From 73d5c5b979809d2be0c394464d4549199f4db469 Mon Sep 17 00:00:00 2001 From: mjgaughan Date: Wed, 24 Apr 2024 16:55:40 -0500 Subject: [PATCH] fixing optimizer for model convergance --- R/.Rhistory | 212 +++++++++++++++++++++--------------------- R/readmeRDDAnalysis.R | 5 +- 2 files changed, 110 insertions(+), 107 deletions(-) diff --git a/R/.Rhistory b/R/.Rhistory index 18b8514..74a2e43 100644 --- a/R/.Rhistory +++ b/R/.Rhistory @@ -1,109 +1,3 @@ -p -# https://www.bristol.ac.uk/cmm/learning/videos/random-intercepts.html#exvar -# (D |upstream_vcs_link) or (week | upstream_vcs_link) -test_model <- lmer(count ~ D * I(week_offset) + scaled_project_age + (D * I(week_offset) |upstream_vcs_link), data=all_actions_sample_data, REML=FALSE) -#plot results -p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link)) + -geom_point(size=3) + -geom_line(aes(y=predict(test_model), group=upstream_vcs_link)) + -theme_bw() -p -#test model -test_model <- lmer(count ~ D * I(week_offset) + scaled_project_age + (D |upstream_vcs_link), data=all_actions_sample_data, REML=FALSE) -summary(test_model) -#plot results -p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link)) + -geom_point(size=3) + -geom_line(aes(y=predict(test_model), group=upstream_vcs_link)) + -theme_bw() -p -#test model -test_model <- lmer(count ~ D * I(week_offset) + scaled_project_age + (D * I(week_offset)|upstream_vcs_link), data=all_actions_sample_data, REML=FALSE) -summary(test_model) -#plot results -p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link)) + -geom_point(size=3) + -geom_line(aes(y=predict(test_model), group=upstream_vcs_link)) + -theme_bw() -p -# https://www.bristol.ac.uk/cmm/learning/videos/random-intercepts.html#exvar -#making some random data -sampled_data <- readme_df[sample(nrow(readme_df), 8), ] -expanded_sample_data <- expand_timeseries(sampled_data[1,]) -for (i in 2:nrow(sampled_data)){ -expanded_sample_data <- rbind(expanded_sample_data, expand_timeseries(sampled_data[i,])) -} -windowed_sample_data <- expanded_sample_data |> -filter(week >= (26 - window_num) & week <= (26 + window_num)) |> -mutate(D = ifelse(week > 26, 1, 0)) -windowed_sample_data$scaled_project_age <- scale(windowed_sample_data$age_of_project) -windowed_sample_data$week_offset <- windowed_sample_data$week - 26 -all_actions_sample_data <- windowed_sample_data[which(windowed_sample_data$observation_type == "all"),] -#test model -test_model <- lmer(count ~ D * I(week_offset) + scaled_project_age + (D * I(week_offset)|upstream_vcs_link), data=all_actions_sample_data, REML=FALSE) -summary(test_model) -#plot results -p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link)) + -geom_point(size=3) + -geom_line(aes(y=predict(test_model), group=upstream_vcs_link)) + -theme_bw() -p -#test model -test_model <- lmer(count ~ D * I(week_offset) + scaled_project_age + (week_offset|upstream_vcs_link), data=all_actions_sample_data, REML=FALSE) -summary(test_model) -#plot results -p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link)) + -geom_point(size=3) + -geom_line(aes(y=predict(test_model), group=upstream_vcs_link)) + -theme_bw() -p -#plot results -p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link)) + -geom_point(size=3) + -geom_line(aes(y=predict(test_model), group=upstream_vcs_link)) + -guides(fill="none") + -theme_bw() -p -#plot results -p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link)) + -geom_point(size=3) + -geom_line(aes(y=predict(test_model), group=upstream_vcs_link)) + -theme(legend.position="none") + -theme_bw() -p -#plot results -p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link)) + -geom_point(size=3) + -geom_line(aes(y=predict(test_model), group=upstream_vcs_link)) + -theme_bw(legend.position="none") -p -#plot results -p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link), show.legend = FALSE) + -geom_point(size=3) + -geom_line(aes(y=predict(test_model), group=upstream_vcs_link)) + -theme_bw(legend.position="none") -p -#plot results -p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link), show.legend = FALSE) + -geom_point(size=3) + -geom_line(aes(y=predict(test_model), group=upstream_vcs_link)) + -theme_bw() -p -#plot results -p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link), show.legend = FALSE) + -geom_point(size=3) + -geom_line(aes(y=predict(test_model), group=upstream_vcs_link), show.legend = FALSE) + -theme_bw() -p -#plot results -p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link), show.legend = FALSE) + -geom_point(size=3, show.legend = FALSE) + -geom_line(aes(y=predict(test_model), group=upstream_vcs_link), show.legend = FALSE) + -theme_bw() -p -# https://www.bristol.ac.uk/cmm/learning/videos/random-intercepts.html#exvar -#making some random data -sampled_data <- readme_df[sample(nrow(readme_df), 220), ] expanded_sample_data <- expand_timeseries(sampled_data[1,]) for (i in 2:nrow(sampled_data)){ expanded_sample_data <- rbind(expanded_sample_data, expand_timeseries(sampled_data[i,])) @@ -510,3 +404,109 @@ summary(all_model) ##end of the model testing and plotting section all_model <- lmer(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE) summary(all_model) +# this is the file with the lmer multi-level rddAnalysis +library(tidyverse) +library(plyr) +# 0 loading the readme data in +try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path))) +readme_df <- read_csv("../final_data/deb_readme_did.csv") +# 1 preprocessing +#colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new") +col_order <- c("upstream_vcs_link", "age_of_project", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new") +readme_df <- readme_df[,col_order] +readme_df$ct_before_all <- str_split(gsub("[][]","", readme_df$before_all_ct), ", ") +readme_df$ct_after_all <- str_split(gsub("[][]","", readme_df$after_all_ct), ", ") +readme_df$ct_before_mrg <- str_split(gsub("[][]","", readme_df$before_mrg_ct), ", ") +readme_df$ct_after_mrg <- str_split(gsub("[][]","", readme_df$after_mrg_ct), ", ") +drop <- c("before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct") +readme_df = readme_df[,!