updating R org
BIN
R/.DS_Store
vendored
506
R/.Rhistory
@ -1,256 +1,3 @@
|
||||
geom_point() +
|
||||
geom_smooth(mapping = aes(x=age_of_project, y=total_community))+
|
||||
xlab("Age of the Project") +
|
||||
ylab("Underproduction Factor")
|
||||
g4
|
||||
g4 <- ggplot(data7, aes(x= (age_of_the_project /12), y=total_community)) +
|
||||
geom_point() +
|
||||
geom_smooth(mapping = aes(x=age_of_project, y=total_community))+
|
||||
xlab("Age of the Project") +
|
||||
ylab("Underproduction Factor")
|
||||
g4
|
||||
g4 <- ggplot(data7, aes(x=age_of_the_project, y=total_community)) +
|
||||
geom_point() +
|
||||
geom_smooth(mapping = aes(x=age_of_project, y=total_community))+
|
||||
xlab("Age of the Project") +
|
||||
ylab("Underproduction Factor")
|
||||
g4
|
||||
g4 <- ggplot(data7, aes(x=age_of_the_project, y=total_community)) +
|
||||
geom_point() +
|
||||
geom_smooth(mapping = aes(x=age_of_project, y=total_community))+
|
||||
xlab("Age of the Project") +
|
||||
ylab("Underproduction Factor")
|
||||
g4
|
||||
g4 <- ggplot(data7, aes(x=age_of_project/12, y=total_community)) +
|
||||
geom_point() +
|
||||
geom_smooth(mapping = aes(x=age_of_project, y=total_community))+
|
||||
xlab("Age of the Proje") +
|
||||
ylab("Underproduction Factor")
|
||||
g4
|
||||
g4 <- ggplot(data7, aes(x=age_of_project/12, y=total_community)) +
|
||||
geom_point() +
|
||||
geom_smooth(mapping = aes(x=age_of_project/12, y=total_community))+
|
||||
xlab("Age of the Proje") +
|
||||
ylab("Underproduction Factor")
|
||||
g4
|
||||
g4 <- ggplot(data7, aes(x=age_of_project/365, y=total_community)) +
|
||||
geom_point() +
|
||||
geom_smooth(mapping = aes(x=age_of_project/365, y=total_community))+
|
||||
xlab("Age of the Proje") +
|
||||
ylab("Underproduction Factor")
|
||||
g4
|
||||
g4 <- ggplot(data7, aes(x=age_of_project/365, y=total_community)) +
|
||||
geom_point() +
|
||||
geom_smooth(mapping = aes(x=age_of_project/365, y=total_community))+
|
||||
xlab("Age of the Project (years)") +
|
||||
ylab("Contributor Community Population")
|
||||
g4
|
||||
g4 <- ggplot(data7, aes(x=age_of_project/365, y=total_community)) +
|
||||
geom_point() +
|
||||
geom_smooth(mapping = aes(x=age_of_project/365, y=total_community, color=yellow))+
|
||||
xlab("Age of the Project (years)") +
|
||||
ylab("Contributor Community Population")
|
||||
g4
|
||||
g4 <- ggplot(data7, aes(x=age_of_project/365, y=total_community)) +
|
||||
geom_point() +
|
||||
geom_smooth(mapping = aes(x=age_of_project/365, y=total_community))+
|
||||
xlab("Age of the Project (years)") +
|
||||
ylab("Contributor Community Population")
|
||||
g4
|
||||
g4 <- ggplot(data7, aes(x=age_of_project/365, y=total_community)) +
|
||||
geom_point() +
|
||||
geom_smooth(mapping = aes(x=age_of_project/365, y=total_community))+
|
||||
xlab("Age of the Project (years)") +
|
||||
ylab("Contributor Community Population") +
|
||||
theme_bw()
|
||||
g4
|
||||
g4 <- ggplot(data7, aes(x=age_of_project/365, y=total_community)) +
|
||||
geom_point() +
|
||||
geom_smooth(mapping = aes(x=age_of_project/365, y=total_community), color="black")+
|
||||
xlab("Age of the Project (years)") +
|
||||
ylab("Contributor Community Population") +
|
||||
theme_bw()
|
||||
g4
|
||||
g4 <- ggplot(data7, aes(x=age_of_project/365, y=total_community)) +
|
||||
geom_point() +
|
||||
geom_smooth(mapping = aes(x=age_of_project/365, y=total_community), color="yellow")+
|
||||
xlab("Age of the Project (years)") +
|
||||
ylab("Contributor Community Population") +
|
||||
theme_bw()
|
||||
g4
|
||||
g4 <- ggplot(data7, aes(x=age_of_project/365, y=total_community)) +
|
||||
geom_point() +
|
||||
geom_smooth(mapping = aes(x=age_of_project/365, y=total_community), color="red")+
|
||||
xlab("Age of the Project (years)") +
|
||||
ylab("Contributor Community Population") +
|
||||
theme_bw()
|
||||
g4
|
||||
library(readr)
|
||||
data6 <-read_csv('../kk_final_commentlist.csv', show_col_types=FALSE)
|
||||
data6$total_community = data6$contributors + data6$collaborators
|
||||
median(data6$total_community)
|
||||
cor.test(data6$total_community, data6$age_of_project)
