contrib documents lda
This commit is contained in:
parent
0bdd3ab6fa
commit
9ba2f30f33
BIN
text_analysis/0514_contrib_lda.jl
Normal file
BIN
text_analysis/0514_contrib_lda.jl
Normal file
Binary file not shown.
185
text_analysis/contribModel.py
Normal file
185
text_analysis/contribModel.py
Normal file
@ -0,0 +1,185 @@
|
||||
import re
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import glob
|
||||
import copy
|
||||
from statistics import mean, median
|
||||
from strip_markdown import strip_markdown
|
||||
import joblib
|
||||
|
||||
from getMetadata import metadata_for_file
|
||||
|
||||
# Gensim
|
||||
import gensim
|
||||
import gensim.corpora as corpora
|
||||
from gensim.utils import simple_preprocess
|
||||
from gensim.models import CoherenceModel
|
||||
from gensim.models.phrases import Phrases
|
||||
|
||||
from sklearn.decomposition import LatentDirichletAllocation
|
||||
from sklearn.model_selection import GridSearchCV
|
||||
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
|
||||
|
||||
from statistics import mode
|
||||
|
||||
# spacy and nltk for lemmatization
|
||||
import nltk
|
||||
#nltk.download('stopwords')
|
||||
import spacy
|
||||
from nltk.corpus import stopwords
|
||||
from nltk.stem.wordnet import WordNetLemmatizer
|
||||
|
||||
stopwords = stopwords.words('english')
|
||||
#https://nlp.stanford.edu/IR-book/html/htmledition/dropping-common-terms-stop-words-1.html
|
||||
|
||||
#loading data in, getting misc descriptors
|
||||
def get_data_from_dir(directory):
|
||||
files = glob.glob(f"{directory}/*")
|
||||
data_list = []
|
||||
word_counts = []
|
||||
avg_word_lengths = []
|
||||
file_list = []
|
||||
for file in files:
|
||||
text = open(file, encoding='utf-8').read()
|
||||
#here's some of the descriptive text analysis
|
||||
word_count, avg_word_length = metadata_for_file(text)
|
||||
word_counts.append(word_count)
|
||||
avg_word_lengths.append(avg_word_length)
|
||||
#adding the data to the list of text
|
||||
data_list.append(text)
|
||||
#adding filename
|
||||
file_list.append(file)
|
||||
return data_list, word_counts, avg_word_lengths, file_list
|
||||
|
||||
#preprocessing text data
|
||||
def preprocess(corpus_list):
|
||||
#extending stopwords
|
||||
specific_stopwords = ["http", "com", "www", "org", "file", "code", "time", "software", "use", "user", "set", "line", "run", "source", "github",
|
||||
"lineno", "python", "php", "ruby", "api"]
|
||||
stopwords.extend(specific_stopwords)
|
||||
D = copy.copy(corpus_list)
|
||||
#stripping markdown from documents
|
||||
D = [strip_markdown(doc) for doc in D]
|
||||
#strip html
|
||||
D = [re.sub(r'<!--.*?-->', '', doc, flags=re.DOTALL) for doc in D]
|
||||
#mvp right now, can certainly be expanded as iterations of text analysis are done
|
||||
D = [[token for token in simple_preprocess(doc) if token not in stopwords and len(token) > 2]for doc in D]
|
||||
lemmatizer = WordNetLemmatizer()
|
||||
D_lemma = [" ".join([lemmatizer.lemmatize(token) for token in doc]) for doc in D]
|
||||
return D_lemma
|
||||
|
||||
#preparing processed data for model usage
|
||||
def text_preparation(lemmatized_text):
|
||||
#bigrams
|
||||
D_bigrams = copy.copy(lemmatized_text)
|
||||
bigram = Phrases(D_bigrams, min_count=2)
|
||||
for i in range(len(lemmatized_text)):
|
||||
for token in bigram[D_bigrams[i]]:
|
||||
if '_' in token:
|
||||
D_bigrams[i].append(token)
|
||||
#id2word
|
||||
id2word = corpora.Dictionary(D_bigrams)
|
||||
id2word.filter_extremes(no_below=5, no_above=0.5)
|
||||
#bow representation
|
||||
bag_of_words = [id2word.doc2bow(doc) for doc in D_bigrams]
|
||||
return bag_of_words, id2word
|
||||
|
||||
#identify best LDA model here
|
||||
def lda_model_identification(data_vectorized):
|
||||
lda = LatentDirichletAllocation()
|
||||
search_params = {'n_components': [4], 'learning_decay': [.5, .7, .9], 'batch_size' : [128, 256] }
|
||||
model = GridSearchCV(lda, param_grid=search_params, verbose=10)
|
||||
model.fit(data_vectorized)
|
||||
best_lda_model = model.best_estimator_
|
||||
print("Best Model's Params: ", model.best_params_)
|
||||
