diff --git a/.DS_Store b/.DS_Store new file mode 100644 index 0000000..5008ddf Binary files /dev/null and b/.DS_Store differ diff --git a/R/.DS_Store b/R/.DS_Store new file mode 100644 index 0000000..5008ddf Binary files /dev/null and b/R/.DS_Store differ diff --git a/R/.Rhistory b/R/.Rhistory index 2fdc808..1940037 100644 --- a/R/.Rhistory +++ b/R/.Rhistory @@ -1,512 +1,512 @@ -data1$new_milestones <- as.numeric(data1$milestones > 0) + 1 -# (2) - Run the model on the pilot data -data1$formal.score <- data1$mmt / (data1$old_milestones/data1$age) -table(data1$milestones) -table(data1$old_milestones) -hist(data1$old_mmt, prob=TRUE) #inequality of participation -hist(data1$formal.score) -data1$new_mmt <- data1$mmt - 1 -hist(data1$new_mmt, prob=TRUE) -data1$new.age <- as.numeric(cut(data1$age/365, breaks=c(0,9,12,15,17), labels=c(1,2,3,4))) -data1$new.formal.score <- data1$mmt / (data1$new_milestones/data1$new.age) -hist(as.numeric(data1$new.age)) -hist(data1$formal.score) -hist(data1$new.formal.score) -fsmodel1 <- lm(up.fac.mean ~ formal.score, data=data1) -summary(kmodel1) -summary(fsmodel1) -kmodel3 <- lm(up.fac.mean ~ formal.score, data=data1) -# (2) - Run the model on the pilot data -data1$formal.score <- data1$mmt / (data1$old_milestones/data1$age) -table(data1$formal.score) -fsmodel1 <- lm(up.fac.mean ~ is.finite(formal.score), data=data1) -summary(fsmodel1) -fsmodel2 <- lm(up.fac.mean ~ new.formal.score, data=data1) -summary(kmodel2) -summary(fsmodel2) -mmtmodel1 <- lm(up.fac.mean ~ mmt, data=data1) -summary(mmtmodel1) -agemodel1 <- lm(up.fac.mean ~ new.age, data=data1) -summary(agemodel1) -msmodel1 <- lm(up.fac.mean ~ old_milestones, data=data1) -summary(msmodel1) -msmodel2 <- lm(up.fac.mean ~ new_milestones, data=data1) -summary(msmodel2) -texreg(list(m1,m2,m3,m4), omit.coef = 'factor', stars=NULL, digits=2, -custom.model.names=c('M1: no lang/network measures', 'M2: No language measures', 'M3: No network measures', 'M4: Full model'), -custom.coef.names=c('(Intercept)', 'Package Age (years)', 'Uploader Count', 'Did maintainer change?', 'Team proportion', 'Eigenvector Centrality', 'Betweenness Centrality', 'Mean Language Age', 'Package Age : Mean Language Age'), -use.packages=FALSE, table=FALSE, ci.force = TRUE) -install.packages(textref) -install.packages(textreg) -library(textreg) -install.packages("textreg_0.1.tar.gz", repos = NULL, type="source") -install.packages("textreg_0.1.tar.gz", repos = NULL, type="source") -install.packages("textreg_0.1.5.tar.gz", repos = NULL, type="source") -import.packages(tm) -import.package(tm) -import.package("tm") -install.package("tm") -install.packages("tm") -install.packages("nlp") -yes -install.packages("textreg_0.1.5.tar.gz", repos = NULL, type="source") -library(textreg) -texreg(list(m1,m2,m3,m4), omit.coef = 'factor', stars=NULL, digits=2, -custom.model.names=c('M1: no lang/network measures', 'M2: No language measures', 'M3: No network measures', 'M4: Full model'), -custom.coef.names=c('(Intercept)', 'Package Age (years)', 'Uploader Count', 'Did maintainer change?', 'Team proportion', 'Eigenvector Centrality', 'Betweenness Centrality', 'Mean Language Age', 'Package Age : Mean Language Age'), -use.packages=FALSE, table=FALSE, ci.force = TRUE) -textreg(list(m1,m2,m3,m4), omit.coef = 'factor', stars=NULL, digits=2, -custom.model.names=c('M1: no lang/network measures', 'M2: No language measures', 'M3: No network measures', 'M4: Full model'), -custom.coef.names=c('(Intercept)', 'Package Age (years)', 'Uploader Count', 'Did maintainer change?', 'Team