diff --git a/R/.Rhistory b/R/.Rhistory index 889f0a7..f715765 100644 --- a/R/.Rhistory +++ b/R/.Rhistory @@ -1,88 +1,3 @@ -link <- readme_df[i,]$upstream_vcs_link -age <- full_df$age_of_project[full_df$upstream_vcs_link == link] -project <- full_df$project_name[full_df$upstream_vcs_link == link] -ages <- c(ages, age) -if (length(project) != 1){ -project -break -} else { -projects <- c(projects, project) -} -} -#set wd, read in data -try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path))) -readme_df <- read_csv("../final_data/deb_readme_did.csv") -contributing_df <- read_csv("../final_data/deb_contrib_did.csv") -full_df <- read_csv("../final_data/deb_full_data.csv") -#preprocessing for readme_df -colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new") -col_order <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new") -ages <- c() -projects <- c() -for (i in 1:nrow(readme_df)){ -link <- readme_df[i,]$upstream_vcs_link -age <- full_df$age_of_project[full_df$upstream_vcs_link == link] -project <- full_df$project_name[full_df$upstream_vcs_link == link] -ages <- c(ages, age) -if (length(project) != 1){ -project -break -} else { -projects <- c(projects, project) -} -} -#set wd, read in data -try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path))) -readme_df <- read_csv("../final_data/deb_readme_did.csv") -contributing_df <- read_csv("../final_data/deb_contrib_did.csv") -full_df <- read_csv("../final_data/deb_full_data.csv") -#preprocessing for readme_df -colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new") -col_order <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new") -ages <- c() -projects <- c() -for (i in 1:nrow(readme_df)){ -link <- readme_df[i,]$upstream_vcs_link -age <- full_df$age_of_project[full_df$upstream_vcs_link == link] -project <- full_df$project_name[full_df$upstream_vcs_link == link] -ages <- c(ages, age) -if (length(project) != 1){ -project -break -} else { -projects <- c(projects, project) -} -} -#set wd, read in data -try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path))) -readme_df <- read_csv("../final_data/deb_readme_did.csv") -contributing_df <- read_csv("../final_data/deb_contrib_did.csv") -full_df <- read_csv("../final_data/deb_full_data.csv") -#preprocessing for readme_df -colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new") -col_order <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new") -ages <- c() -projects <- c() -for (i in 1:nrow(readme_df)){ -link <- readme_df[i,]$upstream_vcs_link -age <- full_df$age_of_project[full_df$upstream_vcs_link == link] -project <- full_df$project_name[full_df$upstream_vcs_link == link] -ages <- c(ages, age) -if (length(project) != 1){ -project -break -} else { -projects <- c(projects, project) -} -} -readme_df <- read_csv("../final_data/deb_readme_did.csv") -contributing_df <- read_csv("../final_data/deb_contrib_did.csv") -full_df <- read_csv("../final_data/deb_full_data.csv") -#preprocessing for readme_df -colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new") -col_order <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new") -ages <- c() -projects <- c() for (i in 1:nrow(readme_df)){ link <- readme_df[i,]$upstream_vcs_link age <- full_df$age_of_project[full_df$upstream_vcs_link == link] @@ -510,3 +425,88 @@ poisson_all_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + age_of_pr summary(poisson_all_model) poisson_residuals <- residuals(poisson_all_model) qqnorm(poisson_residuals) +# this is the file with the lmer multi-level rddAnalysis +library(tidyverse) +library(plyr) +# 0 loading the readme data in +try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path))) +readme_df <- read_csv("../final_data/deb_readme_did.csv") +# 1 preprocessing +#colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new") +col_order <- c("upstream_vcs_link", "age_of_project", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new") +readme_df <- readme_df[,col_order] +readme_df$ct_before_all <- str_split(gsub("[][]","", readme_df$before_all_ct), ", ") +readme_df$ct_after_all <- str_split(gsub("[][]","", readme_df$after_all_ct), ", ") +readme_df$ct_before_mrg <- str_split(gsub("[][]","", readme_df$before_mrg_ct), ", ") +readme_df$ct_after_mrg <- str_split(gsub("[][]","", readme_df$after_mrg_ct), ", ") +drop <- c("before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct") +readme_df = readme_df[,!(names(readme_df) %in% drop)] +# 2 some expansion needs to happens for each project +expand_timeseries <- function(project_row) { +longer <- project_row |> +pivot_longer(cols = starts_with("ct"), +names_to = "window", +values_to = "count") |> +unnest(count) +longer$observation_type <- gsub("^.