(names(readme_df) %in% drop)] +# 2 some expansion needs to happens for each project +expand_timeseries <- function(project_row) { +longer <- project_row |> +pivot_longer(cols = starts_with("ct"), +names_to = "window", +values_to = "count") |> +unnest(count) +longer$observation_type <- gsub("^.*_", "", longer$window) +longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type))) +longer$count <- as.numeric(longer$count) +#longer <- longer[which(longer$observation_type == "all"),] +return(longer) +} +expanded_data <- expand_timeseries(readme_df[1,]) +for (i in 2:nrow(readme_df)){ +expanded_data <- rbind(expanded_data, expand_timeseries(readme_df[i,])) +} +#filter out the windows of time that we're looking at +window_num <- 8 +windowed_data <- expanded_data |> +filter(week >= (27 - window_num) & week <= (27 + window_num)) |> +mutate(D = ifelse(week > 27, 1, 0)) +#scale the age numbers +windowed_data$scaled_project_age <- scale(windowed_data$age_of_project) +windowed_data$week_offset <- windowed_data$week - 27 +#separate out the cleaning d +all_actions_data <- windowed_data[which(windowed_data$observation_type == "all"),] +mrg_actions_data <- windowed_data[which(windowed_data$observation_type == "mrg"),] +#find some EDA to identify which types of models might be the best for this +hist(all_actions_data$count) +#find some EDA to identify which types of models might be the best for this +hist(log1p(all_actions_data$count)) +#find some EDA to identify which types of models might be the best for this +hist(log(all_actions_data$count)) +# 3 rdd in lmer analysis +# rdd: https://rpubs.com/phle/r_tutorial_regression_discontinuity_design +# lmer: https://www.youtube.com/watch?v=LzAwEKrn2Mc +library(lme4) +##end of the model testing and plotting section +all_model <- lmer(log(count) ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE) +all_actions_data$logged_count <- log(all_actions_data$count) +all_actions_data$log1p_count <- log1p(all_actions_data$count) +##end of the model testing and plotting section +all_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE) +summary(all_model) +all_residuals <- residuals(all_model) +qqnorm(all_residuals) +##end of the model testing and plotting section +all_model <- lmer(logged_count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE) +##end of the model testing and plotting section +all_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE) +##end of the model testing and plotting section +all_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (week_offset| upstream_vcs_link), data=all_actions_data, REML=FALSE) +##end of the model testing and plotting section +all_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE) +# https://www.bristol.ac.uk/cmm/learning/videos/random-intercepts.html#exvar +#making some random data +sampled_data <- readme_df[sample(nrow(readme_df), 220), ] +expanded_sample_data <- expand_timeseries(sampled_data[1,]) +for (i in 2:nrow(sampled_data)){ +expanded_sample_data <- rbind(expanded_sample_data, expand_timeseries(sampled_data[i,])) +} +windowed_sample_data <- expanded_sample_data |> +filter(week >= (27 - window_num) & week <= (27 + window_num)) |> +mutate(D = ifelse(week > 27, 1, 0)) +windowed_sample_data$scaled_project_age <- scale(windowed_sample_data$age_of_project) +windowed_sample_data$week_offset <- windowed_sample_data$week - 27 +all_actions_sample_data <- windowed_sample_data[which(windowed_sample_data$observation_type == "all"),] +#test model +test_model <- lmer(log1p_count ~ D * I(week_offset) + scaled_project_age + (D * I(week_offset)|upstream_vcs_link), data=all_actions_sample_data, REML=FALSE) +all_actions_sample_data$log1p_count <- log1p(all_actions_sample_data$count) +#test model +test_model <- lmer(log1p_count ~ D * I(week_offset) + scaled_project_age + (D * I(week_offset)|upstream_vcs_link), data=all_actions_sample_data, REML=FALSE) +summary(test_model) +#plot results +p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link), show.legend = FALSE) + +geom_point(size=3, show.legend = FALSE) + +geom_line(aes(y=predict(test_model)), show.legend = FALSE) + +theme_bw() +p +#plot results +p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link), show.legend = FALSE) + +geom_point(size=3, show.legend = FALSE) + +geom_line(aes(y=predict(test_model)), show.legend = FALSE) + +theme_bw() +p +library(merTools) +ICC(outcome="count", group="week", data=all_actions_data) +ICC(outcome="count", group="upstream_vcs_link", data=all_actions_data) +ICC(outcome="count", group="week", data=all_actions_data) diff --git a/R/readmeRDDAnalysis.R b/R/readmeRDDAnalysis.R index 84200e5..67ba780 100644 --- a/R/readmeRDDAnalysis.R +++ b/R/readmeRDDAnalysis.R @@ -80,8 +80,11 @@ p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_ theme_bw() p ##end of the model testing and plotting section -all_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE) +library(optimx) +all_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE, control = lmerControl( + optimizer ='optimx', optCtrl=list(method='L-BFGS-B'))) summary(all_model) +random_effects <- ranef(all_model) all_residuals <- residuals(all_model) qqnorm(all_residuals) # for visualization, may have to run model for each project and then identify top 5 projects for RDD graphs