From 8f26cae949b9557f7350ff6605ad67e3255e6919 Mon Sep 17 00:00:00 2001 From: mjgaughan Date: Wed, 15 Nov 2023 11:24:51 -0600 Subject: [PATCH] more fiddling w power analysis --- R/calculatePower.R | 9 +++++---- R/powerAnalysis.R | 3 ++- 2 files changed, 7 insertions(+), 5 deletions(-) diff --git a/R/calculatePower.R b/R/calculatePower.R index 669addf..e48afc6 100644 --- a/R/calculatePower.R +++ b/R/calculatePower.R @@ -39,14 +39,15 @@ data1$new.age <- as.numeric(cut(data1$age/365, breaks=c(0,9,12,15,17), labels=c( data1$formal.score <- data1$mmt / (data1$milestones/data1$new.age) hist(as.numeric(data1$new.age)) table(data1$formal.score) +hist(data1$formal.score) kmodel1 <- lm(up.fac.mean ~ mmt, data=data1) summary(kmodel1) kmodel1 <- lm(up.fac.mean ~ old_mmt, data=data1) summary(kmodel1) -kmodel1 <- lm(up.fac.mean ~ formal.score, data=data1) -summary(kmodel1) kmodel1 <- lm(up.fac.mean ~ new.age, data=data1) summary(kmodel1) +kmodel1 <- lm(up.fac.mean ~ milestones, data=data1) +summary(kmodel1) hist(data1$formal.score) cor.test(data1$formal.score, data1$up.fac.mean) cor.test(data1$mmt, data1$up.fac.mean) @@ -55,14 +56,14 @@ cor.test(data1$age, data1$up.fac.mean) g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + geom_point() + - geom_smooth() + geom_smooth() g data2 <- subset(data1, (data1$age / 365) < 14 ) hist(floor(data2$age)) g <- ggplot(data2, aes(x=formal.score, y=up.fac.mean)) + geom_point() + - geom_smooth() + geom_smooth() g data2$yearsOld <- floor(data2$age / 365) diff --git a/R/powerAnalysis.R b/R/powerAnalysis.R index aab5f18..6bbb903 100644 --- a/R/powerAnalysis.R +++ b/R/powerAnalysis.R @@ -20,6 +20,7 @@ makeDataNew <- function(n) { ## don't sim the outcome #up.fac.mean=rnorm(n=n, mean=-0.1296376, sd=1.479847), # up.fac.mean mmt=rlnorm(n=n, mean=1.685715, sd = 0.2532059), # mmt + #mmt=rlogis(n=n, location = 1.685715), ## this generates a 50-50 split of milestones --v #milestones=rbinom(n=n, size=1, prob=c(0.247, 0.753)), #milestones milestones=rbinom(n=n, size=1, prob=.247), #milestones @@ -55,7 +56,7 @@ powerCheck <- function(n, nSims) { #run a power calculation on the dataset given simData <- makeDataNew(n) # make some data ## outcome goes here --v # e.g. simData$up.fac.mean <- (usefuleffsizeA * mmt) + (usefuleffsizeB * milestones) + rnorm(n=1, mean=0, sd=1) ##plus some noise - simData$up.fac.mean <- (2 * simData$mmt) + (1.5 * simData$milestones) + rnorm(n=1, mean=0, sd=1) + simData$up.fac.mean <- (-2.075 * simData$mmt) + (0.4284 * simData$milestones) + rnorm(n=1, mean=0, sd=1) #have updated for kkex through here, now need to look at the underproduction work #m1.sim <- lm(up.fac.mean ~ ((mmt)/ (milestones/age)), data=simData) ## could leave age out for now?