*_", "", longer$window) +longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type))) +longer$count <- as.numeric(longer$count) +#longer <- longer[which(longer$observation_type == "all"),] +return(longer) +} +expanded_data <- expand_timeseries(readme_df[1,]) +for (i in 2:nrow(readme_df)){ +expanded_data <- rbind(expanded_data, expand_timeseries(readme_df[i,])) +} +#filter out the windows of time that we're looking at +window_num <- 8 +expanded_data <- expanded_data |> +filter(week >= (26 - window_num) & week <= (26 + window_num)) |> +mutate(D = ifelse(week > 26, 1, 0)) +#separate out the cleaning d +all_actions_data <- expanded_data[which(expanded_data$observation_type == "all"),] +mrg_actions_data <- expanded_data[which(expanded_data$observation_type == "mrg"),] +#find some EDA to identify which types of models might be the best for this +mean(all_actions_data$count) +median(all_actions_data$count) +#if I'm reading the residuals right, the poisson is better? +poisson_all_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + age_of_project + (1 + D |upstream_vcs_link), data=all_actions_data, family = poisson(link = "log"), nAGQ = 100) +summary(poisson_all_model) +# 3 rdd in lmer analysis +# rdd: https://rpubs.com/phle/r_tutorial_regression_discontinuity_design +# lmer: https://www.youtube.com/watch?v=LzAwEKrn2Mc +library(lme4) +#if I'm reading the residuals right, the poisson is better? +poisson_all_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + age_of_project + (1 + D |upstream_vcs_link), data=all_actions_data, family = poisson(link = "log"), nAGQ = 100) +#if I'm reading the residuals right, the poisson is better? +poisson_all_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + age_of_project + (1 + D |upstream_vcs_link), data=all_actions_data, family = poisson(link = "log"), nAGQ = 100) +#if I'm reading the residuals right, the poisson is better? +poisson_all_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + age_of_project + (1 + D |upstream_vcs_link), data=all_actions_data, family = poisson(link = "log")) +summary(poisson_all_model) +poisson_residuals <- residuals(poisson_all_model) +qqnorm(poisson_residuals) +#if I'm reading the residuals right, the poisson is better? +poisson_all_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scale(age_of_project) + (1 + D |upstream_vcs_link), data=all_actions_data, family = poisson(link = "log")) +summary(poisson_all_model) +poisson_residuals <- residuals(poisson_all_model) +qqnorm(poisson_residuals) +qqnorm(poisson_residuals) +qqnorm(poisson_residuals) +#scale the age numbers +expanded_data$scaled_project_age <- scale(expanded_data$age_of_project) +#separate out the cleaning d +all_actions_data <- expanded_data[which(expanded_data$observation_type == "all"),] +mrg_actions_data <- expanded_data[which(expanded_data$observation_type == "mrg"),] +#find some EDA to identify which types of models might be the best for this +mean(all_actions_data$count) +median(all_actions_data$count) +table(all_actions_data$count) +var(all_actions_data$count) +qqnorm(all_actions_data$count) +y <- qunif(ppoints(length(all_actions_data$count))) +qqplot(all_actions_data$count, y) +#if I'm reading the residuals right, the poisson is better? +poisson_all_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (1 + D |upstream_vcs_link), data=all_actions_data, family = poisson(link = "log")) +summary(poisson_all_model) +poisson_residuals <- residuals(poisson_all_model) +qqnorm(poisson_residuals) diff --git a/R/didAnalysis.R b/R/didAnalysis.R index 4837d59..eef22e2 100644 --- a/R/didAnalysis.R +++ b/R/didAnalysis.R @@ -33,14 +33,14 @@ for (i in 2:nrow(readme_df)){ } #filter out the windows of time that we're looking at window_num <- 8 -expanded_data <- expanded_data |> +windowed_data <- expanded_data |> filter(week >= (26 - window_num) & week <= (26 + window_num)) |> mutate(D = ifelse(week > 26, 1, 0)) #scale the age numbers -expanded_data$scaled_project_age <- scale(expanded_data$age_of_project) +windowed_data$scaled_project_age <- scale(windowed_data$age_of_project) #separate out the cleaning d -all_actions_data <- expanded_data[which(expanded_data$observation_type == "all"),] -mrg_actions_data <- expanded_data[which(expanded_data$observation_type == "mrg"),] +all_actions_data <- windowed_data[which(windowed_data$observation_type == "all"),] +mrg_actions_data <- windowed_data[which(windowed_data$observation_type == "mrg"),] #find some EDA to identify which types of models might be the best for this mean(all_actions_data$count) median(all_actions_data$count) @@ -53,14 +53,13 @@ qqplot(all_actions_data$count, y) # rdd: https://rpubs.com/phle/r_tutorial_regression_discontinuity_design # lmer: https://www.youtube.com/watch?v=LzAwEKrn2Mc library(lme4) -flat_all_model <- lm(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age, REML=FALSE, data=all_actions_data) -summary(flat_all_model) -lmer_all_model <- lmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (1 + D |upstream_vcs_link), REML=FALSE, data=all_actions_data) +lmer_all_model <- lmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (D ||upstream_vcs_link), REML=FALSE, data=all_actions_data) summary(lmer_all_model) lmer_residuals <- residuals(lmer_all_model) qqnorm(lmer_residuals) #if I'm reading the residuals right, the poisson is better? -poisson_all_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (1 + D |upstream_vcs_link), data=all_actions_data, family = poisson(link = "log")) +# there's a conversation to be had between whether (D |upstream_vcs_link) or (D || upstream_vcs_link) +poisson_all_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (D |upstream_vcs_link), data=all_actions_data, family = poisson(link = "log")) summary(poisson_all_model) poisson_residuals <- residuals(poisson_all_model) qqnorm(poisson_residuals)