proportion', 'Eigenvector Centrality', 'Betweenness Centrality', 'Mean Language Age', 'Package Age : Mean Language Age'), -use.packages=FALSE, table=FALSE, ci.force = TRUE) -textreg(list(fsmodel1,fsmodel2), omit.coef = 'factor', stars=NULL, digits=2, -custom.model.names=c('M1: original formality score', 'M2: augmented formality score'), -custom.coef.names=c('(Intercept)', 'Package Age (years)', 'Uploader Count', 'Did maintainer change?', 'Team proportion', 'Eigenvector Centrality', 'Betweenness Centrality', 'Mean Language Age', 'Package Age : Mean Language Age'), -use.packages=FALSE, table=FALSE, ci.force = TRUE) -coeff(fsmodel1) -coef(fsmodel1) -textreg(list(fsmodel1,fsmodel2), omit.coef = 'factor', stars=NULL, digits=2, -custom.model.names=c('M1: original formality score', 'M2: augmented formality score'), -custom.coef.names=c('(Intercept)', 'Package Age (years)'), -use.packages=FALSE, table=FALSE, ci.force = TRUE) -coef(fsmodel2) -textreg(list(fsmodel1,fsmodel2), stars=NULL, digits=2, -custom.model.names=c('M1: original formality score', 'M2: augmented formality score'), -custom.coef.names=c('(Intercept)', 'Package Age (years)'), -use.packages=FALSE, table=FALSE, ci.force = TRUE) -textreg(list(fsmodel1,fsmodel2), stars=NULL, digits=2, -custom.model.names=c('M1: original formality score', 'M2: augmented formality score'), -custom.coef.names=c('(Intercept)', 'Package Age (years)'), -use.packages=FALSE, table=FALSE, ci.force = TRUE) -texreg(list(fsmodel1,fsmodel2), stars=NULL, digits=2, -custom.model.names=c('M1: original formality score', 'M2: augmented formality score'), -custom.coef.names=c('(Intercept)', 'Package Age (years)'), -use.packages=FALSE, table=FALSE, ci.force = TRUE) -install.packages(texreg) -install.packages("texreg_1.39.3.tar.gz", repos = NULL, type="source") -library(texreg) -texreg(list(fsmodel1,fsmodel2), omit.coef = 'factor', stars=NULL, digits=2, -custom.model.names=c('M1: original formality score', 'M2: augmented formality score'), -custom.coef.names=c('(Intercept)', 'Package Age (years)'), -use.packages=FALSE, table=FALSE, ci.force = TRUE) -texreg(list(fsmodel1,fsmodel2), omit.coef = 'factor', stars=NULL, digits=2, -custom.model.names=c('M1: original formality score', 'M2: augmented formality score'), -custom.coef.names=c('(Intercept)', 'Package Age (years)', 'test'), -use.packages=FALSE, table=FALSE, ci.force = TRUE) -texreg(list(fsmodel1,fsmodel2, mmtmodel1, msmodel1, msmodel2, agemodel1), omit.coef = 'factor', stars=NULL, digits=2, -custom.model.names=c('M1: original formality score', 'M2: augmented formality score', 'M3: original milestones', 'M4: binomial milestones', 'M5: age (grouped)' ), -custom.coef.names=c('(Intercept)', 'Package Age (years)', 'test'), -use.packages=FALSE, table=FALSE, ci.force = TRUE) -texreg(list(fsmodel1,fsmodel2, mmtmodel1, msmodel1, msmodel2, agemodel1), omit.coef = 'factor', stars=NULL, digits=2, -custom.model.names=c('M1: original formality score', 'M2: augmented formality score', 'M3: original milestones', 'M4: binomial milestones', 'M5: age (grouped)' ), -custom.coef.names=c('(Intercept)', 'Package Age (years)', 'test', 'test', 'test', 'test', 'test', ), -use.packages=FALSE, table=FALSE, ci.force = TRUE) -texreg(list(fsmodel1,fsmodel2, mmtmodel1, msmodel1, msmodel2, agemodel1), omit.coef = 'factor', stars=NULL, digits=2, -custom.model.names=c('M1: original formality score', 'M2: augmented formality score', 'M3: original milestones', 'M4: binomial milestones', 'M5: age (grouped)' ), -custom.coef.names=c('(Intercept)', 'Package Age (years)', 'test', 'test', 'test', 'test', 'test' ), -use.packages=FALSE, table=FALSE, ci.force = TRUE) -texreg(list(fsmodel1,fsmodel2, mmtmodel1, msmodel1, msmodel2, agemodel1), omit.coef = 'factor', stars=NULL, digits=2, -custom.model.names=c('M1: original formality score', 'M2: augmented formality score','M3: MMT', 'M4: original milestones', 'M5: binomial milestones', 'M6: age (grouped)' ), -custom.coef.names=c('(Intercept)', 'Package Age (years)', 'test', 'test', 'test', 'test', 'test' ), -use.packages=FALSE, table=FALSE, ci.force = TRUE) -texreg(list(fsmodel1,fsmodel2, mmtmodel1, msmodel1, msmodel2, agemodel1), omit.coef = 'factor', stars=NULL, digits=2, -custom.model.names=c('M1: original formality score', 'M2: augmented formality score','M3: MMT', 'M4: original milestones', 'M5: binomial milestones', 'M6: age (grouped)' ), -custom.coef.names=c('(Intercept)', 'Package Age (years)', 'Relationship to Underproduction', 'test', 'test', 'test', 'test' ), -use.packages=FALSE, table=FALSE, ci.force = TRUE) -texreg(list(fsmodel1,fsmodel2, mmtmodel1, msmodel1, agemodel1), omit.coef = 'factor', stars=NULL, digits=2, -custom.model.names=c('M1: original formality score', 'M2: augmented formality score','M3: MMT', 'M4: original milestones', 'M6: age (grouped)' ), -custom.coef.names=c('Original formality relationship to underproduction', 'Augmented formality relationship to Underproduction', 'MMT relationship to underproduction', 'milestone usage relationship to underproduction', 'age group relationship to underproduction' ), -use.packages=FALSE, table=FALSE, ci.force = TRUE) -texreg(list(fsmodel1,fsmodel2, mmtmodel1, msmodel1, agemodel1), omit.coef = 'factor', stars=NULL, digits=2, -custom.model.names=c('M1: original formality score', 'M2: augmented formality score','M3: MMT', 'M4: original milestones', 'M6: age (grouped)' ), -custom.coef.names=c('Original formality relationship to underproduction', 'Augmented formality relationship to Underproduction', 'MMT relationship to underproduction', 'milestone usage relationship to underproduction', 'age group relationship to underproduction', 'test' ), -use.packages=FALSE, table=FALSE, ci.force = TRUE) -texreg(list(fsmodel1,fsmodel2, mmtmodel1, msmodel1, agemodel1), omit.coef = 'factor', stars=NULL, digits=2, -custom.model.names=c('M1: original formality score', 'M2: augmented formality score','M3: MMT', 'M4: original milestones', 'M6: age (grouped)' ), -custom.coef.names=c('(Intercept)', 'Original formality relationship to underproduction', 'Augmented formality relationship to Underproduction', 'MMT relationship to underproduction', 'Milestone usage relationship to underproduction', 'Age group relationship to underproduction'), -use.packages=FALSE, table=FALSE, ci.force = TRUE) -data5 <- subset(data1, is.finite(data1$formal.score)) -fsmodel1 <- lm(up.fac.mean ~ formal.score, data=data5) -summary(fsmodel1) -texreg(list(fsmodel1,fsmodel2, mmtmodel1, msmodel1, agemodel1), omit.coef = 'factor', stars=NULL, digits=2, -custom.model.names=c('M1: original formality score', 'M2: augmented formality score','M3: MMT', 'M4: original milestones', 'M6: age (grouped)' ), -custom.coef.names=c('(Intercept)', 'Original formality relationship to underproduction', 'Augmented formality relationship to Underproduction', 'MMT relationship to underproduction', 'Milestone usage relationship to underproduction', 'Age group relationship to underproduction'), -use.packages=FALSE, table=FALSE, ci.force = TRUE) -texreg(list(fsmodel1,fsmodel2, mmtmodel1, msmodel1, agemodel1), omit.coef = 