updated topic model distributions
This commit is contained in:
parent
8f1d4adc1e
commit
979dd9ccc6
@ -113,7 +113,9 @@ def best_lda_model(data_vectorized, vocab):
|
|||||||
#lda = joblib.load('0509_lda.jl')
|
#lda = joblib.load('0509_lda.jl')
|
||||||
return id_topic
|
return id_topic
|
||||||
|
|
||||||
def get_most_prevalent(distributions, documents):
|
def get_most_prevalent(vect_documents, documents):
|
||||||
|
lda = joblib.load('0509_readme_lda.jl')
|
||||||
|
distributions = lda.transform(vect_documents)
|
||||||
most_prevalent = {0: [0, ""],1: [0, ""], 2: [0, ""], 3: [0, ""], 4: [0, ""], 5: [0, ""], 6: [0, ""], 7: [0, ""]}
|
most_prevalent = {0: [0, ""],1: [0, ""], 2: [0, ""], 3: [0, ""], 4: [0, ""], 5: [0, ""], 6: [0, ""], 7: [0, ""]}
|
||||||
for i, topic_distribution in enumerate(distributions):
|
for i, topic_distribution in enumerate(distributions):
|
||||||
for j in range(8):
|
for j in range(8):
|
||||||
@ -123,7 +125,8 @@ def get_most_prevalent(distributions, documents):
|
|||||||
return most_prevalent
|
return most_prevalent
|
||||||
|
|
||||||
def prevalent_topics(vect_documents, file_list):
|
def prevalent_topics(vect_documents, file_list):
|
||||||
lda = joblib.load('0509_readme_lda.jl')
|
#lda = joblib.load('0509_readme_lda.jl')
|
||||||
|
lda = joblib.load('0514_contrib_lda.jl')
|
||||||
distributions = lda.transform(vect_documents)
|
distributions = lda.transform(vect_documents)
|
||||||
#figuring out what the max distribution is and then figuring out the mode
|
#figuring out what the max distribution is and then figuring out the mode
|
||||||
top_topic = []
|
top_topic = []
|
||||||
@ -137,10 +140,11 @@ def prevalent_topics(vect_documents, file_list):
|
|||||||
else:
|
else:
|
||||||
count_of_multiple += 1
|
count_of_multiple += 1
|
||||||
topic_arrays.append(topic_distribution)
|
topic_arrays.append(topic_distribution)
|
||||||
#most_frequent(top_topic)
|
most_frequent(top_topic)
|
||||||
print(count_of_multiple)
|
print(count_of_multiple)
|
||||||
df = pd.DataFrame(topic_arrays)
|
df = pd.DataFrame(topic_arrays)
|
||||||
#print(df.sort_values(by=['0']).head(5))
|
#print(df.sort_values(by=['0']).head(5))
|
||||||
|
'''
|
||||||
for i in range(8):
|
for i in range(8):
|
||||||
print("-----------------------Topic " + str(i) + " --------------------------------")
|
print("-----------------------Topic " + str(i) + " --------------------------------")
|
||||||
top5 = df.nlargest(10, i)
|
top5 = df.nlargest(10, i)
|
||||||
@ -153,12 +157,13 @@ def prevalent_topics(vect_documents, file_list):
|
|||||||
print(bottom5)
|
print(bottom5)
|
||||||
for index in bottom_indices:
|
for index in bottom_indices:
|
||||||
print(file_list[index])
|
print(file_list[index])
|
||||||
#averages = df.mean()
|
'''
|
||||||
#print(averages)
|
averages = df.mean()
|
||||||
|
print(averages)
|
||||||
|
|
||||||
def most_frequent(topic_prevalence):
|
def most_frequent(topic_prevalence):
|
||||||
most_frequent_array = []
|
most_frequent_array = []
|
||||||
for j in range(8):
|
for j in range(4):
|
||||||
topic = mode(topic_prevalence)
|
topic = mode(topic_prevalence)
|
||||||
most_frequent_array.append(topic)
|
most_frequent_array.append(topic)
|
||||||
topic_prevalence = [i for i in topic_prevalence if i != topic]
|
topic_prevalence = [i for i in topic_prevalence if i != topic]
|
||||||
@ -167,9 +172,9 @@ def most_frequent(topic_prevalence):
|
|||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
readme_directory = "/data/users/mgaughan/kkex/time_specific_files/readme3"
|
#readme_directory = "/data/users/mgaughan/kkex/time_specific_files/dwo_partitioned_readme/p2"
|
||||||
contributing_directory = "/data/users/mgaughan/kkex/time_specific_files/partitioned_contributing/p2"
|
contributing_directory = "/data/users/mgaughan/kkex/time_specific_files/dwo_partitioned_contributing/p2"
|
||||||
listed_corpus, wordcounts, wordlengths, file_list = get_data_from_dir(readme_directory)
|
listed_corpus, wordcounts, wordlengths, file_list = get_data_from_dir(contributing_directory)
|
||||||
print("Mean wordcount: ", mean(wordcounts))
|
print("Mean wordcount: ", mean(wordcounts))
|
||||||
print("Median wordcount: ", median(wordcounts))
|
print("Median wordcount: ", median(wordcounts))
|
||||||
print("Mean wordlength: ", mean(wordlengths))
|
print("Mean wordlength: ", mean(wordlengths))
|
||||||
@ -184,11 +189,11 @@ if __name__ == "__main__":
|
|||||||
)
|
)
|
||||||
data_vectorized = vectorizer.fit_transform(lemmatized_corpus)
|
data_vectorized = vectorizer.fit_transform(lemmatized_corpus)
|
||||||
'''
|
'''
|
||||||
vectorizer = joblib.load('readme_vectorizer.jl')
|
vectorizer = joblib.load('contrib_vectorizer.jl')
|
||||||
data_vectorized = vectorizer.transform(lemmatized_corpus)
|
data_vectorized = vectorizer.transform(lemmatized_corpus)
|
||||||
#lda_model_identification(data_vectorized)
|
#lda_model_identification(data_vectorized)
|
||||||
#topic_distributions = best_lda_model(data_vectorized, vectorizer.get_feature_names_out())
|
#topic_distributions = best_lda_model(data_vectorized, vectorizer.get_feature_names_out())
|
||||||
#get_most_prevalent(topic_distributions, file_list)
|
#get_most_prevalent(data_vectorized, file_list)
|
||||||
prevalent_topics(data_vectorized, file_list)
|
prevalent_topics(data_vectorized, file_list)
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user