print("Best Log Likelihood Score: ", model.best_score_)
|
||||
print("Model Perplexity: ", best_lda_model.perplexity(data_vectorized))
|
||||
|
||||
#implement best LDA model here
|
||||
def best_lda_model(data_vectorized, vocab):
|
||||
# Based on Greene's Topic Stability: the right number of topics is 4
|
||||
#Best Log Likelihood Score: -502085.9749390023
|
||||
#Model Perplexity: 1689.0943431883845
|
||||
# Best Model's Params: {'batch_size': 256, 'learning_decay': 0.5, 'n_components': 4}
|
||||
lda = LatentDirichletAllocation(n_components=4, learning_decay = 0.5, batch_size = 256, max_iter = 50)
|
||||
id_topic = lda.fit_transform(data_vectorized)
|
||||
topic_words = {}
|
||||
for topic, comp in enumerate(lda.components_):
|
||||
word_idx = np.argsort(comp)[::-1][:10]
|
||||
topic_words[topic] = [vocab[i] for i in word_idx]
|
||||
for topic, words in topic_words.items():
|
||||
print('Topic: %d' % topic)
|
||||
print(' %s' % ', '.join(words))
|
||||
#lda.print_topics(num_words=10)
|
||||
joblib.dump(lda, '0514_contrib_lda.jl')
|
||||
#lda = joblib.load('0509_lda.jl')
|
||||
return id_topic
|
||||
|
||||
def get_most_prevalent(distributions, documents):
|
||||
most_prevalent = {0: [0, ""],1: [0, ""], 2: [0, ""], 3: [0, ""]}
|
||||
for i, topic_distribution in enumerate(distributions):
|
||||
for j in range(4):
|
||||
if topic_distribution[j] > most_prevalent[j][0]:
|
||||
most_prevalent[j] = [topic_distribution[j], documents[i]]
|
||||
print(most_prevalent)
|
||||
return most_prevalent
|
||||
|
||||
def prevalent_topics(vect_documents, file_list):
|
||||
lda = joblib.load('0514_contrib_lda.jl')
|
||||
distributions = lda.transform(vect_documents)
|
||||
#figuring out what the max distribution is and then figuring out the mode
|
||||
top_topic = []
|
||||
count_of_multiple = 0
|
||||
topic_arrays = []
|
||||
for i, topic_distribution in enumerate(distributions):
|
||||
max_dist = max(topic_distribution)
|
||||
indexes = np.where(topic_distribution == max_dist)[0]
|
||||
if len(indexes) == 1:
|
||||
top_topic.append(indexes[0])
|
||||
else:
|
||||
count_of_multiple += 1
|
||||
topic_arrays.append(topic_distribution)
|
||||
most_frequent(top_topic)
|
||||
print(count_of_multiple)
|
||||
df = pd.DataFrame(topic_arrays)
|
||||
averages = df.mean()
|
||||
print(averages)
|
||||
|
||||
def most_frequent(topic_prevalence):
|
||||
most_frequent_array = []
|
||||
for j in range(4):
|
||||
topic = mode(topic_prevalence)
|
||||
most_frequent_array.append(topic)
|
||||
topic_prevalence = [i for i in topic_prevalence if i != topic]
|
||||
print(most_frequent_array)
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
#eadme_directory = "/data/users/mgaughan/kkex/time_specific_files/partitioned_readme/p1"
|
||||
contributing_directory = "/data/users/mgaughan/kkex//time_specific_files/partitioned_contributing/p2"
|
||||
listed_corpus, wordcounts, wordlengths, file_list = get_data_from_dir(contributing_directory)
|
||||
print("Mean wordcount: ", mean(wordcounts))
|
||||
print("Median wordcount: ", median(wordcounts))
|
||||
print("Mean wordlength: ", mean(wordlengths))
|
||||
print("Median wordlength: ", median(wordlengths))
|
||||
lemmatized_corpus = preprocess(listed_corpus)
|
||||
'''
|
||||
vectorizer = CountVectorizer(analyzer='word',
|
||||
min_df=2,
|
||||
stop_words='english',
|
||||
lowercase=True,
|
||||
token_pattern='[a-zA-Z0-9]{2,}',
|
||||
)
|
||||
data_vectorized = vectorizer.fit_transform(lemmatized_corpus)
|
||||
joblib.dump(vectorizer, 'contrib_vectorizer.jl')
|
||||
'''
|
||||
vectorizer = joblib.load('contrib_vectorizer.jl')
|
||||
data_vectorized = vectorizer.transform(lemmatized_corpus)
|
||||
#lda_model_identification(data_vectorized)
|
||||
#topic_distributions = best_lda_model(data_vectorized, vectorizer.get_feature_names_out())
|
||||
#get_most_prevalent(topic_distributions, file_list)
|
||||
prevalent_topics(data_vectorized, file_list)
|
||||
|
||||
|
||||
|
BIN
text_analysis/contrib_vectorizer.jl
Normal file
BIN
text_analysis/contrib_vectorizer.jl
Normal file
Binary file not shown.
Loading…
Reference in New Issue
Block a user