factor <- as.factor(octo_data$new.age)
hist(octo_data$new.age)
octo_data$mmt <- (((octo_data$collaborators * 2)+ octo_data$contributors) / (octo_data$contributors + octo_data$collaborators))
mean(octo_data$mmt)
hist(octo_data$mmt)
head(octo_data)
octo_data[which(octo_data$issue_contrib_count > octo_data$total_contrib),]$issue_contrib_count
octo_data[which(octo_data$issue_contrib_count > octo_data$total_contrib),]
octo_data[which(octo_data$issue_contrib_count > octo_data$total_contrib),]
octo_data <- read_csv('../new_denom_032624_stripped.csv', show_col_types = FALSE)
# below this is the analysis for the octo data
octo_data$new.age <- as.numeric(cut(octo_data$age_of_project/365, breaks=c(0,7.524197,10.323056,13.649367,17), labels=c(1,2,3,4)))
table(octo_data$new.age)
octo_data$new.age.factor <- as.factor(octo_data$new.age)
hist(octo_data$new.age)
octo_data$mmt <- (((octo_data$collaborators * 2)+ octo_data$contributors) / (octo_data$contributors + octo_data$collaborators))
mean(octo_data$mmt)
hist(octo_data$mmt)
head(octo_data)
octo_data <- octo_data[which(octo_data$issue_contrib_count <= octo_data$total_contrib),]
#TODO: there's an issue with calculating this but somehow not an issue with the wiki one
octo_data$issue_mmt <- ((octo_data$issue_contrib_count * 2) + (octo_data$total_contrib - octo_data$issue_contrib_count)) / (octo_data$total_contrib)
hist(octo_data$issue_mmt)
max(octo_data$issue_mmt, na.rm = TRUE)
length(octo_data$issue_mmt > 2.0)
issue_mmtmodel1 <- lm(underproduction_mean ~ issue_mmt + new.age.factor, data=octo_data)
summary(issue_mmtmodel1)
wiki_mmtmodel1 <- lm(underproduction_mean ~ wiki_mmt + new.age.factor, data=octo_data)
summary(wiki_mmtmodel1)
write.csv(octo_data, "new_octo.csv", row.names = FALSE)
octo_data <- read_csv('../final_data/deb_octo_data.csv', show_col_types = FALSE)
qqnorm(octo_data$issue_mmt)
octo_data$wiki_mmt <- ((octo_data$wiki_contrib_count * 2) + (octo_data$total_contrib - octo_data$wiki_contrib_count)) / (octo_data$total_contrib)
hist(octo_data$wiki_mmt)
median(octo_data$wiki_mmt)
qqnorm(octo_data$wiki_mmt)
qqnorm(octo_data$issue_mmt)
qqnorm(octo_data$wiki_mmt)
qqnorm(log(octo_data$issue_mmt))
qqnorm(octo_data$issue_mmt)
qqnorm(log(octo_data$issue_mmt))
qqnorm(octo_data$issue_mmt)
qqnorm(log(octo_data$issue_mmt))
qqnorm(residuals(octo_data$issue_mmt))
qqnorm(octo_data$issue_mmt)
qqnorm(log(octo_data$issue_mmt))
qqnorm(octo_data$issue_mmt)
hist(log(octo_data$issue_mmt))
hist(sqrt(octo_data$issue_mmt))
#below are the models for the octo data, there should be analysis for each one
octo_mmtmodel1 <- lm(underproduction_mean ~ mmt + new.age.factor, data=octo_data)
summary(octo_mmtmodel1)
#below are the models for the octo data, there should be analysis for each one
octo_mmtmodel1 <- lm(underproduction_mean ~ mmt + new.age.factor, data=octo_data)
summary(octo_mmtmodel1)
# below this is the analysis for the octo data
octo_data$new.age <- as.numeric(cut(octo_data$age_of_project/365, breaks=c(0,7.524197,10.323056,13.649367,17), labels=c(1,2,3,4)))
table(octo_data$new.age)
octo_data$new.age.factor <- as.factor(octo_data$new.age)