|
||||
library(readr)
|
||||
library(ggplot2)
|
||||
data1 <- read_csv('../power_data_111023_mmt.csv',show_col_types = FALSE)
|
||||
data1$up.fac.mean <- pmin(python_labeled, same_labeled, na.rm=TRUE)
|
||||
data1$old_milestones <- data1$milestones
|
||||
data1$new_milestones <- as.numeric(data1$milestones > 0) + 1
|
||||
data1$new.age <- as.numeric(cut(data1$age/365, breaks=c(0,9,12,15,17), labels=c(1,2,3,4)))
|
||||
data1$new.formal.score <- data1$mmt / (data1$new_milestones/data1$new.age)
|
||||
data1$new.age.factor <- as.factor(data1$new.age)
|
||||
g2 <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) +
|
||||
geom_point() +
|
||||
geom_smooth(mapping = aes(x=mmt, y=underproduction_mean, color=new.age.factor),
|
||||
method='lm', formula= y~x)
|
||||
g2
|
||||
data1$up.fac.mean <- pmin(python_labeled, same_labeled, na.rm=TRUE)
|
||||
data1 <- read_csv('../power_data_111023_mmt.csv',show_col_types = FALSE)
|
||||
data2 <- read_csv('../inst_all_packages_full_results.csv')
|
||||
#d$nd <- to_logical(d$not.damaging, custom_true=c("Y"))
|
||||
#levels(d$source) <- c("IP-based Editors", "New Editors", "Registered Editors", "Tor-based Editors")
|
||||
python_labeled <- as.numeric(data2$up.fac.mean[match(paste('python',tolower(data1$pkg), sep = "-"), data2$pkg)])
|
||||
same_labeled <- as.numeric(data2$up.fac.mean[match(tolower(data1$pkg), data2$pkg)])
|
||||
data1$up.fac.mean <- pmin(python_labeled, same_labeled, na.rm=TRUE)
|
||||
data1$old_milestones <- data1$milestones
|
||||
data1$new_milestones <- as.numeric(data1$milestones > 0) + 1
|
||||
data1$new.age.factor <- as.factor(data1$new.age)
|
||||
data1$new.age <- as.numeric(cut(data1$age/365, breaks=c(0,9,12,15,17), labels=c(1,2,3,4)))
|
||||
data1$new.formal.score <- data1$mmt / (data1$new_milestones/data1$new.age)
|
||||
data1$new.age.factor <- as.factor(data1$new.age)
|
||||
g2 <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) +
|
||||
geom_point() +
|
||||
geom_smooth(mapping = aes(x=mmt, y=underproduction_mean, color=new.age.factor),
|
||||
method='lm', formula= y~x)
|
||||
g2
|
||||
data1 <- read_csv('../power_data_111023_mmt.csv',show_col_types = FALSE)
|
||||
data2 <- read_csv('../inst_all_packages_full_results.csv')
|
||||
#d$nd <- to_logical(d$not.damaging, custom_true=c("Y"))
|
||||
#levels(d$source) <- c("IP-based Editors", "New Editors", "Registered Editors", "Tor-based Editors")
|
||||
python_labeled <- as.numeric(data2$up.fac.mean[match(paste('python',tolower(data1$pkg), sep = "-"), data2$pkg)])
|
||||
same_labeled <- as.numeric(data2$up.fac.mean[match(tolower(data1$pkg), data2$pkg)])
|
||||
data1$up.fac.mean <- pmin(python_labeled, same_labeled, na.rm=TRUE)
|
||||
data1$old_milestones <- data1$milestones
|
||||
data1$new_milestones <- as.numeric(data1$milestones > 0) + 1
|
||||
# (2) - Run the model on the pilot data
|
||||
data1$formal.score <- data1$mmt / (data1$old_milestones/data1$age)
|
||||
data1$new.age <- as.numeric(cut(data1$age/365, breaks=c(0,9,12,15,17), labels=c(1,2,3,4)))
|
||||
data1$new.formal.score <- data1$mmt / (data1$new_milestones/data1$new.age)
|
||||
g2 <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) +
|
||||
geom_point() +
|
||||
geom_smooth(mapping = aes(x=mmt, y=up.fac.mean, color=new.age.factor),
|
||||
method='lm', formula= y~x)
|
||||
g2
|
||||
data1$new.age <- as.numeric(cut(data1$age/365, breaks=c(0,9,12,15,17), labels=c(1,2,3,4)))
|
||||
data1$new.formal.score <- data1$mmt / (data1$new_milestones/data1$new.age)
|
||||
data1$new.age.factor <- as.factor(data1$new.age)
|
||||
g2 <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) +
|
||||
geom_point() +
|
||||
geom_smooth(mapping = aes(x=mmt, y=up.fac.mean, color=new.age.factor),
|
||||
method='lm', formula= y~x)
|
||||
g2
|
||||
g2 <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) +
|
||||
geom_point() +
|
||||
geom_smooth(mapping = aes(x=mmt, y=up.fac.mean, color=new.age.factor),
|
||||
method='lm', formula= y~x, se=FALSE)
|
||||
g2
|
||||
g2 <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) +
|
||||
geom_point() +
|
||||
