minor updates

This commit is contained in:
mjgaughan 2024-04-13 19:05:28 -05:00
parent c3106bd83c
commit 89ffcfbe6f

View File

@ -1,5 +1,6 @@
library(plyr)
library(tidyverse)
library(rdd)
#set wd, read in data
@ -32,17 +33,46 @@ readme_df = readme_df[,!(names(readme_df) %in% drop)]
# }
# test_two
#Yes, need to expand the dataframe, but again, for the sake of clarity, do not want to until analysis step
new_test <- readme_df[231,]
longer <- new_test |>
pivot_longer(cols = starts_with("ct"),
names_to = "window",
values_to = "count") |>
unnest(count)
longer$observation_type <- gsub("^.*_", "", longer$window)
longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type)))
longer$count <- as.numeric(longer$count)
# https://rpubs.com/phle/r_tutorial_regression_discontinuity_design
## https://www.rdocumentation.org/packages/lme4/versions/1.1-35.2/topics/lmer
new_test <- readme_df[9,]
get_optimal_window <- function(project_row) {
longer <- project_row |>
pivot_longer(cols = starts_with("ct"),
names_to = "window",
values_to = "count") |>
unnest(count)
longer$observation_type <- gsub("^.*_", "", longer$window)
longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type)))
longer$count <- as.numeric(longer$count)
#this below line makes the code specific to the all-commits data
longer <- longer[which(longer$observation_type == "all"),]
result <- tryCatch({
#Imbens-Kalyanaraman Optimal Bandwidth Calculation
optimal_bandwidth <- IKbandwidth(longer$week, longer$count, cutpoint = 26, verbose = FALSE, kernel = "triangular")
return(optimal_bandwidth)
}, error = function(e){
return(8)
})
}
bandwidths <- c()
for (i in 1:nrow(readme_df)){
bandwidth <- get_optimal_window(readme_df[i,])
bandwidths <- c(bandwidths, bandwidth)
}
mean(bandwidths) #8.574233
median(bandwidths) #8.363088
table(bandwidths)
#window_num <- 13
#longer <- longer %>%
# filter(week >= (26 - window_num) & week <= (26 + window_num))
#sapply(longer, class)
#longer$biweekly <- ceiling(longer$week / 2)
#longer <- longer %>%
# group_by(window, biweekly, observation_type) %>%
# summarise(biweekly_count = sum(count, na.rm = TRUE))
#testing out analysis below
longer[which(longer$observation_type == "all"),] |>
@ -60,4 +90,6 @@ longer[which(longer$observation_type == "all"),] |>
mutate(D = as.factor(ifelse(week >= 26, 1, 0))) |>
ggplot(aes(x = week, y = count, color = D)) +
geom_point() +
geom_smooth(se = FALSE)
geom_smooth(se = TRUE) +
geom_vline(xintercept = 26)