hist(octo_data$new.age)
#below are the models for the octo data, there should be analysis for each one
octo_mmtmodel1 <- lm(underproduction_mean ~ mmt + new.age.factor, data=octo_data)
summary(octo_mmtmodel1)
hist(sqrt(octo_data$issue_mmt))
hist(sqrt(octo_data$issue_mmt))
hist(octo_data$issue_mmt)
#right skewed data, need to transform
library(rcompanion)
install.packages(rcompanion)
hist(sqrt(octo_data$issue_mmt))
qqnorm(1/octo_data$issue_mmt)
hist(1/octo_data$issue_mmt)
hist(log(octo_data$issue_mmt))
hist(sqrt(octo_data$issue_mmt))
hist(log(octo_data$issue_mmt))
octo_data$sqrt_issue_mmt <- sqrt(octo_data$issue_mmt)
sqrt_issue_mmtmodel1 <- lm(underproduction_mean ~ sqrt_issue_mmt + new.age.factor, data=octo_data)
summary(sqrt_issue_mmtmodel1)
summary(issue_mmtmodel1)
octo_data$wiki_mmt <- ((octo_data$wiki_contrib_count * 2) + (octo_data$total_contrib - octo_data$wiki_contrib_count)) / (octo_data$total_contrib)
hist(octo_data$wiki_mmt)
wiki_mmtmodel1 <- lm(underproduction_mean ~ wiki_mmt + new.age.factor, data=octo_data)
summary(wiki_mmtmodel1)
g3 <- ggplot(octo_data, aes(wiki_mmt)) + geom_histogram(binwidth = 5)
g3
g3 <- ggplot(octo_data, aes(wiki_mmt)) + geom_histogram(binwidth = 0.05)
g3
g3 <- ggplot(octo_data, aes(wiki_mmt)) + geom_histogram(binwidth = 0.05) + theme_bw()
g3
g3 <- ggplot(octo_data, aes(wiki_mmt)) + geom_histogram(binwidth = 0.01) + theme_bw()
g3
g2 <- ggplot(octo_data, aes(issue_mmt)) + geom_histogram(binwidth = 0.01) + theme_bw()
g2
g1 <- ggplot(octo_data, aes(sqrt_issue_mmt)) + geom_histogram(binwidth = 0.01) + theme_bw()
g1
g3 <- ggplot(octo_data, aes(wiki_mmt)) + geom_histogram(binwidth = 0.01) + theme_bw()
g3
g2 <- ggplot(octo_data, aes(issue_mmt)) + geom_histogram(binwidth = 0.01) + theme_bw()
g2
texreg(list(octo_mmtmodel1, issue_mmtmodel1, wiki_mmtmodel1), stars=NULL, digits=2,
custom.model.names=c( 'M1: augm. formality','M2: MMT', 'M3: milestones' ),
custom.coef.names=c('(Intercept)', 'Augmented formality', 'MMT', 'Age-2', 'Age-3', 'Age-4', 'Milestones'),
use.packages=FALSE, table=FALSE, ci.force = TRUE)
source('powerAnalysis.R') #my little "lib"
texreg(list(octo_mmtmodel1, issue_mmtmodel1, wiki_mmtmodel1), stars=NULL, digits=2,
custom.model.names=c( 'M1: augm. formality','M2: MMT', 'M3: milestones' ),
custom.coef.names=c('(Intercept)', 'Augmented formality', 'MMT', 'Age-2', 'Age-3', 'Age-4', 'Milestones'),
use.packages=FALSE, table=FALSE, ci.force = TRUE)
library(texreg) #my little "lib"
texreg(list(octo_mmtmodel1, issue_mmtmodel1, wiki_mmtmodel1), stars=NULL, digits=2,
custom.model.names=c( 'M1: augm. formality','M2: MMT', 'M3: milestones' ),
custom.coef.names=c('(Intercept)', 'Augmented formality', 'MMT', 'Age-2', 'Age-3', 'Age-4', 'Milestones'),
use.packages=FALSE, table=FALSE, ci.force = TRUE)
texreg(list(octo_mmtmodel1, issue_mmtmodel1, wiki_mmtmodel1), stars=NULL, digits=2,
custom.model.names=c( 'M1: MMT','M2: issue contrib.', 'M3: wiki_contrib.' ),
custom.coef.names=c('(Intercept)', 'MMT', 'Issues', 'Age-2', 'Age-3', 'Age-4', 'Wiki'),
use.packages=FALSE, table=FALSE, ci.force = TRUE)

