From 9dc810bedf42e4052b556808eb4a4d5cb3690426 Mon Sep 17 00:00:00 2001 From: mjgaughan Date: Thu, 9 May 2024 17:05:21 -0500 Subject: [PATCH] managing glmer --- R/.Rhistory | 770 +++++++++++++++++++++--------------------- R/readmeRDDAnalysis.R | 33 +- 2 files changed, 412 insertions(+), 391 deletions(-) diff --git a/R/.Rhistory b/R/.Rhistory index 555a76b..8b90ad9 100644 --- a/R/.Rhistory +++ b/R/.Rhistory @@ -1,190 +1,8 @@ -# a) the basic things, in a table: -# Condition Sample Size mean standard deviation standard error -# Immediately after 2 48.705 1.534422 1.085 -# One day after 2 41.955 2.128391 1.505 -# Three days after 2 21.795 0.7707464 0.545 -# Five days after 2 12.415 1.081873 0.765 -# Seven days after 2 8.32 0.2687006 0.19 -# b) do a one way anova based on the data, like the last homework -grp <- c(1,1,2,2,3,3,4,4,5,5) -results <- aov(resp~factor(grp)) -anova(results) -# c) summarize the data and the means w a plot, boxplot -means <- c(48.705, 41.955, 21.795, 12.415, 8.32) -# c) summarize the data and the means w a plot, boxplot -boxplot(results) -# c) summarize the data and the means w a plot, boxplot -boxplot(resp) -# c) summarize the data and the means w a plot, boxplot -boxplot(resp) -# c) summarize the data and the means w a plot, boxplot -boxplot(resp~grp) -ALevels <- c(3.36, 3.34, 3.28, 3.20, 3.26, 3.16, 3.25, 3.36, 3.01, 2.92) -ELevels <- c(94.6, 96.0, 95.7, 93.2, 97.4, 94.3, 95.0, 97.7, 92.3, 95.1) -Aresults <- aov(Alevels~factor(grp)) -ALevels <- c(3.36, 3.34, 3.28, 3.20, 3.26, 3.16, 3.25, 3.36, 3.01, 2.92) -ELevels <- c(94.6, 96.0, 95.7, 93.2, 97.4, 94.3, 95.0, 97.7, 92.3, 95.1) -Aresults <- aov(Alevels~factor(grp)) -ALevels <- c(3.36, 3.34, 3.28, 3.20, 3.26, 3.16, 3.25, 3.36, 3.01, 2.92) -ELevels <- c(94.6, 96.0, 95.7, 93.2, 97.4, 94.3, 95.0, 97.7, 92.3, 95.1) -Aresults <- aov(ALevels~factor(grp)) -Eresults <- aov(ELevels~factor(grp)) -# Vitamin A Anova: -anova(Aresults) -# Vimain E Anova: -anova(Eresults) -# 12.10 -# four groups, how do nemaotodes impact plant growth -# a) -zero_nema <- c(10.8, 9.1, 13.5, 9.2) -thousand_name <-c(11.1, 11.1, 8.2, 11.3) -thousand_nema <-c(11.1, 11.1, 8.2, 11.3) -fthousand_nema <- c(5.4, 4.6, 7.4, 5.0) -tthousand_nema <- c(5.8, 5.3, 3.2, 7.5) -mean(zero_nema) -sd(zero_nema) -mean(thousand_nema) -sd(thousand_name) -mean(fthousand_nema) -sd(fthousand_nema) -mean(tthousand_nema) -sd(tthousand_nema) -# Table -# Nematodes Means StdDev -# 0 10.65 2.053452 -# 1,000 10.425 1.486327 -# 5,000 5.6 1.243651 -# 10,000 5.45 1.771064 -nema_means <- c(10.65, 10.425, 5.6, 5.45) -barplot(nema_means) -# c) -groupings <- c(1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4) -resp <- c(zero_nema, thousand_nema, fthousand_nema, tthousand_nema) -results <- aov(resp~factor(groupings)) -anova(results) -# 12.5 -# do piano lessons improve spacial temporal -piano <- c( 2, 5, 7, -2, 2, 7, 4, 1, 0, 7, 3, 4, 3, 4, 9, 4, 5, 2, 9, 6, 0, 3, 6, -1, 3, 4, 6, 7, -2, 7, -3, 3, 4, 4) -singing <- c(1, -1, 0, 1, -4, 0, 0, 1, 0, -1) -computer <- c(0, 1, 1, -3, -2, 4, -1, 2, 4, 2,2, 2, -3, -3, 0, 2, 0, -1, 3, -1 ) -none <- c(5, -1, 7, 0, 4, 0, 2, 1, -6, 0, 2, -1, 0, -2) -size(piano) -length(piano) -mean(piano) -sd(piano) -sd(piano)/sqrt(lenth(piano)) -sd(piano)/sqrt(length(piano)) -length(singing) -mean(singing) -sd(singing) -sd(signing)/sqrt(length(singing)) -sd(singing)/sqrt(length(singing)) -length(computer) -mean(computer) -sd(computer) -sd(computer)/sqrt(length(computer)) -length(none) -mean(none) -sd(none) -sd(none)/sqrt(14) -# a) make a table given the sample size -# Table: -# Lessons Size Mean Standard Dev Standard Error -# Piano 34 3.617647 3.055196 0.5239618 -# Singing 10 -0.3 1.494434 0.4725816 -# Computer 20 0.45 2.21181 0.4945758 -# None 14 0.7857143 3.190818 0.8527819 -# b) -# H0: The spatial-temporal reasoning test results across different lesson groups will be statistically equivalent. -# Ha: For at least one lesson group, the results of the reasoning test will be statistically different. -data_panel <- data.frame( -Y=c(piano, singing, computer, none), -Site = factor(rep(c("piano", "singing", "computer", "none"), times=c(length(piano), length(computer), length(singing), length(none)))) -) -data_panel -tempt <- aov(Y~Site, data=data_panel) -anova(tempt) -# 12.6 -TukeyHSD(tempt) -# Summary: Looking at the TukeyHSD results, there are some interesting notes in -# where statistically significant variance lies. If we immediately discard the -# comparisons with large p-values, we are left with three statistically significant -# ones. One is that students with piano lessons do better than computer lesson learners -# by an average of 3.5 points, another is that piano outperforms no lessons by about 2.8 points -# and lastly that singing underperforms piano by about 3.3 points. While this -# statistical tooling is useful for proving the significance of these differences in -# performance, we can also evaluate -means <- c(mean(piano), mean(singing), mean(computer), mean(none)) -barplot(means) -# (1) - Get the pilot data and clean it -#source('~/Research/tor_wikipedia_edits/handcoded_edits/inter_coder_reliability_ns0.R') -#source ('/data/users/mgaughan/kkex_data_110823_3') -data1 <- read_csv('../power_data_111023_mmt.csv',show_col_types = FALSE) -library(readr) -library(ggplot2) -# (1) - Get the pilot data and clean it -#source('~/Research/tor_wikipedia_edits/handcoded_edits/inter_coder_reliability_ns0.R') -#source ('/data/users/mgaughan/kkex_data_110823_3') -data1 <- read_csv('../power_data_111023_mmt.csv',show_col_types = FALSE) -data2 <- read_csv('../inst_all_packages_full_results.csv') -# (1) - Get the pilot data and clean it -#source('~/Research/tor_wikipedia_edits/handcoded_edits/inter_coder_reliability_ns0.R') -#source ('/data/users/mgaughan/kkex_data_110823_3') -data1 <- read_csv('../power_data_111023_mmt.csv',show_col_types = FALSE) -library(readr) -library(ggplot2) -# (1) - Get the pilot data and clean it -#source('~/Research/tor_wikipedia_edits/handcoded_edits/inter_coder_reliability_ns0.R') -#source ('/data/users/mgaughan/kkex_data_110823_3') -data1 <- read_csv('../power_data_111023_mmt.csv',show_col_types = FALSE) -data1 <- read_csv('../expanded_data_final.csv',show_col_types = FALSE) -# Use pilot project data to calculate power of a full study through simulation -# -# Parts: -# (0) - Setup -# (1) - Get the pilot data and clean it -# (2) - Run the model on the pilot data and extract effects -# (3) - Set up and run the simulation -# ====> Set variables at the arrows <==== -# -############################################################################## -rm(list=ls()) -set.seed(424242) -library(readr) -library(ggplot2) -data1 <- read_csv('../expanded_data_final.csv',show_col_types = FALSE) -set.seed(424242) -library(readr) -library(ggplot2) -data1 <- read_csv('../expanded_data_final.csv',show_col_types = FALSE) -#shows the cross-age downward slopes for all underproduction averages in the face of MMT -g3 <- ggplot(data1, aes(x=mmt, y=underproduction_mean)) + -geom_smooth(mapping = aes(x=mmt, y=underproduction_mean, color=new.age.factor), -method='lm', formula= y~x) + -xlab("MMT") + -ylab("Underproduction Factor") + theme_bw() -g3 -library(readr) -library(ggplot2) -data1 <- read_csv('../expanded_data_final.csv',show_col_types = FALSE) -mean(data1$milestone_count) -data1$mmt <- (((data1$collaborators * 2)+ data1$contributors) / (data1$contributors + data1$collaborators)) - 1 -mean(data1$mmt) -rm(list=ls()) -set.seed(424242) -library(readr) -library(ggplot2) -data1 <- read_csv('../expanded_data_final.csv',show_col_types = FALSE) -library(readr) -library(ggplot2) -data1 <- read_csv('../power_data_111023_mmt.csv',show_col_types = FALSE) -data2 <- read_csv('../inst_all_packages_full_results.csv') -data1 <- read_csv('../kk_final_expanded_data_final.csv',show_col_types = FALSE) -library(readr) -library(ggplot2) -library(tidyverse) -data1 <- read_csv('../kk_final_expanded_data_final.csv',show_col_types = FALSE) +wo_df_ranef |> +ggplot(aes(x=rank, y=condval, col = as.factor(ranef_grouping))) + +geom_linerange(aes(ymin= condval - (1.96 * condsd), ymax= condval + (1.96 * condsd))) + +theme_bw() # this is the file with the lmer multi-level rddAnalysis library(tidyverse) library(plyr) @@ -229,6 +47,8 @@ windowed_data$week_offset <- windowed_data$week - 27 #separate out the cleaning d all_actions_data <- windowed_data[which(windowed_data$observation_type == "all"),] mrg_actions_data <- windowed_data[which(windowed_data$observation_type == "mrg"),] +#find some EDA to identify which types of models might be the best for this +hist(log(all_actions_data$count)) all_actions_data$logged_count <- log(all_actions_data$count) all_actions_data$log1p_count <- log1p(all_actions_data$count) # 3 rdd in lmer analysis @@ -240,172 +60,254 @@ library(optimx) library(lattice) all_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE, control = lmerControl( optimizer ='optimx', optCtrl=list(method='L-BFGS-B'))) +summary(all_model) #identifying the quartiles of effect for D all_model_ranef <- ranef(all_model, condVar=TRUE) dotplot(all_model_ranef) df_ranefs <- as.data.frame(all_model_ranef) -D_df_ranef <- df_ranefs[df_ranefs$term == "D"] D_df_ranef <- df_ranefs[which(df_ranefs$term == "D"),] -View(D_df_ranef) -has_zero <- function(condval, condsd){ -bounds <- condsd * 1.96 -if ((condval - bounds) < 0){ -if ((condval + bounds) > 0) { -return(1) -} else { -return(0) -} -} else { -return(2) -} -} -df_ranefs |> -mutate(ranef_grouping = has_zero(condval, condsd)) -has_zero <- function(condval, condsd){ -bounds <- condsd * 1.96 -print(bounds) -if ((condval - bounds) < 0){ -if ((condval + bounds) > 0) { -return(1) -} else { -return(0) -} -} else { -return(2) -} -} -df_ranefs |> -mutate(ranef_grouping = has_zero(condval, condsd)) -has_zero <- function(condval, condsd){ -bounds <- condsd * 1.96 -print(condval - bounds) -if ((condval - bounds) < 0){ -if ((condval + bounds) > 0) { -return(1) -} else { -return(0) -} -} else { -return(2) -} -} -df_ranefs |> -mutate(ranef_grouping = has_zero(condval, condsd)) +#below this groups the ranefs has_zero <- function(condval, condsd){ bounds <- condsd * 1.96 return(ifelse(((condval - bounds) < 0),ifelse(((condval + bounds) > 0), 1, 0), 2)) } -df_ranefs |> -mutate(ranef_grouping = has_zero(condval, condsd)) -df_ranefs |> -mutate(ranef_grouping = has_zero(condval, condsd)) |> -group_by(ranef_grouping) |> -summarize(no_rows = length(ranef_grouping)) -df_ranefs |> -mutate(ranef_grouping = has_zero(condval, condsd)) |> -group_by(ranef_grouping) |> -summarize(no_rows = length(as.factor(ranef_grouping))) -df_ranefs |> -mutate(ranef_grouping = has_zero(condval, condsd)) |> -group_by(ranef_grouping) |> -summarize(no_rows = length(as.factor(ranef_grouping))) -View(df_ranefs) -has_zero <- function(condval, condsd){ -bounds <- condsd * 1.96 -return(ifelse(((condval - bounds) < 0),ifelse(((condval + bounds) > 0), 1, 0), 2)) -} -df_ranefs |> -mutate(ranef_grouping = has_zero(condval, condsd)) -View(df_ranefs) df_ranefs <- df_ranefs |> -mutate(ranef_grouping = has_zero(condval, condsd)) -View(df_ranefs) -df_ranefs |> -group_by(ranef_grouping) |> -summarise(no_rows = length(ranef_grouping)) -df_ranefs |> -group_by(ranef_grouping) |> -summarise(no_rows = length(ranef_grouping)) -df_ranefs |> -group_by(as.factor(ranef_grouping)) |> -summarise(no_rows = length(ranef_grouping)) -hist(df_ranefs$ranef_grouping) +mutate(ranef_grouping = has_zero(condval, condsd)) |> +mutate(rank = rank(condval)) D_df_ranef <- df_ranefs[which(df_ranefs$term == "D"),] -hist(D_df_ranefs$ranef_grouping) hist(D_df_ranef$ranef_grouping) +D_df_ranef |> +ggplot(aes(x=rank, y=condval, col = as.factor(ranef_grouping))) + +geom_linerange(aes(ymin= condval - (1.96 * condsd), ymax= condval + (1.96 * condsd))) + +geom_bw() #plot the ranefs library(ggplot2) D_df_ranef |> -ggplot(aes(x=grp, y=condval)) -D_df_ranef |> -ggplot(aes(x=grp, y=condval, col = as.factor(ranef_grouping))) -D_df_ranef |> -ggplot(aes(x=condsd, y=condval, col = as.factor(ranef_grouping))) -D_df_ranef |> -ggplot(aes(x=condval, y=condval, col = as.factor(ranef_grouping))) -D_df_ranef |> -ggplot(aes(x=condval, y=condval, col = as.factor(ranef_grouping))) + -geom_point() -D_df_ranef |> -ggplot(aes(x=grp, y=condval, col = as.factor(ranef_grouping))) + -geom_point() -df_ranefs <- df_ranefs |> -mutate(ranef_grouping = has_zero(condval, condsd)) -D_df_ranef <- df_ranefs[which(df_ranefs$term == "D"),] -hist(D_df_ranef$ranef_grouping) +ggplot(aes(x=rank, y=condval, col = as.factor(ranef_grouping))) + +geom_linerange(aes(ymin= condval - (1.96 * condsd), ymax= condval + (1.96 * condsd))) + +geom_bw() D_df_ranef |> ggplot(aes(x=rank, y=condval, col = as.factor(ranef_grouping))) + -geom_point() -df_ranefs <- df_ranefs |> -mutate(ranef_grouping = has_zero(condval, condsd)) -D_df_ranef <- df_ranefs[which(df_ranefs$term == "D"),] +geom_linerange(aes(ymin= condval - (1.96 * condsd), ymax= condval + (1.96 * condsd))) + +theme_bw() +#identifying the quartiles of effect for D +all_model_ranef <- ranef(all_model, condVar=TRUE) +dotplot(all_model_ranef) +df_ranefs <- as.data.frame(all_model_ranef) +#below this groups the ranefs +has_zero <- function(condval, condsd){ +bounds <- condsd * 1.96 +return(ifelse(((condval - bounds) < 0),ifelse(((condval + bounds) > 0), 1, 0), 2)) +} df_ranefs <- df_ranefs |> mutate(ranef_grouping = has_zero(condval, condsd)) |> mutate(rank = rank(condval)) D_df_ranef <- df_ranefs[which(df_ranefs$term == "D"),] D_df_ranef |> ggplot(aes(x=rank, y=condval, col = as.factor(ranef_grouping))) + -geom_point() +geom_linerange(aes(ymin= condval - (1.96 * condsd), ymax= condval + (1.96 * condsd))) + +theme_bw() +D_df_ranefs <- D_df_ranefs |> +mutate(rank = rank(condval)) +D_df_ranef <- D_df_ranef |> +mutate(rank = rank(condval)) D_df_ranef |> ggplot(aes(x=rank, y=condval, col = as.factor(ranef_grouping))) + -geom_linerange(aes(ymin= condval - (1.96 * condsd), ymax= condval + (1.96 * condsd))) -D_df_ranef |> -ggplot(aes(x=grp, y=condval, col = as.factor(ranef_grouping))) + -geom_linerange(aes(ymin= condval - (1.96 * condsd), ymax= condval + (1.96 * condsd))) -D_df_ranef |> -ggplot(aes(x=rank, y=condval, col = as.factor(ranef_grouping))) + -geom_linerange(aes(ymin= condval - (1.96 * condsd), ymax= condval + (1.96 * condsd))) -# mrg behavior for this -mrg_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE, control = lmerControl( +geom_linerange(aes(ymin= condval - (1.96 * condsd), ymax= condval + (1.96 * condsd))) + +theme_bw() +#identifying the quartiles of effect for D +all_model_blup <- blup(all_model) +all_model_ranef <- ranef(all_model) +View(all_model_ranef) +df_ranefs <- as.data.frame(all_model_ranef) +dotplot(all_model_ranef) +#identifying the quartiles of effect for D +all_model_coef <- coef(all_model) +View(all_model_coef) +D_df_ranef <- df_ranefs[which(df_ranefs$term == "D"),] +D_df_ranef <- df_ranefs[which(df_ranefs$term == "D"),] +View(D_df_ranef) +all_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE, control = lmerControl( +optimizer ='optimx', optCtrl=list(method='L-BFGS-B'))) +all_model_ranef <- ranef(all_model) +df_ranefs <- as.data.frame(all_model_ranef) +D_df_ranef <- df_ranefs[which(df_ranefs$term == "D"),] +View(D_df_ranef) +#identifying the quartiles of effect for D +all_model_variances <- postVar(all_model) +#identifying the quartiles of effect for D +all_model_variances <- vcov(all_model, condVar=TRUE) +View(all_model_variances) +print(all_model_variances) +View(all_model_variances) +conditional_variances_random <- lapply(all_model_variances, diag) +dotplot(conditional_variances_random) +dotplot(conditional_variances_random, +col = "blue", +pch = 19, +main = "Conditional Variances of Random Effects", +xlab = "Conditional Variance", +ylab = "Random Effect", +scales = list(x = list(log = TRUE)), +auto.key = list(space = "right")) +#identifying the quartiles of effect for D +all_model_variances <- vcov(all_model, full=TRUE, condVar=TRUE) +View(all_model_variances) +summary(all_model) +#identifying the quartiles of effect for D +all_model_variances <- vcov(all_model, full=TRUE, condVar=TRUE) +View(all_model_variances) +#identifying the quartiles of effect for D +all_model_variances <- varCorr(all_model) +#identifying the quartiles of effect for D +all_model_variances <- VarCorr(all_model) +View(all_model_variances) +View(conditional_variances_random) +View(all_model_variances) +attr(VarCorr(all_model)$upstream_vcs_link, "stddevs")^2 +values <- attr(VarCorr(all_model)$upstream_vcs_link, "stddevs")^2 +#identifying the quartiles of effect for D +all_model_variances <- vcov(all_model) +View(all_model_variances) +print(all_model_variances) +all_model_ranef <- ranef(all_model)$upstream_vcs_link +View(all_model_ranef) +all_model_ranef <- cov(ranef(all_model)) +random_effects <- ranef(all_model) +random_effects_variances <- lapply(random_effects$upstream_vcs_link, function(x) { +variances <- var(x$D:I(week_offset)) +return(variances) +}) +variances <- var(x$D) +summary_of_all <- summary(all_model) +#identifying the quartiles of effect for D +variance_components <- summary_of_all$varcor +View(variance_components) +all_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE, control = lmerControl( optimizer ='optimx', optCtrl=list(method='L-BFGS-B'))) #identifying the quartiles of effect for D -mrg_model_ranef <- ranef(mrg_model, condVar=TRUE) -df_mrg_ranefs <- as.data.frame(mrg_model_ranef) -#doing similar random effect analysis for this -df_mrg_ranefs <- df_mrg_ranefs |> -mutate(ranef_grouping = has_zero(condval, condsd)) |> -mutate(rank = rank(condval)) -D_df_mrg_ranefs <- df_mrg_ranefs[which(df_mrg_ranefs$term == "D"),] -D_df_mrg_ranefs |> -ggplot(aes(x=rank, y=condval, col = as.factor(ranef_grouping))) + -geom_linerange(aes(ymin= condval - (1.96 * condsd), ymax= condval + (1.96 * condsd))) -D_df_ranef |> -ggplot(aes(x=rank, y=condval, col = as.factor(ranef_grouping))) + -geom_linerange(aes(ymin= condval - (1.96 * condsd), ymax= condval + (1.96 * condsd))) +varcorr_of_all <- VarCorr(all_model) +View(varcorr_of_all) +print(varcorr_of_all) +all_coefficients <- coef(all_model) +all_standard_errors <- sqrt(diag(vcov(all_model))) +all_conf_intervals <- cbind(coefficients - 1.96 * standard_errors, +coefficients + 1.96 * standard_errors) +all_conf_intervals <- cbind(all_coefficients - 1.96 * all_standard_errors, +all_coefficients + 1.96 * all_standard_errors) +View(all_coefficients) +View(conditional_variances_random) +View(all_coefficients) +#identifying the quartiles of effect for D +confint(all_model) +all_coefficients <- coef(all_model) +all_standard_errors <- sqrt(diag(vcov(all_model)))[3] +all_standard_errors <- sqrt(diag(vcov(all_model))) +all_standard_errors <- sqrt(diag(vcov(all_model)))[4] +all_standard_errors <- sqrt(diag(vcov(all_model)))[5] +all_standard_errors <- sqrt(diag(vcov(all_model)))[6] +all_standard_errors <- sqrt(diag(vcov(all_model)))[1] +#identifying the quartiles of effect for D +all_model_ranef <- ranef(all_model, condVar=TRUE) +#identifying the quartiles of effect for D +all_model_ranef_condvar <- ranef(all_model, condVar = TRUE) +all_model_ranef <- ranef(all_model, condVar = FALSE) +View(all_model_ranef) +View(all_model_ranef_condvar) +dotplot(all_model_ranef) +dotplot(all_model_ranef_condvar) +View(all_model_ranef_condvar) +all_model_ranef_condvar[["upstream_vcs_link"]][["D"]] +View(all_model_ranef) +all_model_ranef_condvar$upstream_vcs_link +all_model_ranef_condvar$upstream_vcs_link$D +conditional_variances <- diag(vcov(model)$upstream_vcs_link$D) +conditional_variances <- diag(vcov(all_model)$upstream_vcs_link$D) +conditional_variances <- diag(vcov(all_model)) +conditional_variances <- vcov(all_model) +View(conditional_variances) +#identifying the quartiles of effect for D +all_model_ranef_condvar <- var(ranef(all_model, condVar = TRUE)) +#identifying the quartiles of effect for D +all_model_ranef_condvar <- var(ranef(all_model, condVar = TRUE)$upstream_vcs_link$D) +#identifying the quartiles of effect for D +all_model_ranef_condvar <- ranef(all_model, condVar = TRUE)$upstream_vcs_link$D +#identifying the quartiles of effect for D +all_model_ranef_condvar <- ranef(all_model, condVar = TRUE) +View(all_model_ranef_condvar) +#identifying the quartiles of effect for D +all_model_ranef_condvar <- ranef(all_model, condVar = TRUE) +View(all_model_ranef_condvar) +attr(all_model_ranef_condvar$upstream_vcs_link$D, "condVar") +attr(all_model_ranef_condvar$upstream_vcs_link, "condVar") +df_ranefs <- as.data.frame(all_model_ranef_condvar) +View(df_ranefs) +View(all_model_ranef_condvar) +#all_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE, control = lmerControl( +# optimizer ='optimx', optCtrl=list(method='L-BFGS-B'))) +all_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE) +#identifying the quartiles of effect for D +all_model_ranef_condvar <- ranef(all_model, condVar = TRUE) +attr(all_model_ranef_condvar$upstream_vcs_link, "condVar") +#all_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE, control = lmerControl( +# optimizer ='optimx', optCtrl=list(method='L-BFGS-B'))) +all_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=TRUE) +#identifying the quartiles of effect for D +all_model_ranef_condvar <- ranef(all_model, condVar = TRUE) +attr(all_model_ranef_condvar$upstream_vcs_link, "condVar") +df_ranefs <- as.data.frame(all_model_ranef_condvar) +View(df_ranefs) +#identifying the quartiles of effect for D +all_model_ranef_condvar <- ranef(all_model, condVar = TRUE) +View(all_model_ranef_condvar) +all_model_ranef <- ranef(all_model, condVar = FALSE) +View(all_model_ranef_condvar) +View(all_model_ranef_condvar[["upstream_vcs_link"]]) +all_model_ranef_condvar[["upstream_vcs_link"]][["D"]] +View(all_model_ranef) +df_rn_no_cv <- as.data.frame(all_model_ranef) +View(df_rn_no_cv) +View(df_ranefs) +attr(all_model_ranef_condvar$upstream_vcs_link, "postVar") +attr(all_model_ranef_condvar$upstream_vcs_link$D, "postVar") +attr(all_model_ranef_condvar$upstream_vcs_link, "postVar") +attr(all_model_ranef_condvar$upstream_vcs_link, "postVar")[[4]] +attr(all_model_ranef_condvar$upstream_vcs_link, "postVar")[[3]] +attr(all_model_ranef_condvar$upstream_vcs_link, "postVar")[[2]] +attr(all_model_ranef_condvar$upstream_vcs_link, "postVar")[4] +attr(all_model_ranef_condvar$upstream_vcs_link, "postVar") +all_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE, control = lmerControl( +optimizer ='optimx', optCtrl=list(method='L-BFGS-B'))) +isSingular(all_model) +all_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (week_offset| upstream_vcs_link), data=all_actions_data, REML=FALSE, control = lmerControl( +optimizer ='optimx', optCtrl=list(method='L-BFGS-B'))) +all_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (week_offset| upstream_vcs_link), data=all_actions_data, REML=FALSE) +all_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (I:(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE) +all_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE) +all_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (D| upstream_vcs_link), data=all_actions_data, REML=FALSE) +summary_of_all <- summary(all_model) +summary(all_model) +#identifying the quartiles of effect for D +all_model_ranef_condvar <- ranef(all_model, condVar = TRUE) +attr(all_model_ranef_condvar$upstream_vcs_link, "postVar") +all_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE, control = lmerControl( +optimizer ='optimx', optCtrl=list(method='L-BFGS-B'))) +# this is the file with the lmer multi-level rddAnalysis library(tidyverse) library(plyr) -#get the contrib data instead +# 0 loading the readme data in try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path))) -contrib_df <- read_csv("../final_data/deb_contrib_did.csv") -#some preprocessing and expansion +readme_df <- read_csv("../final_data/deb_readme_did.csv") +# 1 preprocessing +#colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new") col_order <- c("upstream_vcs_link", "age_of_project", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new") -contrib_df <- contrib_df[,col_order] -contrib_df$ct_before_all <- str_split(gsub("[][]","", contrib_df$before_all_ct), ", ") -contrib_df$ct_after_all <- str_split(gsub("[][]","", contrib_df$after_all_ct), ", ") -contrib_df$ct_before_mrg <- str_split(gsub("[][]","", contrib_df$before_mrg_ct), ", ") -contrib_df$ct_after_mrg <- str_split(gsub("[][]","", contrib_df$after_mrg_ct), ", ") +readme_df <- readme_df[,col_order] +readme_df$ct_before_all <- str_split(gsub("[][]","", readme_df$before_all_ct), ", ") +readme_df$ct_after_all <- str_split(gsub("[][]","", readme_df$after_all_ct), ", ") +readme_df$ct_before_mrg <- str_split(gsub("[][]","", readme_df$before_mrg_ct), ", ") +readme_df$ct_after_mrg <- str_split(gsub("[][]","", readme_df$after_mrg_ct), ", ") drop <- c("before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct") -contrib_df = contrib_df[,!(names(contrib_df) %in% drop)] +readme_df = readme_df[,!