diff --git a/R/.Rhistory b/R/.Rhistory index f715765..08586d1 100644 --- a/R/.Rhistory +++ b/R/.Rhistory @@ -1,286 +1,3 @@ -for (i in 1:nrow(readme_df)){ -link <- readme_df[i,]$upstream_vcs_link -age <- full_df$age_of_project[full_df$upstream_vcs_link == link] -project <- full_df$project_name[full_df$upstream_vcs_link == link] -ages <- c(ages, age) -if (length(project) != 1){ -project -break -} else { -projects <- c(projects, project) -} -} -#set wd, read in data -try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path))) -readme_df <- read_csv("../final_data/deb_readme_did.csv") -contributing_df <- read_csv("../final_data/deb_contrib_did.csv") -full_df <- read_csv("../final_data/deb_full_data.csv") -#preprocessing for readme_df -colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new") -col_order <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new") -ages <- c() -projects <- c() -for (i in 1:nrow(readme_df)){ -link <- readme_df[i,]$upstream_vcs_link -age <- full_df$age_of_project[full_df$upstream_vcs_link == link] -project <- full_df$project_name[full_df$upstream_vcs_link == link] -ages <- c(ages, age) -if (length(project) != 1){ -project -break -} else { -projects <- c(projects, project) -} -} -#set wd, read in data -try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path))) -readme_df <- read_csv("../final_data/deb_readme_did.csv") -contributing_df <- read_csv("../final_data/deb_contrib_did.csv") -full_df <- read_csv("../final_data/deb_full_data.csv") -#preprocessing for readme_df -colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new") -col_order <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new") -ages <- c() -projects <- c() -for (i in 1:nrow(readme_df)){ -link <- readme_df[i,]$upstream_vcs_link -age <- full_df$age_of_project[full_df$upstream_vcs_link == link] -project <- full_df$project_name[full_df$upstream_vcs_link == link] -ages <- c(ages, age) -if (length(project) != 1){ -project -break -} else { -projects <- c(projects, project) -} -} -#set wd, read in data -try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path))) -readme_df <- read_csv("../final_data/deb_readme_did.csv") -contributing_df <- read_csv("../final_data/deb_contrib_did.csv") -full_df <- read_csv("../final_data/deb_full_data.csv") -#preprocessing for readme_df -colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new") -col_order <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new") -ages <- c() -projects <- c() -for (i in 1:nrow(readme_df)){ -link <- readme_df[i,]$upstream_vcs_link -age <- full_df$age_of_project[full_df$upstream_vcs_link == link] -project <- full_df$project_name[full_df$upstream_vcs_link == link] -ages <- c(ages, age) -if (length(project) != 1){ -project -break -} else { -projects <- c(projects, project) -} -} -#set wd, read in data -try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path))) -readme_df <- read_csv("../final_data/deb_readme_did.csv") -contributing_df <- read_csv("../final_data/deb_contrib_did.csv") -full_df <- read_csv("../final_data/deb_full_data.csv") -#preprocessing for readme_df -colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new") -col_order <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new") -ages <- c() -projects <- c() -for (i in 1:nrow(readme_df)){ -link <- readme_df[i,]$upstream_vcs_link -age <- full_df$age_of_project[full_df$upstream_vcs_link == link] -project <- full_df$project_name[full_df$upstream_vcs_link == link] -ages <- c(ages, age) -if (length(project) != 1){ -project -break -} else { -projects <- c(projects, project) -} -} -#set wd, read in data -try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path))) -readme_df <- read_csv("../final_data/deb_readme_did.csv") -contributing_df <- read_csv("../final_data/deb_contrib_did.csv") -full_df <- read_csv("../final_data/deb_full_data.csv") -#preprocessing for readme_df -colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new") -col_order <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new") -ages <- c() -projects <- c() -for (i in 1:nrow(readme_df)){ -link <- readme_df[i,]$upstream_vcs_link -age <- full_df$age_of_project[full_df$upstream_vcs_link == link] -project <- full_df$project_name[full_df$upstream_vcs_link == link] -ages <- c(ages, age) -if (length(project) != 1){ -project -break -} else { -projects <- c(projects, project) -} -} -length(ages) -#set wd, read in data -try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path))) -readme_df <- read_csv("../final_data/deb_readme_did.csv") -contributing_df <- read_csv("../final_data/deb_contrib_did.csv") -full_df <- read_csv("../final_data/deb_full_data.csv") -#preprocessing for readme_df -colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new") -col_order <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new") -ages <- c() -projects <- c() -for (i in 1:nrow(readme_df)){ -link <- readme_df[i,]$upstream_vcs_link -age <- full_df$age_of_project[full_df$upstream_vcs_link == link] -project <- full_df$project_name[full_df$upstream_vcs_link == link] -ages <- c(ages, age) -if (length(project) != 1){ -project -break -} else { -projects <- c(projects, project) -} -} -#set wd, read in data -try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path))) -readme_df <- read_csv("../final_data/deb_readme_did.csv") -contributing_df <- read_csv("../final_data/deb_contrib_did.csv") -full_df <- read_csv("../final_data/deb_full_data.csv") -#preprocessing for readme_df -colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new") -col_order <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new") -ages <- c() -projects <- c() -for (i in 1:nrow(readme_df)){ -link <- readme_df[i,]$upstream_vcs_link -age <- full_df$age_of_project[full_df$upstream_vcs_link == link] -project <- full_df$project_name[full_df$upstream_vcs_link == link] -ages <- c(ages, age) -if (length(project) != 1){ -project -break -} else { -projects <- c(projects, project) -} -} -length(ages) -readme_df$age_of_project = full_df$age_of_project[full_df$upstream_vcs_link == readme_df$upstream_vcs_link] -View(readme_df) -readme_df$age_of_project = ages -View(readme_df) -write.csv(readme_df, "deb_readme_data_4_19.csv", row.names=FALSE) -#preprocessing for readme_df -colnames(contributing_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new") -col_order <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new") -ages <- c() -projects <- c() -for (i in 1:nrow(contributing_df)){ -link <- readme_df[i,]$upstream_vcs_link -age <- full_df$age_of_project[full_df$upstream_vcs_link == link] -project <- full_df$project_name[full_df$upstream_vcs_link == link] -ages <- c(ages, age) -if (length(project) != 1){ -project -break -} else { -projects <- c(projects, project) -} -} -contributing_df$age_of_project = ages -write.csv(contributing_df, "deb_contributing_data_4_19.csv", row.names=FALSE) -View(contributing_df) -View(contributing_df) -View(readme_df) -View(contributing_df) -View(contributing_df) -contributing_df <- read_csv("../final_data/deb_contrib_did.csv") -View(contributing_df) -#preprocessing for readme_df -colnames(contributing_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new") -ages <- c() -projects <- c() -for (i in 1:nrow(contributing_df)){ -link <- contributing_df[i,]$upstream_vcs_link -age <- full_df$age_of_project[full_df$upstream_vcs_link == link] -project <- full_df$project_name[full_df$upstream_vcs_link == link] -ages <- c(ages, age) -if (length(project) != 1){ -project -break -} else { -projects <- c(projects, project) -} -} -#set wd, read in data -try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path))) -readme_df <- read_csv("../final_data/deb_readme_did.csv") -contributing_df <- read_csv("../final_data/deb_contrib_did.csv") -full_df <- read_csv("../final_data/deb_full_data.csv") -#preprocessing for readme_df -colnames(contributing_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new") -col_order <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new") -ages <- c() -projects <- c() -for (i in 1:nrow(contributing_df)){ -link <- contributing_df[i,]$upstream_vcs_link -age <- full_df$age_of_project[full_df$upstream_vcs_link == link] -project <- full_df$project_name[full_df$upstream_vcs_link == link] -ages <- c(ages, age) -if (length(project) != 1){ -project -break -} else { -projects <- c(projects, project) -} -} -#set wd, read in data -try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path))) -readme_df <- read_csv("../final_data/deb_readme_did.csv") -contributing_df <- read_csv("../final_data/deb_contrib_did.csv") -full_df <- read_csv("../final_data/deb_full_data.csv") -#preprocessing for readme_df -colnames(contributing_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new") -ages <- c() -projects <- c() -for (i in 1:nrow(contributing_df)){ -link <- contributing_df[i,]$upstream_vcs_link -age <- full_df$age_of_project[full_df$upstream_vcs_link == link] -project <- full_df$project_name[full_df$upstream_vcs_link == link] -ages <- c(ages, age) -if (length(project) != 1){ -project -break -} else { -projects <- c(projects, project) -} -} -contributing_df$age_of_project = ages -write.csv(contributing_df, "deb_contributing_data_4_19.csv", row.names=FALSE) -# 0 loading the readme data in -try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path))) -# 0 loading the readme data in -try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path))) -readme_df <- read_csv("../final_data/deb_readme_did.csv") -View(readme_df) -# 1 preprocessing -#colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new") -col_order <- c("upstream_vcs_link", "age_of_project", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new") -readme_df <- readme_df[,col_order] -readme_df$ct_before_all <- str_split(gsub("[][]","", readme_df$before_all_ct), ", ") -View(readme_df) -View(readme_df) -readme_df$ct_after_all <- str_split(gsub("[][]","", readme_df$after_all_ct), ", ") -readme_df$ct_before_mrg <- str_split(gsub("[][]","", readme_df$before_mrg_ct), ", ") -readme_df$ct_after_mrg <- str_split(gsub("[][]","", readme_df$after_mrg_ct), ", ") -drop <- c("before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct") -readme_df = readme_df[,!(names(readme_df) %in% drop)] -View(readme_df) -# 2 some expansion needs to happens for each project -expand_timeseries <- function(project_row) { -longer <- project_row |> -pivot_longer(cols = starts_with("ct"), names_to = "window", values_to = "count") |> unnest(count) @@ -510,3 +227,286 @@ poisson_all_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_pr summary(poisson_all_model) poisson_residuals <- residuals(poisson_all_model) qqnorm(poisson_residuals) +# this is the file with the lmer multi-level rddAnalysis +library(tidyverse) +library(plyr) +# 0 loading the readme data in +try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path))) +readme_df <- read_csv("../final_data/deb_readme_did.csv") +# 1 preprocessing +#colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new") +col_order <- c("upstream_vcs_link", "age_of_project", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new") +readme_df <- readme_df[,col_order] +readme_df$ct_before_all <- str_split(gsub("[][]","", readme_df$before_all_ct), ", ") +readme_df$ct_after_all <- str_split(gsub("[][]","", readme_df$after_all_ct), ", ") +readme_df$ct_before_mrg <- str_split(gsub("[][]","", readme_df$before_mrg_ct), ", ") +readme_df$ct_after_mrg <- str_split(gsub("[][]","", readme_df$after_mrg_ct), ", ") +drop <- c("before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct") +# 2 some expansion needs to happens for each project +expand_timeseries <- function(project_row) { +longer <- project_row |> +pivot_longer(cols = starts_with("ct"), +names_to = "window", +values_to = "count") |> +unnest(count) +longer$observation_type <- gsub("^.*_", "", longer$window) +longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type))) +longer$count <- as.numeric(longer$count) +#longer <- longer[which(longer$observation_type == "all"),] +return(longer) +} +expanded_data <- expand_timeseries(readme_df[1,]) +for (i in 2:nrow(readme_df)){ +expanded_data <- rbind(expanded_data, expand_timeseries(readme_df[i,])) +} +#filter out the windows of time that we're looking at +window_num <- 8 +expanded_data <- expanded_data |> +filter(week >= (26 - window_num) & week <= (26 + window_num)) |> +mutate(D = ifelse(week > 26, 1, 0)) +# this is the file with the lmer multi-level rddAnalysis +library(tidyverse) +library(plyr) +# 0 loading the readme data in +try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path))) +readme_df <- read_csv("../final_data/deb_readme_did.csv") +# 1 preprocessing +#colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new") +col_order <- c("upstream_vcs_link", "age_of_project", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new") +readme_df <- readme_df[,col_order] +readme_df$ct_before_all <- str_split(gsub("[][]","", readme_df$before_all_ct), ", ") +readme_df$ct_after_all <- str_split(gsub("[][]","", readme_df$after_all_ct), ", ") +readme_df$ct_before_mrg <- str_split(gsub("[][]","", readme_df$before_mrg_ct), ", ") +readme_df$ct_after_mrg <- str_split(gsub("[][]","", readme_df$after_mrg_ct), ", ") +drop <- c("before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct") +readme_df = readme_df[,!(names(readme_df) %in% drop)] +# 2 some expansion needs to happens for each project +expand_timeseries <- function(project_row) { +longer <- project_row |> +pivot_longer(cols = starts_with("ct"), +names_to = "window", +values_to = "count") |> +unnest(count) +longer$observation_type <- gsub("^.