further specification of model and formula
This commit is contained in:
parent
634f60b6a8
commit
67946e6e10
@ -34,10 +34,11 @@ for (i in 2:nrow(readme_df)){
|
|||||||
#filter out the windows of time that we're looking at
|
#filter out the windows of time that we're looking at
|
||||||
window_num <- 8
|
window_num <- 8
|
||||||
windowed_data <- expanded_data |>
|
windowed_data <- expanded_data |>
|
||||||
filter(week >= (26 - window_num) & week <= (26 + window_num)) |>
|
filter(week >= (27 - window_num) & week <= (27 + window_num)) |>
|
||||||
mutate(D = ifelse(week > 26, 1, 0))
|
mutate(D = ifelse(week > 27, 1, 0))
|
||||||
#scale the age numbers
|
#scale the age numbers
|
||||||
windowed_data$scaled_project_age <- scale(windowed_data$age_of_project)
|
windowed_data$scaled_project_age <- scale(windowed_data$age_of_project)
|
||||||
|
windowed_data$week_offset <- windowed_data$week - 27
|
||||||
#separate out the cleaning d
|
#separate out the cleaning d
|
||||||
all_actions_data <- windowed_data[which(windowed_data$observation_type == "all"),]
|
all_actions_data <- windowed_data[which(windowed_data$observation_type == "all"),]
|
||||||
mrg_actions_data <- windowed_data[which(windowed_data$observation_type == "mrg"),]
|
mrg_actions_data <- windowed_data[which(windowed_data$observation_type == "mrg"),]
|
||||||
@ -54,18 +55,37 @@ qqplot(all_actions_data$count, y)
|
|||||||
# lmer: https://www.youtube.com/watch?v=LzAwEKrn2Mc
|
# lmer: https://www.youtube.com/watch?v=LzAwEKrn2Mc
|
||||||
library(lme4)
|
library(lme4)
|
||||||
# https://www.bristol.ac.uk/cmm/learning/videos/random-intercepts.html#exvar
|
# https://www.bristol.ac.uk/cmm/learning/videos/random-intercepts.html#exvar
|
||||||
# (D |upstream_vcs_link) or (week | upstream_vcs_link)
|
#making some random data
|
||||||
poisson_all_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (week || upstream_vcs_link), data=all_actions_data, family = poisson(link = "log"))
|
sampled_data <- readme_df[sample(nrow(readme_df), 220), ]
|
||||||
summary(poisson_all_model)
|
expanded_sample_data <- expand_timeseries(sampled_data[1,])
|
||||||
poisson_residuals <- residuals(poisson_all_model)
|
for (i in 2:nrow(sampled_data)){
|
||||||
qqnorm(poisson_residuals)
|
expanded_sample_data <- rbind(expanded_sample_data, expand_timeseries(sampled_data[i,]))
|
||||||
|
}
|
||||||
|
windowed_sample_data <- expanded_sample_data |>
|
||||||
|
filter(week >= (27 - window_num) & week <= (27 + window_num)) |>
|
||||||
|
mutate(D = ifelse(week > 27, 1, 0))
|
||||||
|
windowed_sample_data$scaled_project_age <- scale(windowed_sample_data$age_of_project)
|
||||||
|
windowed_sample_data$week_offset <- windowed_sample_data$week - 27
|
||||||
|
all_actions_sample_data <- windowed_sample_data[which(windowed_sample_data$observation_type == "all"),]
|
||||||
|
#test model
|
||||||
|
test_model <- lmer(count ~ D * I(week_offset) + scaled_project_age + (D * I(week_offset)|upstream_vcs_link), data=all_actions_sample_data, REML=FALSE)
|
||||||
|
summary(test_model)
|
||||||
|
#plot results
|
||||||
|
p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link), show.legend = FALSE) +
|
||||||
|
geom_point(size=3, show.legend = FALSE) +
|
||||||
|
geom_line(aes(y=predict(test_model)), show.legend = FALSE) +
|
||||||
|
theme_bw()
|
||||||
|
p
|
||||||
|
##end of the model testing and plotting section
|
||||||
|
all_model <- lmer(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE)
|
||||||
|
summary(all_model)
|
||||||
|
all_residuals <- residuals(all_model)
|
||||||
|
qqnorm(all_residuals)
|
||||||
# for visualization, may have to run model for each project and then identify top 5 projects for RDD graphs
|
# for visualization, may have to run model for each project and then identify top 5 projects for RDD graphs
|
||||||
#
|
mrg_model <- lmer(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=mrg_actions_data, REML=FALSE)
|
||||||
#
|
summary(mrg_model)
|
||||||
poisson_mrg_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (week |upstream_vcs_link), data=mrg_actions_data, family = poisson(link = "log"))
|
mrg_residuals <- residuals(mrg_model)
|
||||||
summary(poisson_mrg_model)
|
qqnorm(mrg_residuals)
|
||||||
poisson_mrg_residuals <- residuals(poisson_mrg_model)
|
|
||||||
qqnorm(poisson_mrg_residuals)
|
|
||||||
# Performance:
|
# Performance:
|
||||||
|
|
||||||
library(merTools)
|
library(merTools)
|
||||||
|
Loading…
Reference in New Issue
Block a user