geom_smooth(mapping = aes(x=mmt, y=up.fac.mean, color=new.age.factor),
|
||||
method='lm', formula= y~x, se=FALSE)+
|
||||
xlab("MMT") +
|
||||
ylab("Underproduction Factor") +
|
||||
theme_bw()
|
||||
g2
|
||||
g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) +
|
||||
geom_point() +
|
||||
#geom_smooth( method="lm", formula=(y~x), colour = "orange")+
|
||||
geom_abline(intercept=coef(mmtmodel1)[1], slope=coef(mmtmodel1)[2], colour = "orange", size=1)+
|
||||
geom_errorbar(aes(ymin=y-yerr, ymax=y+yerr), width=0.09)+
|
||||
labs(x="MMT", y="Mean Underproduction Factor", color = "Project Age Group") +
|
||||
theme_bw()
|
||||
g
|
||||
g2 <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) +
|
||||
geom_point() +
|
||||
geom_smooth(mapping = aes(x=mmt, y=up.fac.mean, color=new.age.factor),
|
||||
method='lm', formula= y~x, se=FALSE)+
|
||||
labs(x="MMT", y="Mean Underproduction Factor", color = "Project Age Group") +
|
||||
theme_bw()
|
||||
g2
|
||||
g2 <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) +
|
||||
geom_point() +
|
||||
geom_smooth(mapping = aes(x=mmt, y=up.fac.mean, color=new.age.factor),
|
||||
method='lm', formula= y~x, se=FALSE)+
|
||||
labs(x="MMT", y="Mean Underproduction Factor", color = "Project Age Group") +
|
||||
scale_colour_manual(values=colors_legend, labels=c("0-9y", "9-12y", "12-15y","15-16y")) +
|
||||
theme_bw()
|
||||
g2
|
||||
g2 <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) +
|
||||
geom_point() +
|
||||
geom_smooth(mapping = aes(x=mmt, y=up.fac.mean, color=new.age.factor),
|
||||
method='lm', formula= y~x, se=FALSE)+
|
||||
labs(x="MMT", y="Mean Underproduction Factor", color = "Project Age Group") +
|
||||
scale_colour_manual(values=colors_legend, labels=c("0-9y", "9-12y", "12-15y","15-16y")) +
|
||||
theme_bw() +
|
||||
theme(legend.position = c(0.05, 0.05), legend.justification = c("left", "bottom"))
|
||||
g2
|
||||
g2 <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) +
|
||||
geom_smooth(mapping = aes(x=mmt, y=up.fac.mean, color=new.age.factor),
|
||||
method='lm', formula= y~x, se=FALSE)+
|
||||
labs(x="MMT", y="Mean Underproduction Factor", color = "Project Age Group") +
|
||||
scale_colour_manual(values=colors_legend, labels=c("0-9y", "9-12y", "12-15y","15-16y")) +
|
||||
theme_bw() +
|
||||
theme(legend.position = c(0.05, 0.05), legend.justification = c("left", "bottom"))
|
||||
g2
|
||||
g2 <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) +
|
||||
geom_smooth(mapping = aes(x=mmt, y=up.fac.mean, color=new.age.factor),
|
||||
method='lm', formula= y~x, se=FALSE)+
|
||||
labs(x="MMT", y="Mean Underproduction Factor", color = "Project Age Group") +
|
||||
scale_colour_manual(values=colors_legend, labels=c("0-9y", "9-12y", "12-15y","15-16y")) +
|
||||
theme_bw() +
|
||||
theme(legend.position = c(0.05, 0.05), legend.justification = c("left", "bottom"))
|
||||
g2
|
||||
g2 <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) +
|
||||
geom_smooth(mapping = aes(x=mmt, y=up.fac.mean, color=new.age.factor),
|
||||
method='lm', formula= y~x, se=FALSE)+
|
||||
labs(x="MMT", y="Mean Underproduction Factor", color = "Project Age Group") +
|
||||
theme_bw() +
|
||||
theme(legend.position = c(0.05, 0.05), legend.justification = c("left", "bottom"))
|
||||
g2
|
||||
g2 <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) +
|
||||
geom_smooth(mapping = aes(x=mmt, y=up.fac.mean, color=new.age.factor),
|
||||
method='lm', formula= y~x, se=FALSE)+
|
||||
labs(x="MMT", y="Mean Underproduction Factor", color = "Project Age Group") +
|
||||
scale_colour_manual(values=color_legend, labels=c("0-9y", "9-12y", "12-15y","15-16y")) +
|
||||
theme_bw() +
|
||||
theme(legend.position = c(0.05, 0.05), legend.justification = c("left", "bottom"))
|
||||
g2
|
||||
g2 <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) +
|
||||
geom_smooth(mapping = aes(x=mmt, y=up.fac.mean, color=new.age.factor),
|
||||
method='lm', formula= y~x, se=FALSE)+
|
||||
labs(x="MMT", y="Mean Underproduction Factor", color = "Project Age Group") +
|
||||
scale_colour_manual( labels=c("0-9y", "9-12y", "12-15y","15-16y")) +