'factor', stars=NULL, digits=2, -custom.model.names=c('M1: orig. formality', 'M2: augm. formality','M3: MMT', 'M4: milestones', 'M6: age (grouped)' ), -custom.coef.names=c('(Intercept)', 'Original formality/underproduction', 'Augmented formality/Underproduction', 'MMT/underproduction', 'Milestones / underproduction', 'Age/underproduction'), -use.packages=FALSE, table=FALSE, ci.force = TRUE) -texreg(list(fsmodel1,fsmodel2, mmtmodel1, msmodel1, agemodel1), omit.coef = 'factor', stars=NULL, digits=2, -custom.model.names=c('M1: orig. formality', 'M2: augm. formality','M3: MMT', 'M4: milestones', 'M5: age (grouped)' ), -custom.coef.names=c('(Intercept)', 'Original formality', 'Augmented formality', 'MMT', 'Milestones', 'Age'), -use.packages=FALSE, table=FALSE, ci.force = TRUE) -texreg(list(fsmodel2, mmtmodel1, msmodel1, agemodel1), omit.coef = 'factor', stars=NULL, digits=2, -custom.model.names=c( 'M1: augm. formality','M2: MMT', 'M3: milestones', 'M4: age (grouped)' ), -custom.coef.names=c('(Intercept)', 'Original formality', 'Augmented formality', 'MMT', 'Milestones', 'Age'), -use.packages=FALSE, table=FALSE, ci.force = TRUE) -texreg(list(fsmodel2, mmtmodel1, msmodel1, agemodel1), omit.coef = 'factor', stars=NULL, digits=2, -custom.model.names=c( 'M1: augm. formality','M2: MMT', 'M3: milestones', 'M4: age (grouped)' ), -custom.coef.names=c('(Intercept)', 'Augmented formality', 'MMT', 'Milestones', 'Age'), -use.packages=FALSE, table=FALSE, ci.force = TRUE) -#Sample values -powerCheck(300, 1000) -source('powerAnalysis.R') #my little "lib" -#Sample values -powerCheck(300, 1000) -powerCheck(200, 1000) -powerCheck(250, 1000) -powerCheck(275, 5000) -powerCheck(275, 1000) -source('powerAnalysis.R') #my little "lib" -#Sample values -powerCheck(300, 1000) -powerCheck(275, 1000) -powerCheck(500, 1000) -powerCheck(700, 1000) -powerCheck(7000, 1000) -fsmodel2 <- lm(up.fac.mean ~ new.formal.score + as.factor(new.age), data=data1) -summary(fsmodel2) -mmtmodel1 <- lm(up.fac.mean ~ mmt + as.factor(new.age), data=data1) -summary(mmtmodel1) -mmtmodel1 <- lm(up.fac.mean ~ mmt + as.factor(age), data=data1) -summary(mmtmodel1) -mmtmodel1 <- lm(up.fac.mean ~ mmt + as.factor(new.age), data=data1) -summary(mmtmodel1) -msmodel1 <- lm(up.fac.mean ~ old_milestones + as.factor(new.age), data=data1) -summary(msmodel1) -fsmodel2 <- lm(up.fac.mean ~ new.formal.score + as.factor(new.age), data=data1) -summary(fsmodel2) -texreg(list(fsmodel2, mmtmodel1, msmodel1, agemodel1), omit.coef = 'factor', stars=NULL, digits=2, -custom.model.names=c( 'M1: augm. formality','M2: MMT', 'M3: milestones' ), -custom.coef.names=c('(Intercept)', 'Augmented formality', 'MMT', 'Milestones'), -use.packages=FALSE, table=FALSE, ci.force = TRUE) -texreg(list(fsmodel2, mmtmodel1, msmodel1, agemodel1), omit.coef = 'factor', stars=NULL, digits=2, -custom.model.names=c( 'M1: augm. formality','M2: MMT', 'M3: milestones' ), -custom.coef.names=c('(Intercept)', 'Augmented formality', 'MMT', 'Milestones', 'test'), -use.packages=FALSE, table=FALSE, ci.force = TRUE) -texreg(list(fsmodel2, mmtmodel1, msmodel1), omit.coef = 'factor', stars=NULL, digits=2, -custom.model.names=c( 'M1: augm. formality','M2: MMT', 'M3: milestones' ), -custom.coef.names=c('(Intercept)', 'Augmented formality', 'MMT', 'Milestones', 'test'), -use.packages=FALSE, table=FALSE, ci.force = TRUE) -texreg(list(fsmodel2, mmtmodel1, msmodel1), omit.coef = 'factor', stars=NULL, digits=2, -custom.model.names=c( 'M1: augm. formality','M2: MMT', 'M3: milestones' ), -custom.coef.names=c('(Intercept)', 