diff --git a/R/final_models/0624_pop_rm_collab_better.rda b/R/final_models/0624_pop_rm_collab_better.rda new file mode 100644 index 0000000..7c8f37a Binary files /dev/null and b/R/final_models/0624_pop_rm_collab_better.rda differ diff --git a/R/final_models/0624_pop_rm_contrib.rda b/R/final_models/0624_pop_rm_contrib.rda new file mode 100644 index 0000000..fa149bb Binary files /dev/null and b/R/final_models/0624_pop_rm_contrib.rda differ diff --git a/R/popRDDAnalyssis.R b/R/popRDDAnalyssis.R index de104ac..6f52d66 100644 --- a/R/popRDDAnalyssis.R +++ b/R/popRDDAnalyssis.R @@ -9,20 +9,6 @@ readme_df <- read_csv("../final_data/deb_readme_pop_change.csv") contrib_df <- merge(full_df, contrib_df, by="upstream_vcs_link") readme_df <- merge(full_df, readme_df, by="upstream_vcs_link") # age is calculated against December 11, 2023 -contrib_df <- contrib_df |> - mutate(start_date = as.Date("2023-12-11") - age_of_project) |> - mutate(event_date_days = - as.numeric( - difftime(as.POSIXct("2024-06-24 00:00:00", format = "%Y-%m-%d %H:%M:%S"), - as.POSIXct(event_date, format = "%Y-%m-%d %H:%M:%S"), - units = "days"))) -readme_df <- readme_df |> - mutate(start_date = as.Date("2023-12-11") - age_of_project) |> - mutate(event_date_days = - as.numeric( - difftime(as.POSIXct("2024-06-24 00:00:00", format = "%Y-%m-%d %H:%M:%S"), - as.POSIXct(event_date, format = "%Y-%m-%d %H:%M:%S"), - units = "days"))) #some expansion needs to happens for each project expand_timeseries <- function(project_row) { longer <- project_row |> @@ -46,6 +32,9 @@ expanded_readme_data$log1pcount <- log1p(expanded_readme_data$count) expanded_contrib_data$log1pcount <- log1p(expanded_contrib_data$count) expanded_readme_data$logcount <- log(expanded_readme_data$count) expanded_contrib_data$logcount <- log(expanded_contrib_data$count) +#scale age +expanded_readme_data$scaled_age <- scale(expanded_readme_data$age_in_days) +expanded_contrib_data$scaled_age <- scale(expanded_contrib_data$age_in_days) #breaking out the types of population counts collab_pop_readme <- expanded_readme_data[which(expanded_readme_data$is_collab == 1),] contrib_pop_readme <- expanded_readme_data[which(expanded_readme_data$is_collab == 0),] @@ -55,30 +44,22 @@ contrib_pop_contrib <- expanded_contrib_data[which(expanded_contrib_data$is_coll library(lme4) library(optimx) library(MASS) -simple_collab_readme_model <- glm.nb(count ~ as.factor(after_doc), data=collab_pop_readme) +#readme docs +simple_collab_readme_model <- glm.nb(log1pcount ~ as.factor(after_doc) + scale(age_in_days), data=collab_pop_readme) summary(simple_collab_readme_model) qqnorm(residuals(simple_collab_readme_model)) +simple_contrib_readme_model <- glm.nb(log1pcount ~ as.factor(after_doc) + scale(age_in_days), data=collab_pop_readme) +summary(simple_contrib_readme_model) +qqnorm(residuals(simple_contrib_readme_model)) # I don't think MLM is the right one -collab_readme_model <- glmer.nb(log1pcount ~ as.factor(after_doc) + (after_doc| upstream_vcs_link), data=collab_pop_readme) -collab_readme_model_plus <- glmer.nb(log1pcount ~ as.factor(after_doc) + event_date_days + (after_doc| upstream_vcs_link), data=collab_pop_readme) -collab_readme_model <- readRDS("final_models/0623_pop_rm_collab.rda") +collab_readme_model <- glmer.nb(log1pcount ~ as.factor(after_doc) + scaled_age + (after_doc| upstream_vcs_link), data=collab_pop_readme) summary(collab_readme_model) -saveRDS(collab_readme_model, "final_models/0623_pop_rm_collab_better.rda") -contrib_readme_model <- glmer.nb(log1pcount ~ after_doc + (after_doc| upstream_vcs_link), data=contrib_pop_readme) -contrib_readme_model_plus <- glmer.nb(log1pcount ~ after_doc + event_date_days+ (after_doc| upstream_vcs_link), data=contrib_pop_readme) +saveRDS(collab_readme_model, "final_models/0624_pop_rm_collab_better.rda") +contrib_readme_model <- glmer.nb(log1pcount ~ as.factor(after_doc) + scaled_age + (after_doc| upstream_vcs_link), data=contrib_pop_readme) summary(contrib_readme_model) -saveRDS(contrib_readme_model, "final_models/0623_pop_rm_contrib.rda") -contrib_readme_model <- readRDS("final_models/0623_pop_rm_contrib.rda") -conrm_residuals <- residuals(contrib_readme_model) -qqnorm(conrm_residuals) -collab_contrib_model <- glmer.nb(log1pcount ~ after_doc + (after_doc| upstream_vcs_link), data=collab_pop_contrib) -summary(collab_contrib_model) -saveRDS(collab_contrib_model, "final_models/0623_pop_contrib_collab.rda") -contrib_readme_model <- readRDS("final_models/0623_pop_contrib_collab.rda") -contrib_contrib_model <- glmer.nb(log1pcount ~ after_doc + (after_doc| upstream_vcs_link), data=contrib_pop_contrib) -summary(contrib_contrib_model) -saveRDS(contrib_contrib_model, "final_models/0623_pop_contrib_contrib.rda") - +saveRDS(contrib_readme_model, "final_models/0624_pop_rm_contrib.rda") +#contrib_readme_model <- readRDS("final_models/0623_pop_rm_contrib.rda") +#contributing models are not statistically significant`` library(texreg) texreg(list(collab_readme_model, contrib_readme_model), stars=NULL, digits=2,