|
||||
theme_bw() +
|
||||
theme(legend.position = c(0.05, 0.05), legend.justification = c("left", "bottom"))
|
||||
g2
|
||||
g2 <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) +
|
||||
geom_smooth(mapping = aes(x=mmt, y=up.fac.mean, color=new.age.factor),
|
||||
method='lm', formula= y~x, se=FALSE)+
|
||||
labs(x="MMT", y="Mean Underproduction Factor", color = "Project Age Group") +
|
||||
scale_colour_manual(values=legend, labels=c("0-9y", "9-12y", "12-15y","15-16y")) +
|
||||
theme_bw() +
|
||||
theme(legend.position = c(0.05, 0.05), legend.justification = c("left", "bottom"))
|
||||
g2
|
||||
g2 <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) +
|
||||
geom_smooth(mapping = aes(x=mmt, y=up.fac.mean, color=new.age.factor),
|
||||
method='lm', formula= y~x, se=FALSE)+
|
||||
labs(x="MMT", y="Mean Underproduction Factor", color = "Project Age Group") +
|
||||
scale_colour_manual(values=legend.values, labels=c("0-9y", "9-12y", "12-15y","15-16y")) +
|
||||
theme_bw() +
|
||||
theme(legend.position = c(0.05, 0.05), legend.justification = c("left", "bottom"))
|
||||
g2
|
||||
g2 <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) +
|
||||
geom_smooth(mapping = aes(x=mmt, y=up.fac.mean, color=new.age.factor),
|
||||
method='lm', formula= y~x, se=FALSE)+
|
||||
labs(x="MMT", y="Mean Underproduction Factor", color = "Project Age Group") +
|
||||
theme_bw() +
|
||||
@ -510,3 +257,256 @@ hist(contributing_data$new.age)
|
||||
119 / 528
|
||||
171/ 528
|
||||
162 / 528
|
||||
octo_data <- read_csv('../new_denom_032624.csv', show_col_types = FALSE)
|
||||
rm(list=ls())
|
||||
set.seed(424242)
|
||||
library(readr)
|
||||
library(ggplot2)
|
||||
library(tidyverse)
|
||||
readme_data <- read_csv("../final_data/deb_readme_roster.csv", show_col_types = FALSE)
|
||||
octo_data <- read_csv('../new_denom_032624.csv', show_col_types = FALSE)
|
||||
# below this is the analysis for the octo data
|
||||
octo_data$new.age <- as.numeric(cut(octo_data$age_of_project/365, breaks=c(0,7.524197,10.323056,13.649367,17), labels=c(1,2,3,4)))
|
||||
octo_data <- read_csv('../new_denom_032624.csv', show_col_types = FALSE)
|
||||
# below this is the analysis for the octo data
|
||||
octo_data$new.age <- as.numeric(cut(octo_data$age_of_project/365, breaks=c(0,7.524197,10.323056,13.649367,17), labels=c(1,2,3,4)))
|
||||
table(octo_data$new.age)
|
||||
octo_data$new.age.factor <- as.factor(octo_data$new.age)
|
||||
hist(octo_data$new.age)
|
||||
octo_data$mmt <- (((octo_data$collaborators * 2)+ octo_data$contributors) / (octo_data$contributors + octo_data$collaborators))
|
||||
mean(octo_data$mmt)
|
||||
hist(octo_data$mmt, probability = TRUE)
|
||||
head(octo_data)
|
||||
#TODO: the counts here aren't unique, need to go back and calculate so that no overlap between the counts
|
||||
#i.e. needs to be a total contrib number that is not attached to the high level counts
|
||||
octo_data$issue_mmt <- (((octo_data$issue_contrib_count * 2) + (octo_data$total_contrib - octo_data$issue_contrib_count)) / (octo_data$total_contrib))
|
||||
hist(octo_data$issue_mmt, probability = TRUE)
|
||||
#TODO: the counts here aren't unique, need to go back and calculate so that no overlap between the counts
|
||||
#i.e. needs to be a total contrib number that is not attached to the high level counts
|
||||
octo_data$issue_mmt <- ((octo_data$issue_contrib_count * 2) + (octo_data$total_contrib - octo_data$issue_contrib_count)) / (octo_data$total_contrib)
|
||||
hist(octo_data$issue_mmt, probability = TRUE)
|
||||
max(octo_data$issue_mmt)
|
||||
max(octo_data$issue_mmt)
|
||||
median(octo_data$issue_mmt)
|
||||
median(octo_data$issue_mmt)
|
||||
min(octo_data$issue_mmt)
|
||||
hist(octo_data$total_contrib)
|
||||
mean(octo_data$total_contrib)
|
||||
median(octo_data$total_contrib)
|
||||
median(octo_data$contributors)
|
||||
median(octo_data$collaborators)
|
||||
median(octo_data$total_contrib)
|
||||
#TODO: the counts here aren't unique, need to go back and calculate so that no overlap between the counts
|
||||