*_", "", longer$window) +longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type))) +longer$count <- as.numeric(longer$count) +#longer <- longer[which(longer$observation_type == "all"),] +return(longer) +} +expanded_data <- expand_timeseries(readme_df[1,]) +for (i in 2:nrow(readme_df)){ +expanded_data <- rbind(expanded_data, expand_timeseries(readme_df[i,])) +} +#filter out the windows of time that we're looking at +window_num <- 8 +windowed_data <- expanded_data |> +filter(week >= (26 - window_num) & week <= (26 + window_num)) |> +mutate(D = ifelse(week > 26, 1, 0)) +#scale the age numbers +windowed_data$scaled_project_age <- scale(windowed_data$age_of_project) +#separate out the cleaning d +all_actions_data <- windowed_data[which(windowed_data$observation_type == "all"),] +mrg_actions_data <- windowed_data[which(windowed_data$observation_type == "mrg"),] +#if I'm reading the residuals right, the poisson is better? +poisson_all_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (1 + D |upstream_vcs_link), data=all_actions_data, family = poisson(link = "log")) +# 3 rdd in lmer analysis +# rdd: https://rpubs.com/phle/r_tutorial_regression_discontinuity_design +# lmer: https://www.youtube.com/watch?v=LzAwEKrn2Mc +library(lme4) +#if I'm reading the residuals right, the poisson is better? +poisson_all_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (1 + D |upstream_vcs_link), data=all_actions_data, family = poisson(link = "log")) +summary(poisson_all_model) +#logistic regression mixed effects +log_all_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (1 + D |upstream_vcs_link),data=all_actions_data, family = binomial) +#if I'm reading the residuals right, the poisson is better? +poisson_all_model <- glmer(scale(count) ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (1 + D |upstream_vcs_link), data=all_actions_data, family = poisson(link = "log")) +#if I'm reading the residuals right, the poisson is better? +poisson_all_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (1 + D |upstream_vcs_link), data=all_actions_data, family = poisson(link = "log")) +#if I'm reading the residuals right, the poisson is better? +poisson_all_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (1 + D |upstream_vcs_link), data=all_actions_data, family = poisson(link = "log"), control=glmerControl(optimizer="bobyqa")) +#logistic regression mixed effects +log_all_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (1 + D |upstream_vcs_link),data=all_actions_data, family = binomial) +qqnorm(poisson_residuals) +summary(poisson_all_model) +poisson_residuals <- residuals(poisson_all_model) +qqnorm(poisson_residuals) +#logistic regression mixed effects (doesn't work) +log_all_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (1 + upstream_vcs_link |upstream_vcs_link),data=all_actions_data, family = binomial) +#logistic regression mixed effects (doesn't work) +log_all_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (1 + D |upstream_vcs_link),data=all_actions_data, family = binomial) +#if I'm reading the residuals right, the poisson is better? +poisson_all_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (1 + upstream_vcs_link |upstream_vcs_link), data=all_actions_data, family = poisson(link = "log")) +#if I'm reading the residuals right, the poisson is better? +poisson_all_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (1 + D |upstream_vcs_link), data=all_actions_data, family = poisson(link = "log")) +#if I'm reading the residuals right, the poisson is better? +poisson_all_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (D ||upstream_vcs_link), data=all_actions_data, family = poisson(link = "log")) +summary(poisson_all_model) +poisson_residuals <- residuals(poisson_all_model) +qqnorm(poisson_residuals) +lmer_all_model <- lmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (D ||upstream_vcs_link), REML=FALSE, data=all_actions_data) +summary(lmer_all_model) +lmer_residuals <- residuals(lmer_all_model) +qqnorm(lmer_residuals) +#if I'm reading the residuals right, the poisson is better? +poisson_all_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (D ||upstream_vcs_link), data=all_actions_data, family = poisson(link = "log")) +summary(poisson_all_model) +poisson_residuals <- residuals(poisson_all_model) +poisson_residuals <- residuals(poisson_all_model) +qqnorm(poisson_residuals) +#if I'm reading the residuals right, the poisson is better? +poisson_all_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (D |upstream_vcs_link), data=all_actions_data, family = poisson(link = "log")) +summary(poisson_all_model) +# this is the file with the lmer multi-level rddAnalysis +library(tidyverse) +library(plyr) +# 0 loading the readme data in +try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path))) +readme_df <- read_csv("../final_data/deb_readme_did.csv") +# 1 preprocessing +#colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new") +col_order <- c("upstream_vcs_link", "age_of_project", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new") +readme_df <- readme_df[,col_order] +readme_df$ct_before_all <- str_split(gsub("[][]","", readme_df$before_all_ct), ", ") +readme_df$ct_after_all <- str_split(gsub("[][]","", readme_df$after_all_ct), ", ") +readme_df$ct_before_mrg <- str_split(gsub("[][]","", readme_df$before_mrg_ct), ", ") +readme_df$ct_after_mrg <- str_split(gsub("[][]","", readme_df$after_mrg_ct), ", ") +drop <- c("before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct") +readme_df = readme_df[,!(names(readme_df) %in% drop)] +# 2 some expansion needs to happens for each project +expand_timeseries <- function(project_row) { +longer <- project_row |> +pivot_longer(cols = starts_with("ct"), +names_to = "window", +values_to = "count") |> +unnest(count) +longer$observation_type <- gsub("^.*_", "", longer$window) +longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type))) +longer$count <- as.numeric(longer$count) +#longer <- longer[which(longer$observation_type == "all"),] +return(longer) +} +expanded_data <- expand_timeseries(readme_df[1,]) +for (i in 2:nrow(readme_df)){ +expanded_data <- rbind(expanded_data, expand_timeseries(readme_df[i,])) +} +#filter out the windows of time that we're looking at +window_num <- 8 +windowed_data <- expanded_data |> +filter(week >= (26 - window_num) & week <= (26 + window_num)) |> +mutate(D = ifelse(week > 26, 1, 0)) +#scale the age numbers +windowed_data$scaled_project_age <- scale(windowed_data$age_of_project) +#separate out the cleaning d +all_actions_data <- windowed_data[which(windowed_data$observation_type == "all"),] +mrg_actions_data <- windowed_data[which(windowed_data$observation_type == "mrg"),] +#if I'm reading the residuals right, the poisson is better? +# there's a conversation to be had between whether (D |upstream_vcs_link) or (D || upstream_vcs_link) +# https://www.bristol.ac.uk/cmm/learning/videos/random-intercepts.html#exvar +poisson_all_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (D |upstream_vcs_link), data=all_actions_data, family = poisson(link = "log")) +summary(poisson_all_model) +poisson_test_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (1 + D |upstream_vcs_link), data=all_actions_data, family = poisson(link = "log")) +summary(poisson_test_model) +summary(poisson_all_model) +summary(poisson_test_model) +poisson_test_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (D ||upstream_vcs_link), data=all_actions_data, family = poisson(link = "log")) +summary(poisson_test_model) +summary(poisson_all_model) +summary(poisson_test_model) +summary(poisson_all_model) +summary(poisson_test_model) +poisson_testing_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (1 | upstream_vcs_link) + (0 + D |upstream_vcs_link), data=all_actions_data, family = poisson(link = "log")) +summary(poisson_testing_model) +#| label: packages +#| echo: true +library(tidyverse) +library(tidytext) +library(textdata) +library(textstem) +library(tidymodels) +#| label: packages +#| echo: true +library(tidyverse) +library(tidytext) +library(textdata) +library(textstem) +library(tidymodels) +#| label: data 1 +#| echo: true +#| +reviews_df <- read_csv("data/rotten_tomatoes_critic_reviews.csv") +reviews_df |> head(2) |> kableExtra::kable() +summary(poisson_test_model) +summary(poisson_all_model) +summary(poisson_all_model) +summary(poisson_test_model) +#if I'm reading the residuals right, the poisson is better? +# there's a conversation to be had between whether (D |upstream_vcs_link) or (D || upstream_vcs_link) +# https://www.bristol.ac.uk/cmm/learning/videos/random-intercepts.html#exvar +poisson_all_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (week |upstream_vcs_link), data=all_actions_data, family = poisson(link = "log")) +summary(poisson_all_model) +poisson_residuals <- residuals(poisson_all_model) +qqnorm(poisson_residuals) +poisson_test_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (week ||upstream_vcs_link), data=all_actions_data, family = poisson(link = "log")) +summary(poisson_test_model) +summary(poisson_all_model) +# https://www.bristol.ac.uk/cmm/learning/videos/random-intercepts.html#exvar +poisson_all_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (1 + week |upstream_vcs_link), data=all_actions_data, family = poisson(link = "log")) +summary(poisson_all_model) +poisson_residuals <- residuals(poisson_all_model) +qqnorm(poisson_residuals) +# https://www.bristol.ac.uk/cmm/learning/videos/random-intercepts.html#exvar +poisson_all_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (week |upstream_vcs_link), data=all_actions_data, family = poisson(link = "log")) +summary(poisson_all_model) +ICC(outcome="count", group="week", data=all_actions_data) +library(merTools) +ICC(outcome="count", group="week", data=all_actions_data) +# this is the file with the lmer multi-level rddAnalysis +library(tidyverse) +library(plyr) +# 0 loading the readme data in +try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path))) +readme_df <- read_csv("../final_data/deb_readme_did.csv") +# 1 preprocessing +#colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new") +col_order <- c("upstream_vcs_link", "age_of_project", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new") +readme_df <- readme_df[,col_order] +readme_df$ct_before_all <- str_split(gsub("[][]","", readme_df$before_all_ct), ", ") +readme_df$ct_after_all <- str_split(gsub("[][]","", readme_df$after_all_ct), ", ") +readme_df$ct_before_mrg <- str_split(gsub("[][]","", readme_df$before_mrg_ct), ", ") +readme_df$ct_after_mrg <- str_split(gsub("[][]","", readme_df$after_mrg_ct), ", ") +drop <- c("before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct") +readme_df = readme_df[,!(names(readme_df) %in% drop)] +# 2 some expansion needs to happens for each project +expand_timeseries <- function(project_row) { +longer <- project_row |> +pivot_longer(cols = starts_with("ct"), +names_to = "window", +values_to = "count") |> +unnest(count) +longer$observation_type <- gsub("^.*_", "", longer$window) +longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type))) +longer$count <- as.numeric(longer$count) +#longer <- longer[which(longer$observation_type == "all"),] +return(longer) +} +expanded_data <- expand_timeseries(readme_df[1,]) +for (i in 2:nrow(readme_df)){ +expanded_data <- rbind(expanded_data, expand_timeseries(readme_df[i,])) +} +#filter out the windows of time that we're looking at +window_num <- 8 +windowed_data <- expanded_data |> +filter(week >= (26 - window_num) & week <= (26 + window_num)) |> +mutate(D = ifelse(week > 26, 1, 0)) +#scale the age numbers +windowed_data$scaled_project_age <- scale(windowed_data$age_of_project) +#separate out the cleaning d +all_actions_data <- windowed_data[which(windowed_data$observation_type == "all"),] +mrg_actions_data <- windowed_data[which(windowed_data$observation_type == "mrg"),] +# for visualization, may have to run model for each project and then identify top 5 projects for RDD graphs +# +# +poisson_mrg_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (week |upstream_vcs_link), data=mrg_actions_data, family = poisson(link = "log")) +summary(poisson_mrg_model) +poisson_mrg_residuals <- residuals(poisson_mrg_model) +qqnorm(poisson_mrg_residuals) diff --git a/R/didAnalysis.R b/R/readmeRDDAnalysis.R similarity index 89% rename from R/didAnalysis.R rename to R/readmeRDDAnalysis.R index 7fdd41a..33a8ae7 100644 --- a/R/didAnalysis.R +++ b/R/readmeRDDAnalysis.R @@ -53,18 +53,18 @@ qqplot(all_actions_data$count, y) # rdd: https://rpubs.com/phle/r_tutorial_regression_discontinuity_design # lmer: https://www.youtube.com/watch?v=LzAwEKrn2Mc library(lme4) -lmer_all_model <- lmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (D ||upstream_vcs_link), REML=FALSE, data=all_actions_data) -summary(lmer_all_model) -lmer_residuals <- residuals(lmer_all_model) -qqnorm(lmer_residuals) # https://www.bristol.ac.uk/cmm/learning/videos/random-intercepts.html#exvar poisson_all_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (week |upstream_vcs_link), data=all_actions_data, family = poisson(link = "log")) summary(poisson_all_model) poisson_residuals <- residuals(poisson_all_model) qqnorm(poisson_residuals) -# Performance: -draft_mrg_model <- lmer(count ~ D * I(week - 26) + scaled_project_age + (1 + D |upstream_vcs_link), REML=FALSE, data=mrg_actions_data) -summary(draft_mrg_model) +# for visualization, may have to run model for each project and then identify top 5 projects for RDD graphs +# +# +poisson_mrg_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (week |upstream_vcs_link), data=mrg_actions_data, family = poisson(link = "log")) +summary(poisson_mrg_model) +poisson_mrg_residuals <- residuals(poisson_mrg_model) +qqnorm(poisson_mrg_residuals) # Performance: library(merTools)