View File

@ -44,14 +44,14 @@ octo_data$new.age <- as.numeric(cut(octo_data$age_of_project/365, breaks=c(0,7.5
table(octo_data$new.age)
octo_data$new.age.factor <- as.factor(octo_data$new.age)
hist(octo_data$new.age)
length(which(octo_data$underproduction_low < 0))
median(octo_data$underproduction_mean)
octo_data$mmt <- (((octo_data$collaborators * 2)+ octo_data$contributors) / (octo_data$contributors + octo_data$collaborators))
mean(octo_data$mmt)
hist(octo_data$mmt)
head(octo_data)
octo_data <- octo_data[which(octo_data$issue_contrib_count <= octo_data$total_contrib),]
write.csv(octo_data, "new_octo.csv", row.names = FALSE)
#TODO: there's an issue with calculating this but somehow not an issue with the wiki one
octo_data$issue_mmt <- ((octo_data$issue_contrib_count * 2) + (octo_data$total_contrib - octo_data$issue_contrib_count)) / (octo_data$total_contrib)
@ -70,6 +70,8 @@ median(octo_data$wiki_mmt)
qqnorm(octo_data$wiki_mmt)
#left skewed data, need to transform
g4 <- ggplot(octo_data)
g4
#below are the models for the octo data, there should be analysis for each one
octo_mmtmodel1 <- lm(underproduction_mean ~ mmt + new.age.factor, data=octo_data)
@ -84,6 +86,7 @@ summary(sqrt_issue_mmtmodel1)
wiki_mmtmodel1 <- lm(underproduction_mean ~ wiki_mmt + new.age.factor, data=octo_data)
summary(wiki_mmtmodel1)
library(texreg) #my little "lib"
texreg(list(octo_mmtmodel1, issue_mmtmodel1, wiki_mmtmodel1), stars=NULL, digits=2,

4
R/didAnalyses.R Normal file
View File

@ -0,0 +1,4 @@
library(tidyverse)
#set wd
try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path)))

View File

Before

Width:  |  Height:  |  Size: 57 KiB

After

Width:  |  Height:  |  Size: 57 KiB

View File

Before

Width:  |  Height:  |  Size: 57 KiB

After

Width:  |  Height:  |  Size: 57 KiB

View File

Before

Width:  |  Height:  |  Size: 96 KiB

After

Width:  |  Height:  |  Size: 96 KiB

View File

Before

Width:  |  Height:  |  Size: 41 KiB

After

Width:  |  Height:  |  Size: 41 KiB

View File

Before

Width:  |  Height:  |  Size: 59 KiB

After

Width:  |  Height:  |  Size: 59 KiB

View File

Before

Width:  |  Height:  |  Size: 60 KiB

After

Width:  |  Height:  |  Size: 60 KiB

View File

Before

Width:  |  Height:  |  Size: 53 KiB

After

Width:  |  Height:  |  Size: 53 KiB

View File

Before

Width:  |  Height:  |  Size: 107 KiB

After

Width:  |  Height:  |  Size: 107 KiB

View File

Before

Width:  |  Height:  |  Size: 48 KiB

After

Width:  |  Height:  |  Size: 48 KiB

View File

Before

Width:  |  Height:  |  Size: 47 KiB

After

Width:  |  Height:  |  Size: 47 KiB

View File

Before

Width:  |  Height:  |  Size: 50 KiB

After

Width:  |  Height:  |  Size: 50 KiB

View File

Before

Width:  |  Height:  |  Size: 53 KiB

After

Width:  |  Height:  |  Size: 53 KiB

View File

Before

Width:  |  Height:  |  Size: 49 KiB

After

Width:  |  Height:  |  Size: 49 KiB

View File

Before

Width:  |  Height:  |  Size: 53 KiB

After

Width:  |  Height:  |  Size: 53 KiB