#i.e. needs to be a total contrib number that is not attached to the high level counts
|
||||
octo_data$issue_mmt <- ((octo_data$issue_contrib_count * 2) + (octo_data$total_contrib - octo_data$issue_contrib_count)) / (octo_data$total_contrib)
|
||||
hist(octo_data$issue_mmt, probability = TRUE)
|
||||
hist(octo_data$issue_mmt)
|
||||
octo_data$wiki_mmt <- ((octo_data$wiki_contrib_count * 2) + (octo_data$total_contrib - octo_data$wiki_contrib_count)) / (octo_data$total_contrib)
|
||||
hist(octo_data$wiki_mmt)
|
||||
min(octo_data$wiki_mmt)
|
||||
median(octo_data$wiki_mmt)
|
||||
#TODO: the counts here aren't unique, need to go back and calculate so that no overlap between the counts
|
||||
#i.e. needs to be a total contrib number that is not attached to the high level counts
|
||||
octo_data$issue_mmt <- ((octo_data$issue_contrib_count * 2) + (octo_data$total_contrib - octo_data$issue_contrib_count)) / (octo_data$total_contrib)
|
||||
hist(octo_data$issue_mmt)
|
||||
octo_data$mmt <- (((octo_data$collaborators * 2)+ octo_data$contributors) / (octo_data$contributors + octo_data$collaborators))
|
||||
mean(octo_data$mmt)
|
||||
hist(octo_data$mmt)
|
||||
median(octo_data$total_contrib)
|
||||
#TODO: the counts here aren't unique, need to go back and calculate so that no overlap between the counts
|
||||
#i.e. needs to be a total contrib number that is not attached to the high level counts
|
||||
octo_data$issue_mmt <- ((octo_data$issue_contrib_count * 2) + (octo_data$total_contrib - octo_data$issue_contrib_count)) / (octo_data$total_contrib)
|
||||
hist(octo_data$issue_mmt)
|
||||
max(octo_data$issue_mmt)
|
||||
maximum(octo_data$issue_mmt)
|
||||
octo_data$wiki_mmt <- ((octo_data$wiki_contrib_count * 2) + (octo_data$total_contrib - octo_data$wiki_contrib_count)) / (octo_data$total_contrib)
|
||||
hist(octo_data$wiki_mmt)
|
||||
median(octo_data$wiki_mmt)
|
||||
#below are the models for the octo data, there should be analysis for each one
|
||||
octo_mmtmodel1 <- lm(underproduction_mean ~ mmt + new.age.factor, data=octo_data)
|
||||
summary(octo_mmtmodel1)
|
||||
#TODO: the counts here aren't unique, need to go back and calculate so that no overlap between the counts
|
||||
#i.e. needs to be a total contrib number that is not attached to the high level counts
|
||||
octo_data$issue_mmt <- ((octo_data$issue_contrib_count * 2) + (octo_data$total_contrib - octo_data$issue_contrib_count)) / (octo_data$total_contrib)
|
||||
hist(octo_data$issue_mmt)
|
||||
maximum(octo_data$issue_mmt)
|
||||
typeof(octo_data$issue_mmt)
|
||||
length(octo_data$issue_mmt)
|
||||
#TODO: the counts here aren't unique, need to go back and calculate so that no overlap between the counts
|
||||
#i.e. needs to be a total contrib number that is not attached to the high level counts
|
||||
octo_data$issue_mmt <- ((octo_data$issue_contrib_count * 2) + (octo_data$total_contrib - octo_data$issue_contrib_count)) / (octo_data$total_contrib)
|
||||
hist(octo_data$issue_mmt)
|
||||
length(octo_data$issue_mmt)
|
||||
sum(octo_data$issue_mmt > 2)
|
||||
length(octo_data$issue_mmt > 2)
|
||||
length(octo_data$issue_mmt > 2.0)
|
||||
median(octo_data$wiki_mmt)
|
||||
typeof(octo_data$issue_mmt)
|
||||
median(octo_data$issue_mmt, na.rm = TRUE)
|
||||
median(octo_data$issue_contrib_count)
|
||||
octo_data <- na.omit(octo_data$issue_contrib_count)
|
||||
median(octo_data$issue_contrib_count)
|
||||
octo_data <- read_csv('../new_denom_032624.csv', show_col_types = FALSE)
|
||||
# below this is the analysis for the octo data
|
||||
octo_data$new.age <- as.numeric(cut(octo_data$age_of_project/365, breaks=c(0,7.524197,10.323056,13.649367,17), labels=c(1,2,3,4)))
|
||||
table(octo_data$new.age)
|
||||
octo_data$new.age.factor <- as.factor(octo_data$new.age)
|
||||
hist(octo_data$new.age)
|
||||
octo_data$mmt <- (((octo_data$collaborators * 2)+ octo_data$contributors) / (octo_data$contributors + octo_data$collaborators))
|
||||
mean(octo_data$mmt)
|
||||
hist(octo_data$mmt)
|
||||
head(octo_data)
|
||||
median(octo_data$issue_contrib_count)
|
||||
octo_data <- na.omit(octo_data)
|
||||
median(octo_data$issue_contrib_count)