(names(readme_df) %in% drop)] # 2 some expansion needs to happens for each project expand_timeseries <- function(project_row) { longer <- project_row |> @@ -419,9 +321,9 @@ longer$count <- as.numeric(longer$count) #longer <- longer[which(longer$observation_type == "all"),] return(longer) } -expanded_data <- expand_timeseries(contrib_df[1,]) -for (i in 2:nrow(contrib_df)){ -expanded_data <- rbind(expanded_data, expand_timeseries(contrib_df[i,])) +expanded_data <- expand_timeseries(readme_df[1,]) +for (i in 2:nrow(readme_df)){ +expanded_data <- rbind(expanded_data, expand_timeseries(readme_df[i,])) } #filter out the windows of time that we're looking at window_num <- 8 @@ -434,79 +336,177 @@ windowed_data$week_offset <- windowed_data$week - 27 #separate out the cleaning d all_actions_data <- windowed_data[which(windowed_data$observation_type == "all"),] mrg_actions_data <- windowed_data[which(windowed_data$observation_type == "mrg"),] -all_actions_data$logged_count <- log(all_actions_data$count) all_actions_data$log1p_count <- log1p(all_actions_data$count) -# now for merge -mrg_actions_data$logged_count <- log(mrg_actions_data$count) -mrg_actions_data$log1p_count <- log1p(mrg_actions_data$count) -#TKTK --------------------- -#imports for models +# 3 rdd in lmer analysis +# rdd: https://rpubs.com/phle/r_tutorial_regression_discontinuity_design +# lmer: https://www.youtube.com/watch?v=LzAwEKrn2Mc library(lme4) +# https://www.bristol.ac.uk/cmm/learning/videos/random-intercepts.html#exvar library(optimx) library(lattice) -#models -- TKTK need to be fixed -all_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (week_offset| upstream_vcs_link), data=all_actions_data, REML=FALSE, control = lmerControl( +all_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE, control = lmerControl( optimizer ='optimx', optCtrl=list(method='L-BFGS-B'))) -summary(all_model) #identifying the quartiles of effect for D -all_model_ranef <- ranef(all_model) -#d_effect_ranef_all <- all_model_ranef[all_model_ranef$term=="D",] -#d_effect_ranef_all$quartile <- ntile(d_effect_ranef_all$condval, 4) -df_ranefs <- as.data.frame(all_model_ranef) -has_zero <- function(condval, condsd){ -bounds <- condsd * 1.96 -return(ifelse(((condval - bounds) < 0),ifelse(((condval + bounds) > 0), 1, 0), 2)) +mmcm = coef(all_model)$upstream_vcs_link[, 1] +vcov.vals = as.data.frame(VarCorr(all_model)) +View(vcov.vals) +#identifying the quartiles of effect for D +mmcm = coef(all_model)$upstream_vcs_link +View(mmcm) +summary(all_model)$coef[,2] +View(mmcm) +variance_components <- VarCorr(all_model) +group_variance <- attr(variance_components$upstream_vcs_link, "stddev")^2 +View(mmcm) +fixef(all()) +fixef(all_model +summary(all_model)$coef[,2] +fixef(all_model) +fixed_impacts = fixef(all_model) +dotplot(all_model_ranef_condvar) +all_model_ranef_condvar <- ranef(all_model, condVar = TRUE) +dotplot(all_model_ranef_condvar) +broom.mixed::tidy(all_model, effects = "ran_vals", conf.int = TRUE) +test <- broom.mixed::tidy(all_model, effects = "ran_vals", conf.int = TRUE) +View(test) +all_gmodel <- glmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, family = Gamma) +all_gmodel <- glmer(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, family = Gamma) +all_gmodel <- glmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, family=poisson) +all_gmodel <- glmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (D | upstream_vcs_link), data=all_actions_data, family=poisson) +all_gmodel <- glmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (D | upstream_vcs_link), data=all_actions_data, family=binomial) +all_gmodel <- glmer(count ~ D * I(week_offset)+ scaled_project_age + (D | upstream_vcs_link), data=all_actions_data, family=binomial) +df_ranefs <- as.data.frame(all_model_ranef_condvar) +all_gmodel <- glmer(count ~ D * I(week_offset)+ scaled_project_age + (D | upstream_vcs_link), data=all_actions_data, family=binomial) +all_gmodel <- glmer(count ~ D * I(week_offset)+ scaled_project_age + (1 | upstream_vcs_link), data=all_actions_data, family=poisson) +all_model_ranef_condvar <- ranef(all_gmodel, condVar = TRUE) +all_model_ranef_condvar <- ranef(all_model, condVar = TRUE) +all_gmodel_ranef_condvar <- ranef(all_gmodel, condVar = TRUE) +View(all_gmodel_ranef_condvar) +test <- broom.mixed::tidy(all_gmodel, effects = "ran_vals", conf.int = TRUE) +View(test) +all_gmodel <- glmer(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)+ scaled_project_age | upstream_vcs_link), data=all_actions_data) +test <- broom.mixed::tidy(all_gmodel, effects = "ran_vals", conf.int = TRUE) +View(test) +summary(all_gmodel) +all_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=TRUE, control = lmerControl( +optimizer ='optimx', optCtrl=list(method='L-BFGS-B'))) +test <- broom.mixed::tidy(all_model, effects = "ran_vals", conf.int = TRUE) +View(test) +test_condvals <- broom.mixed::tidy(all_gmodel, effects = "ran_vals", conf.int = TRUE) +View(test_condvals) +test_glmer_ranef_D <- test_condvals [which(test_condvals $term == "D"),] +View(test_glmer_ranef_D) +test_glmer_ranef_D <- test_condvals [which(test_condvals $term == "D"),] +has_zero <- function(estimate, low, high){ +return(ifelse((low < 0),ifelse((high > 0), 1, 0), 2)) } -df_ranefs <- df_ranefs |> -mutate(ranef_grouping = has_zero(condval, condsd)) |> -mutate(rank = rank(condval)) -wo_df_ranef <- df_ranefs[which(df_ranefs$term == "week_offset"),] -library(ggplot2) -wo_df_ranef |> +test_glmer_ranef_D <- test_glmer_ranef_D |> +mutate(ranef_grouping = has_zero(estimate, conf.low, conf.high)) |> +mutate(rank = rank(estimate)) +test_glmer_ranef_D |> ggplot(aes(x=rank, y=condval, col = as.factor(ranef_grouping))) + -geom_linerange(aes(ymin= condval - (1.96 * condsd), ymax= condval + (1.96 * condsd))) -wo_df_ranef |> -ggplot(aes(x=rank, y=condval, col = as.factor(ranef_grouping))) + -geom_linerange(aes(ymin= condval - (1.96 * condsd), ymax= condval + (1.96 * condsd))) + -geom_bw() -wo_df_ranef |> -ggplot(aes(x=rank, y=condval, col = as.factor(ranef_grouping))) + -geom_linerange(aes(ymin= condval - (1.96 * condsd), ymax= condval + (1.96 * condsd))) + +geom_linerange(aes(ymin= conf.low, ymax= conf.high)) + theme_bw() -wo_df_ranef |> -ggplot(aes(x=rank, y=condval, col = as.factor(ranef_grouping))) + -geom_pointrange(aes(ymin= condval - (1.96 * condsd), ymax= condval + (1.96 * condsd))) + +test_glmer_ranef_D |> +ggplot(aes(x=rank, y=estimate, col = as.factor(ranef_grouping))) + +geom_linerange(aes(ymin= conf.low, ymax= conf.high)) + theme_bw() -wo_df_ranef |> -ggplot(aes(x=rank, y=condval, col = as.factor(ranef_grouping))) + -geom_crossbar(aes(ymin= condval - (1.96 * condsd), ymax= condval + (1.96 * condsd)), width=0.2) + +summary(all_gmodel) +all_gmodel <- glmer(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data) +summary(all_gmodel) +test_condvals <- broom.mixed::tidy(all_gmodel, effects = "ran_vals", conf.int = TRUE) +test_glmer_ranef_D <- test_condvals [which(test_condvals $term == "D"),] +has_zero <- function(estimate, low, high){ +return(ifelse((low < 0),ifelse((high > 0), 1, 0), 2)) +} +test_glmer_ranef_D <- test_glmer_ranef_D |> +mutate(ranef_grouping = has_zero(estimate, conf.low, conf.high)) |> +mutate(rank = rank(estimate)) +test_glmer_ranef_D |> +ggplot(aes(x=rank, y=estimate, col = as.factor(ranef_grouping))) + +geom_linerange(aes(ymin= conf.low, ymax= conf.high)) + theme_bw() -wo_df_ranef |> -ggplot(aes(x=rank, y=condval, col = as.factor(ranef_grouping))) + -geom_linerange(aes(ymin= condval - (1.96 * condsd), ymax= condval + (1.96 * condsd))) + +View(test_glmer_ranef_D) +View(test_condvals) +all_gmodel <- glmer(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data) +summary(all_gmodel) +test_condvals <- broom.mixed::tidy(all_gmodel, effects = "ran_vals", conf.int = TRUE) +View(test_condvals) +all_gmodel <- glmer(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, family = Poisson) +all_gmodel <- glmer(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, family = poisson) +summary(all_gmodel) +all_gmodel <- glmer(count ~ D * I(week_offset)+ scaled_project_age + (D | upstream_vcs_link), data=all_actions_data, family = poisson) +summary(all_gmodel) +test_condvals <- broom.mixed::tidy(all_gmodel, effects = "ran_vals", conf.int = TRUE) +test_glmer_ranef_D <- test_condvals [which(test_condvals $term == "D"),] +has_zero <- function(estimate, low, high){ +return(ifelse((low < 0),ifelse((high > 0), 1, 0), 2)) +} +test_glmer_ranef_D <- test_glmer_ranef_D |> +mutate(ranef_grouping = has_zero(estimate, conf.low, conf.high)) |> +mutate(rank = rank(estimate)) +test_glmer_ranef_D |> +ggplot(aes(x=rank, y=estimate, col = as.factor(ranef_grouping))) + +geom_linerange(aes(ymin= conf.low, ymax= conf.high)) + theme_bw() -wo_df_ranef |> -ggplot(aes(x=grp, y=condval, col = as.factor(ranef_grouping))) + -geom_linerange(aes(ymin= condval - (1.96 * condsd), ymax= condval + (1.96 * condsd))) + +all_gmodel <- glmer(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, family = poisson) +all_gmodel <- glmer(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, nAGQ=0, family = poisson) +summary(all_gmodel) +test_condvals <- broom.mixed::tidy(all_gmodel, effects = "ran_vals", conf.int = TRUE) +test_glmer_ranef_D <- test_condvals [which(test_condvals $term == "D"),] +has_zero <- function(estimate, low, high){ +return(ifelse((low < 0),ifelse((high > 0), 1, 0), 2)) +} +test_glmer_ranef_D <- test_glmer_ranef_D |> +mutate(ranef_grouping = has_zero(estimate, conf.low, conf.high)) |> +mutate(rank = rank(estimate)) +test_glmer_ranef_D |> +ggplot(aes(x=rank, y=estimate, col = as.factor(ranef_grouping))) + +geom_linerange(aes(ymin= conf.low, ymax= conf.high)) + theme_bw() -wo_df_ranef <- wo_df_ranef |> -arrange(condval) -wo_df_ranef |> -ggplot(aes(x=grp, y=condval, col = as.factor(ranef_grouping))) + -geom_linerange(aes(ymin= condval - (1.96 * condsd), ymax= condval + (1.96 * condsd))) + -theme_bw() -View(wo_df_ranef) -df_ranefs <- df_ranefs |> -mutate(ranef_grouping = has_zero(condval, condsd)) -wo_df_ranef <- df_ranefs[which(df_ranefs$term == "week_offset"),] -wo_df_ranef <- wo_df_ranef |> -mutate(rank = rank(condval)) -library(ggplot2) -wo_df_ranef |> -ggplot(aes(x=grp, y=condval, col = as.factor(ranef_grouping))) + -geom_linerange(aes(ymin= condval - (1.96 * condsd), ymax= condval + (1.96 * condsd))) + -theme_bw() -wo_df_ranef |> -ggplot(aes(x=rank, y=condval, col = as.factor(ranef_grouping))) + -geom_linerange(aes(ymin= condval - (1.96 * condsd), ymax= condval + (1.96 * condsd))) + +variance(all_actions_data$log1p_count) +var(all_actions_data$log1p_count) +mean (all_actions_data$log1p_count) +#all_gmodel <- glmer(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, nAGQ=0, family = poisson) +all_gmodel <- glmer.nb(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link),data=all_actions_data) +#all_gmodel <- glmer(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, nAGQ=0, family = poisson) +all_gmodel <- glmer.nb(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), +control=glmerControl(optimizer="bobyqa", +optCtrl=list(maxfun=2e5)), data=all_actions_data) +#all_gmodel <- glmer(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, nAGQ=0, family = poisson) +all_gmodel <- glmer.nb(count ~ D * I(week_offset)+ scaled_project_age + (D | upstream_vcs_link), +control=glmerControl(optimizer="bobyqa", +optCtrl=list(maxfun=2e5)), data=all_actions_data) +summary(all_gmodel) +test_condvals <- broom.mixed::tidy(all_gmodel, effects = "ran_vals", conf.int = TRUE) +test_glmer_ranef_D <- test_condvals [which(test_condvals $term == "D"),] +has_zero <- function(estimate, low, high){ +return(ifelse((low < 0),ifelse((high > 0), 1, 0), 2)) +} +test_glmer_ranef_D <- test_glmer_ranef_D |> +mutate(ranef_grouping = has_zero(estimate, conf.low, conf.high)) |> +mutate(rank = rank(estimate)) +test_glmer_ranef_D |> +ggplot(aes(x=rank, y=estimate, col = as.factor(ranef_grouping))) + +geom_linerange(aes(ymin= conf.low, ymax= conf.high)) + theme_bw() +#all_gmodel <- glmer(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, nAGQ=0, family = poisson) +#all_gmodel <- glmer.nb(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset) | upstream_vcs_link), +# control=glmerControl(optimizer="bobyqa", +# optCtrl=list(maxfun=2e5)), data=all_actions_data) +all_gmodel <- glmer.nb(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset) | upstream_vcs_link), data=all_actions_data) +#all_gmodel <- glmer(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, nAGQ=0, family = poisson) +#all_gmodel <- glmer.nb(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset) | upstream_vcs_link), +# control=glmerControl(optimizer="bobyqa", +# optCtrl=list(maxfun=2e5)), data=all_actions_data) +all_gmodel <- glmer.nb(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset) | upstream_vcs_link), data=all_actions_data, verbose=TRUE) +#all_gmodel <- glmer(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, nAGQ=0, family = poisson) +#all_gmodel <- glmer.nb(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset) | upstream_vcs_link), +# control=glmerControl(optimizer="bobyqa", +# optCtrl=list(maxfun=2e5)), data=all_actions_data) +all_gmodel <- glmer.nb(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset) | upstream_vcs_link), data=all_actions_data) +#all_gmodel <- glmer(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, nAGQ=0, family = poisson) +#all_gmodel <- glmer.nb(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset) | upstream_vcs_link), +# control=glmerControl(optimizer="bobyqa", +# optCtrl=list(maxfun=2e5)), data=all_actions_data) +all_gmodel <- glmer.nb(count ~ D * I(week_offset)+ scaled_project_age + (D | upstream_vcs_link), data=all_actions_data) diff --git a/R/readmeRDDAnalysis.R b/R/readmeRDDAnalysis.R index 777d7e5..605cdbe 100644 --- a/R/readmeRDDAnalysis.R +++ b/R/readmeRDDAnalysis.R @@ -63,18 +63,39 @@ all_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (D * I( optimizer ='optimx', optCtrl=list(method='L-BFGS-B'))) summary_of_all <- summary(all_model) #identifying the quartiles of effect for D +mmcm = coef(all_model)$upstream_vcs_link +fixed_impacts = fixef(all_model) +summary(all_model)$coef[,2] +variance_components <- VarCorr(all_model) all_model_ranef_condvar <- ranef(all_model, condVar = TRUE) -all_model_ranef <- ranef(all_model, condVar = FALSE) +dotplot(all_model_ranef_condvar) +test <- broom.mixed::tidy(all_model, effects = "ran_vals", conf.int = TRUE) attr(all_model_ranef_condvar$upstream_vcs_link, "postVar") all_coefficients <- coef(all_model) all_standard_errors <- sqrt(diag(vcov(all_model)))[1] -#all_conf_intervals <- cbind(all_coefficients - 1.96 * all_standard_errors, -# all_coefficients + 1.96 * all_standard_errors) -df_ranefs <- as.data.frame(all_model_ranef_condvar) -df_rn_no_cv <- as.data.frame(all_model_ranef) -D_df_ranef <- df_ranefs[which(df_ranefs$term == "D"),] +var(all_actions_data$log1p_count) # 1.125429 +mean (all_actions_data$log1p_count) # 0.6426873 + +#all_gmodel <- glmer(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, nAGQ=0, family = poisson) +#all_gmodel <- glmer.nb(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset) | upstream_vcs_link), +# control=glmerControl(optimizer="bobyqa", +# optCtrl=list(maxfun=2e5)), data=all_actions_data) +all_gmodel <- glmer.nb(count ~ D * I(week_offset)+ scaled_project_age + (D | upstream_vcs_link), data=all_actions_data) +summary(all_gmodel) +test_condvals <- broom.mixed::tidy(all_gmodel, effects = "ran_vals", conf.int = TRUE) +test_glmer_ranef_D <- test_condvals [which(test_condvals $term == "D"),] +has_zero <- function(estimate, low, high){ + return(ifelse((low < 0),ifelse((high > 0), 1, 0), 2)) +} +test_glmer_ranef_D <- test_glmer_ranef_D |> + mutate(ranef_grouping = has_zero(estimate, conf.low, conf.high)) |> + mutate(rank = rank(estimate)) +test_glmer_ranef_D |> + ggplot(aes(x=rank, y=estimate, col = as.factor(ranef_grouping))) + + geom_linerange(aes(ymin= conf.low, ymax= conf.high)) + + theme_bw() #below this groups the ranefs """ has_zero <- function(condval, condsd){