|
||||
#TODO: the counts here aren't unique, need to go back and calculate so that no overlap between the counts
|
||||
#i.e. needs to be a total contrib number that is not attached to the high level counts
|
||||
octo_data$issue_mmt <- ((octo_data$issue_contrib_count * 2) + (octo_data$total_contrib - octo_data$issue_contrib_count)) / (octo_data$total_contrib)
|
||||
hist(octo_data$issue_mmt)
|
||||
median(octo_data$issue_mmt, na.rm = TRUE)
|
||||
length(octo_data$issue_mmt > 2.0)
|
||||
length(octo_data$issue_mmt > 2.0)
|
||||
length(octo_data$issue_mmt > 2)
|
||||
median(octo_data$issue_mmt)
|
||||
, na.rm = TRUE
|
||||
median(octo_data$issue_mmt, na.rm = TRUE)
|
||||
length(octo_data$issue_mmt > 2)
|
||||
length(octo_data$issue_mmt > 2)
|
||||
length(octo_data$issue_mmt > 2.0)
|
||||
max(octo_data$issue_mmt, na.rm = TRUE)
|
||||
octo_data$new_mmt <- (((octo_data$collaborators * 2)+ (octo_data$total_contrib - octo_data$collaborators)) / (octo_data$total_contrib))
|
||||
hist(octo_data$new_mmt)
|
||||
octo_data$mmt <- (((octo_data$collaborators * 2)+ octo_data$contributors) / (octo_data$contributors + octo_data$collaborators))
|
||||
mean(octo_data$mmt)
|
||||
hist(octo_data$mmt)
|
||||
#TODO: there's an issue with calculating this but somehow not an issue with the wiki one
|
||||
octo_data$issue_mmt <- ((octo_data$issue_contrib_count * 2) + (octo_data$total_contrib - octo_data$issue_contrib_count)) / (octo_data$total_contrib)
|
||||
hist(octo_data$issue_mmt)
|
||||
octo_data$wiki_mmt <- ((octo_data$wiki_contrib_count * 2) + (octo_data$total_contrib - octo_data$wiki_contrib_count)) / (octo_data$total_contrib)
|
||||
hist(octo_data$wiki_mmt)
|
||||
hist(octo_data$issue_mmt)
|
||||
length(octo_data$issue_mmt > 2.0)
|
||||
octo_data[which(octo_data$issue_contrib_count > octo_data$total_contrib)]
|
||||
octo_data[which(octo_data$issue_contrib_count > octo_data$total_contrib),]
|
||||
octo_data[which(octo_data$issue_contrib_count > octo_data$total_contrib),]$issue_contrib_count
|
||||
octo_data <- read_csv('../new_denom_032624_stripped.csv', show_col_types = FALSE)
|
||||
# below this is the analysis for the octo data
|
||||
octo_data$new.age <- as.numeric(cut(octo_data$age_of_project/365, breaks=c(0,7.524197,10.323056,13.649367,17), labels=c(1,2,3,4)))
|
||||
table(octo_data$new.age)
|
||||
octo_data$new.age.factor <- as.factor(octo_data$new.age)
|
||||
hist(octo_data$new.age)
|
||||
octo_data$mmt <- (((octo_data$collaborators * 2)+ octo_data$contributors) / (octo_data$contributors + octo_data$collaborators))
|
||||
mean(octo_data$mmt)
|
||||
hist(octo_data$mmt)
|
||||
head(octo_data)
|
||||
octo_data[which(octo_data$issue_contrib_count > octo_data$total_contrib),]$issue_contrib_count
|
||||
octo_data[which(octo_data$issue_contrib_count > octo_data$total_contrib),]
|
||||
octo_data[which(octo_data$issue_contrib_count > octo_data$total_contrib),]
|
||||
octo_data <- read_csv('../new_denom_032624_stripped.csv', show_col_types = FALSE)
|
||||
# below this is the analysis for the octo data
|
||||
octo_data$new.age <- as.numeric(cut(octo_data$age_of_project/365, breaks=c(0,7.524197,10.323056,13.649367,17), labels=c(1,2,3,4)))
|
||||
table(octo_data$new.age)
|
||||
octo_data$new.age.factor <- as.factor(octo_data$new.age)
|
||||
hist(octo_data$new.age)
|
||||
octo_data$mmt <- (((octo_data$collaborators * 2)+ octo_data$contributors) / (octo_data$contributors + octo_data$collaborators))
|
||||
mean(octo_data$mmt)
|
||||
hist(octo_data$mmt)
|
||||
head(octo_data)
|
||||
octo_data <- octo_data[which(octo_data$issue_contrib_count <= octo_data$total_contrib),]
|
||||
#TODO: there's an issue with calculating this but somehow not an issue with the wiki one
|
||||
octo_data$issue_mmt <- ((octo_data$issue_contrib_count * 2) + (octo_data$total_contrib - octo_data$issue_contrib_count)) / (octo_data$total_contrib)
|
||||
hist(octo_data$issue_mmt)
|
||||
max(octo_data$issue_mmt, na.rm = TRUE)
|
||||
length(octo_data$issue_mmt > 2.0)
|
||||
issue_mmtmodel1 <- lm(underproduction_mean ~ issue_mmt + new.age.factor, data=octo_data)
|
||||
summary(issue_mmtmodel1)
|
||||
wiki_mmtmodel1 <- lm(underproduction_mean ~ wiki_mmt + new.age.factor, data=octo_data)
|
||||
summary(wiki_mmtmodel1)
|
||||
write.csv(octo_data, "new_octo.csv", row.names = FALSE)
|
||||
octo_data <- read_csv('../final_data/deb_octo_data.csv', show_col_types = FALSE)
|
||||
qqnorm(octo_data$issue_mmt)
|
||||
octo_data$wiki_mmt <- ((octo_data$wiki_contrib_count * 2) + (octo_data$total_contrib - octo_data$wiki_contrib_count)) / (octo_data$total_contrib)
|
||||
hist(octo_data$wiki_mmt)
|
||||
median(octo_data$wiki_mmt)
|
||||
qqnorm(octo_data$wiki_mmt)
|
||||
qqnorm(octo_data$issue_mmt)
|
||||
qqnorm(octo_data$wiki_mmt)
|
||||
qqnorm(log(octo_data$issue_mmt))
|
||||
qqnorm(octo_data$issue_mmt)
|
||||
qqnorm(log(octo_data$issue_mmt))
|
||||
qqnorm(octo_data$issue_mmt)
|
||||
qqnorm(log(octo_data$issue_mmt))
|
||||
qqnorm(residuals(octo_data$issue_mmt))
|
||||
qqnorm(octo_data$issue_mmt)
|
||||
qqnorm(log(octo_data$issue_mmt))
|
||||
qqnorm(octo_data$issue_mmt)
|
||||
hist(log(octo_data$issue_mmt))
|
||||
hist(sqrt(octo_data$issue_mmt))
|
||||
#below are the models for the octo data, there should be analysis for each one
|
||||
octo_mmtmodel1 <- lm(underproduction_mean ~ mmt + new.age.factor, data=octo_data)
|
||||
summary(octo_mmtmodel1)
|
||||
#below are the models for the octo data, there should be analysis for each one
|
||||
octo_mmtmodel1 <- lm(underproduction_mean ~ mmt + new.age.factor, data=octo_data)
|
||||
summary(octo_mmtmodel1)
|
||||
# below this is the analysis for the octo data
|
||||
octo_data$new.age <- as.numeric(cut(octo_data$age_of_project/365, breaks=c(0,7.524197,10.323056,13.649367,17), labels=c(1,2,3,4)))
|
||||
table(octo_data$new.age)
|
||||
octo_data$new.age.factor <- as.factor(octo_data$new.age)
|
||||
hist(octo_data$new.age)
|
||||
#below are the models for the octo data, there should be analysis for each one
|
||||
octo_mmtmodel1 <- lm(underproduction_mean ~ mmt + new.age.factor, data=octo_data)
|
||||
summary(octo_mmtmodel1)
|
||||
hist(sqrt(octo_data$issue_mmt))
|
||||
hist(sqrt(octo_data$issue_mmt))
|
||||
hist(octo_data$issue_mmt)
|
||||
#right skewed data, need to transform
|
||||
library(rcompanion)
|
||||
install.packages(rcompanion)
|
||||
hist(sqrt(octo_data$issue_mmt))
|
||||
qqnorm(1/octo_data$issue_mmt)
|
||||
hist(1/octo_data$issue_mmt)
|
||||
hist(log(octo_data$issue_mmt))
|
||||
hist(sqrt(octo_data$issue_mmt))
|
||||
hist(log(octo_data$issue_mmt))
|
||||
octo_data$sqrt_issue_mmt <- sqrt(octo_data$issue_mmt)
|
||||
sqrt_issue_mmtmodel1 <- lm(underproduction_mean ~ sqrt_issue_mmt + new.age.factor, data=octo_data)
|
||||
summary(sqrt_issue_mmtmodel1)
|
||||
summary(issue_mmtmodel1)
|
||||
octo_data$wiki_mmt <- ((octo_data$wiki_contrib_count * 2) + (octo_data$total_contrib - octo_data$wiki_contrib_count)) / (octo_data$total_contrib)
|
||||
hist(octo_data$wiki_mmt)
|
||||
wiki_mmtmodel1 <- lm(underproduction_mean ~ wiki_mmt + new.age.factor, data=octo_data)
|
||||
summary(wiki_mmtmodel1)
|
||||
g3 <- ggplot(octo_data, aes(wiki_mmt)) + geom_histogram(binwidth = 5)
|
||||
g3
|
||||
g3 <- ggplot(octo_data, aes(wiki_mmt)) + geom_histogram(binwidth = 0.05)
|
||||
g3
|
||||
g3 <- ggplot(octo_data, aes(wiki_mmt)) + geom_histogram(binwidth = 0.05) + theme_bw()
|
||||
g3
|
||||
g3 <- ggplot(octo_data, aes(wiki_mmt)) + geom_histogram(binwidth = 0.01) + theme_bw()
|
||||
g3
|
||||
g2 <- ggplot(octo_data, aes(issue_mmt)) + geom_histogram(binwidth = 0.01) + theme_bw()
|
||||
g2
|
||||
g1 <- ggplot(octo_data, aes(sqrt_issue_mmt)) + geom_histogram(binwidth = 0.01) + theme_bw()
|
||||
g1
|
||||
g3 <- ggplot(octo_data, aes(wiki_mmt)) + geom_histogram(binwidth = 0.01) + theme_bw()
|
||||
g3
|
||||
g2 <- ggplot(octo_data, aes(issue_mmt)) + geom_histogram(binwidth = 0.01) + theme_bw()
|
||||
g2
|
||||
texreg(list(octo_mmtmodel1, issue_mmtmodel1, wiki_mmtmodel1), stars=NULL, digits=2,
|
||||
custom.model.names=c( 'M1: augm. formality','M2: MMT', 'M3: milestones' ),
|
||||
custom.coef.names=c('(Intercept)', 'Augmented formality', 'MMT', 'Age-2', 'Age-3', 'Age-4', 'Milestones'),
|
||||
use.packages=FALSE, table=FALSE, ci.force = TRUE)
|
||||
source('powerAnalysis.R') #my little "lib"
|
||||
texreg(list(octo_mmtmodel1, issue_mmtmodel1, wiki_mmtmodel1), stars=NULL, digits=2,
|
||||
custom.model.names=c( 'M1: augm. formality','M2: MMT', 'M3: milestones' ),
|
||||
custom.coef.names=c('(Intercept)', 'Augmented formality', 'MMT', 'Age-2', 'Age-3', 'Age-4', 'Milestones'),
|
||||
use.packages=FALSE, table=FALSE, ci.force = TRUE)
|
||||
library(texreg) #my little "lib"
|
||||
texreg(list(octo_mmtmodel1, issue_mmtmodel1, wiki_mmtmodel1), stars=NULL, digits=2,
|
||||
custom.model.names=c( 'M1: augm. formality','M2: MMT', 'M3: milestones' ),
|
||||
custom.coef.names=c('(Intercept)', 'Augmented formality', 'MMT', 'Age-2', 'Age-3', 'Age-4', 'Milestones'),
|
||||
use.packages=FALSE, table=FALSE, ci.force = TRUE)
|
||||
texreg(list(octo_mmtmodel1, issue_mmtmodel1, wiki_mmtmodel1), stars=NULL, digits=2,
|
||||
custom.model.names=c( 'M1: MMT','M2: issue contrib.', 'M3: wiki_contrib.' ),
|
||||
custom.coef.names=c('(Intercept)', 'MMT', 'Issues', 'Age-2', 'Age-3', 'Age-4', 'Wiki'),
|
||||
use.packages=FALSE, table=FALSE, ci.force = TRUE)
|
||||
|
@ -44,14 +44,14 @@ octo_data$new.age <- as.numeric(cut(octo_data$age_of_project/365, breaks=c(0,7.5
|
||||
table(octo_data$new.age)
|
||||
octo_data$new.age.factor <- as.factor(octo_data$new.age)
|
||||
hist(octo_data$new.age)
|
||||
length(which(octo_data$underproduction_low < 0))
|
||||
median(octo_data$underproduction_mean)
|
||||
|
||||
octo_data$mmt <- (((octo_data$collaborators * 2)+ octo_data$contributors) / (octo_data$contributors + octo_data$collaborators))
|
||||
mean(octo_data$mmt)
|
||||
hist(octo_data$mmt)
|
||||
head(octo_data)
|
||||
|
||||
octo_data <- octo_data[which(octo_data$issue_contrib_count <= octo_data$total_contrib),]
|
||||
write.csv(octo_data, "new_octo.csv", row.names = FALSE)
|
||||
|
||||
#TODO: there's an issue with calculating this but somehow not an issue with the wiki one
|
||||
octo_data$issue_mmt <- ((octo_data$issue_contrib_count * 2) + (octo_data$total_contrib - octo_data$issue_contrib_count)) / (octo_data$total_contrib)
|
||||
@ -70,6 +70,8 @@ median(octo_data$wiki_mmt)
|
||||
qqnorm(octo_data$wiki_mmt)
|
||||
#left skewed data, need to transform
|
||||
|
||||
g4 <- ggplot(octo_data)
|
||||
g4
|
||||
|
||||
#below are the models for the octo data, there should be analysis for each one
|
||||
octo_mmtmodel1 <- lm(underproduction_mean ~ mmt + new.age.factor, data=octo_data)
|
||||
@ -84,6 +86,7 @@ summary(sqrt_issue_mmtmodel1)
|
||||
wiki_mmtmodel1 <- lm(underproduction_mean ~ wiki_mmt + new.age.factor, data=octo_data)
|
||||
summary(wiki_mmtmodel1)
|
||||
|
||||
|
||||
library(texreg) #my little "lib"
|
||||
|
||||
texreg(list(octo_mmtmodel1, issue_mmtmodel1, wiki_mmtmodel1), stars=NULL, digits=2,
|
||||
|
4
R/didAnalyses.R
Normal file
@ -0,0 +1,4 @@
|
||||
library(tidyverse)
|
||||
|
||||
#set wd
|
||||
try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path)))
|
Before Width: | Height: | Size: 57 KiB After Width: | Height: | Size: 57 KiB |
Before Width: | Height: | Size: 57 KiB After Width: | Height: | Size: 57 KiB |
Before Width: | Height: | Size: 96 KiB After Width: | Height: | Size: 96 KiB |
Before Width: | Height: | Size: 41 KiB After Width: | Height: | Size: 41 KiB |
Before Width: | Height: | Size: 59 KiB After Width: | Height: | Size: 59 KiB |
Before Width: | Height: | Size: 60 KiB After Width: | Height: | Size: 60 KiB |
Before Width: | Height: | Size: 53 KiB After Width: | Height: | Size: 53 KiB |
Before Width: | Height: | Size: 107 KiB After Width: | Height: | Size: 107 KiB |
Before Width: | Height: | Size: 48 KiB After Width: | Height: | Size: 48 KiB |
Before Width: | Height: | Size: 47 KiB After Width: | Height: | Size: 47 KiB |
Before Width: | Height: | Size: 50 KiB After Width: | Height: | Size: 50 KiB |
Before Width: | Height: | Size: 53 KiB After Width: | Height: | Size: 53 KiB |
Before Width: | Height: | Size: 49 KiB After Width: | Height: | Size: 49 KiB |
Before Width: | Height: | Size: 53 KiB After Width: | Height: | Size: 53 KiB |