'Augmented formality', 'MMT', 'Milestones'), -use.packages=FALSE, table=FALSE, ci.force = TRUE) -source('powerAnalysis.R') #my little "lib" -powerCheck(250, 1000) -powerCheck(275, 1000) -#Sample values -powerCheck(300, 1000) -summary(mmtmodel1) -texreg(list(fsmodel2, mmtmodel1, msmodel1), stars=NULL, digits=2, -custom.model.names=c( 'M1: augm. formality','M2: MMT', 'M3: milestones' ), -custom.coef.names=c('(Intercept)', 'Augmented formality', 'MMT', 'Milestones'), -use.packages=FALSE, table=FALSE, ci.force = TRUE) -texreg(list(fsmodel2, mmtmodel1, msmodel1), stars=NULL, digits=2, -custom.model.names=c( 'M1: augm. formality','M2: MMT', 'M3: milestones' ), -custom.coef.names=c('(Intercept)', 'Augmented formality', 'MMT', 'Milestones', 'age 2', 'age 3', 'age 4'), -use.packages=FALSE, table=FALSE, ci.force = TRUE) -mmtmodel1 <- lm(up.fac.mean ~ mmt + as.factor(new.age), data=data1) -msmodel1 <- lm(up.fac.mean ~ old_milestones + as.factor(new.age), data=data1) -fsmodel2 <- lm(up.fac.mean ~ new.formal.score, data=data1) -texreg(list(fsmodel2, mmtmodel1, msmodel1), stars=NULL, digits=2, -custom.model.names=c( 'M1: augm. formality','M2: MMT', 'M3: milestones' ), -custom.coef.names=c('(Intercept)', 'Augmented formality', 'MMT', 'Milestones', 'age 2', 'age 3', 'age 4'), -use.packages=FALSE, table=FALSE, ci.force = TRUE) -texreg(list(fsmodel2, mmtmodel1, msmodel1), stars=NULL, digits=2, -custom.model.names=c( 'M1: augm. formality','M2: MMT', 'M3: milestones' ), -custom.coef.names=c('(Intercept)', 'Augmented formality', 'MMT', 'age 2', 'age 3', 'age 4', 'Milestones'), -use.packages=FALSE, table=FALSE, ci.force = TRUE) -summary(msmodel1) -texreg(list(fsmodel2, mmtmodel1, msmodel1), stars=NULL, digits=2, -custom.model.names=c( 'M1: augm. formality','M2: MMT', 'M3: milestones' ), -custom.coef.names=c('(Intercept)', 'Augmented formality', 'MMT', 'Age-2', 'Age-3', 'Age-4', 'Milestones'), -use.packages=FALSE, table=FALSE, ci.force = TRUE) +scale_colour_manual(values=legend) +g g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + geom_point() + -aes(x=mmt, y=up.fac.mean, color=new.age)+ -geom_smooth() + -xlab("MMT") + -ylab("Underproduction Factor") + +geom_abline(aes(intercept=1.65, slope=-1.38, colour = "0-9y"), size=1)+ +geom_abline(aes(intercept=1.65, slope=-1.31, colour = "9-12y"), size=1)+ +geom_abline(aes(intercept=1.65, slope=-0.78, colour = "12-15y"), size=1)+ +geom_abline(aes(intercept=1.65, slope=-0.23, colour = "15-16y"), size=1)+ +labs(x="MMT", y="Mean Underproduction Factor", colour="Project Age Group") + +scale_colour_manual(values=legend) +g +g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + +geom_point() + +geom_abline(aes(intercept=1.65, slope=-1.38),colour = "#E69F00", size=1)+ +geom_abline(aes(intercept=1.65, slope=-1.31), colour = "#56B4E9", size=1)+ +geom_abline(aes(intercept=1.65, slope=-0.78), colour = "#D55E00", size=1)+ +geom_abline(aes(intercept=1.65, slope=-0.23) , colour = "#CC79A7", size=1)+ +labs(x="MMT", y="Mean Underproduction Factor", color="Project Age Group") + +scale_colour_manual(values=legend) +g +g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + +geom_point() + +geom_abline(aes(intercept=1.65, slope=-1.38),colour = "#E69F00", size=1)+ +geom_abline(aes(intercept=1.65, slope=-1.31), colour = "#56B4E9", size=1)+ +geom_abline(aes(intercept=1.65, slope=-0.78), colour = "#D55E00", size=1)+ +geom_abline(aes(intercept=1.65, slope=-0.23) , colour = "#CC79A7", size=1)+ +labs(x="MMT", y="Mean Underproduction Factor", colour="Project Age Group") + +scale_colour_manual(values=legend) +g +colors <- c("0-9y":"#E69F00","9-12y":"#56B4E9", "12-15y":"#D55E00","15-16y":"#CC79A7") +g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + +geom_point() + +geom_abline(aes(intercept=1.65, slope=-1.38),colour = "#E69F00", size=1)+ +geom_abline(aes(intercept=1.65, slope=-1.31), colour = "#56B4E9", size=1)+ +geom_abline(aes(intercept=1.65, slope=-0.78), colour = "#D55E00", size=1)+ +geom_abline(aes(intercept=1.65, slope=-0.23) , colour = "#CC79A7", size=1)+ +labs(x="MMT", y="Mean Underproduction Factor") + +scale_colour_manual(name="Project Age Group", values=c("0-9y"="#E69F00","9-12y"="#56B4E9", "12-15y"="#D55E00","15-16y"="#CC79A7")) +g +g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + +geom_point() + +geom_abline(aes(intercept=1.65, slope=-1.38),colour = "#E69F00", size=1)+ +geom_abline(aes(intercept=1.65, slope=-1.31), colour = "#56B4E9", size=1)+ +geom_abline(aes(intercept=1.65, slope=-0.78), colour = "#D55E00", size=1)+ +geom_abline(aes(intercept=1.65, slope=-0.23) , colour = "#CC79A7", size=1)+ +labs(x="MMT", y="Mean Underproduction Factor") + +scale_colour_manual(name="Project Age Group", values=c("0-9y"="#E69F00","9-12y"="#56B4E9", "12-15y"="#D55E00","15-16y"="#CC79A7")) +g +g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + +geom_point() + +geom_abline(aes(intercept=1.65, slope=-1.38, colour=new.age.factor), size=1)+ +geom_abline(aes(intercept=1.65, slope=-1.38),colour = "#E69F00", size=1)+ +geom_abline(aes(intercept=1.65, slope=-1.31), colour = "#56B4E9", size=1)+ +geom_abline(aes(intercept=1.65, slope=-0.78), colour = "#D55E00", size=1)+ +geom_abline(aes(intercept=1.65, slope=-0.23) , colour = "#CC79A7", size=1)+ +labs(x="MMT", y="Mean Underproduction Factor") + +scale_colour_manual(name="Project Age Group", values=c("0-9y"="#E69F00","9-12y"="#56B4E9", "12-15y"="#D55E00","15-16y"="#CC79A7")) +g +data2 <- subset(data1, (data1$age / 365) < 14 ) +g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + +geom_point() + +geom_abline(aes(intercept=1.65, slope=-1.5, colour=new.age.factor), size=1)+ +geom_abline(aes(intercept=1.65, slope=-1.38),colour = "#E69F00", size=1)+ +geom_abline(aes(intercept=1.65, slope=-1.31), colour = "#56B4E9", size=1)+ +geom_abline(aes(intercept=1.65, slope=-0.78), colour = "#D55E00", size=1)+ +geom_abline(aes(intercept=1.65, slope=-0.23) , colour = "#CC79A7", size=1)+ +labs(x="MMT", y="Mean Underproduction Factor") + +scale_colour_manual(name="Project Age Group", values=c("0-9y"="#E69F00","9-12y"="#56B4E9", "12-15y"="#D55E00","15-16y"="#CC79A7")) +g +g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + +geom_point() + +geom_abline(aes(intercept=1.65, slope=-1.5, colour=new.age.factor), size=1)+ +geom_abline(aes(intercept=1.65, slope=-1.7, colour=new.age.factor), size=1)+ +geom_abline(aes(intercept=1.65, slope=-1.38),colour = "#E69F00", size=1)+ +geom_abline(aes(intercept=1.65, slope=-1.31), colour = "#56B4E9", size=1)+ +geom_abline(aes(intercept=1.65, slope=-0.78), colour = "#D55E00", size=1)+ +geom_abline(aes(intercept=1.65, slope=-0.23) , colour = "#CC79A7", size=1)+ +labs(x="MMT", y="Mean Underproduction Factor") + +scale_colour_manual(name="Project Age Group", values=c("0-9y"="#E69F00","9-12y"="#56B4E9", "12-15y"="#D55E00","15-16y"="#CC79A7")) +g +g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + +geom_point() + +geom_abline(aes(intercept=1.65, slope=-1.38),colour = "#E69F00", size=1)+ +geom_abline(aes(intercept=1.65, slope=-1.31), colour = "#56B4E9", size=1)+ +geom_abline(aes(intercept=1.65, slope=-0.78), colour = "#D55E00", size=1)+ +geom_abline(aes(intercept=1.65, slope=-0.23) , colour = "#CC79A7", size=1)+ +labs(x="MMT", y="Mean Underproduction Factor") + +scale_colour_manual(name="Project Age Group", values=c("0-9y"="#E69F00","9-12y"="#56B4E9", "12-15y"="#D55E00","15-16y"="#CC79A7")) +g +g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + +geom_point() + +geom_abline(aes(intercept=1.65, slope=-1.38),colour = "#E69F00", size=2)+ +geom_abline(aes(intercept=1.65, slope=-1.31), colour = "#56B4E9", size=1)+ +geom_abline(aes(intercept=1.65, slope=-0.78), colour = "#D55E00", size=1)+ +geom_abline(aes(intercept=1.65, slope=-0.23) , colour = "#CC79A7", size=1)+ +labs(x="MMT", y="Mean Underproduction Factor") + +scale_colour_manual(name="Project Age Group", values=c("0-9y"="#E69F00","9-12y"="#56B4E9", "12-15y"="#D55E00","15-16y"="#CC79A7")) +g +g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + +geom_point() + +geom_abline(aes(intercept=1.65, slope=-1.38),colour = "#E69F00", size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-1.31), colour = "#56B4E9", size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.78), colour = "#D55E00", size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.23) , colour = "#CC79A7", size=1.5)+ +labs(x="MMT", y="Mean Underproduction Factor") + +scale_colour_manual(name="Project Age Group", values=c("0-9y"="#E69F00","9-12y"="#56B4E9", "12-15y"="#D55E00","15-16y"="#CC79A7")) +g +colors <- c("0-9y"="#E69F00","9-12y":"#56B4E9", "12-15y":"#D55E00","15-16y":"#CC79A7") +g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + +geom_point() + +geom_abline(aes(intercept=1.65, slope=-1.38, color="0-9y"), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-1.31, color="9-12y"), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.78, color="12-15y" ), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.23, color="15-16y") , size=1.5)+ +labs(x="MMT", y="Mean Underproduction Factor") + +scale_colour_manual(values=colors_legend) +g +#colors <- c("0-9y"="#E69F00","9-12y":"#56B4E9", "12-15y":"#D55E00","15-16y":"#CC79A7") +colors_legend <- c("0-9y"="red","9-12y":"green", "12-15y":"blue","15-16y":"orange") +g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + +geom_point() + +geom_abline(aes(intercept=1.65, slope=-1.38, color="0-9y"), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-1.31, color="9-12y"), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.78, color="12-15y" ), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.23, color="15-16y") , size=1.5)+ +labs(x="MMT", y="Mean Underproduction Factor") + +scale_colour_manual(values=colors_legend) +#colors <- c("0-9y"="#E69F00","9-12y":"#56B4E9", "12-15y":"#D55E00","15-16y":"#CC79A7") +colors_legend <- c("0-9y"="red","9-12y":"green", "12-15y":"blue","15-16y":"orange") +#colors <- c("0-9y"="#E69F00","9-12y":"#56B4E9", "12-15y":"#D55E00","15-16y":"#CC79A7") +colors_legend <- c("0-9y"="red","9-12y"="green", "12-15y"="blue","15-16y"="orange") +g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + +geom_point() + +geom_abline(aes(intercept=1.65, slope=-1.38, color="0-9y"), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-1.31, color="9-12y"), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.78, color="12-15y" ), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.23, color="15-16y") , size=1.5)+ +labs(x="MMT", y="Mean Underproduction Factor") + +scale_colour_manual(values=colors_legend) +g +colors_legend <- c("0-9y"="#E69F00","9-12y":"#56B4E9", "12-15y":"#D55E00","15-16y":"#CC79A7") +#colors_legend <- c("0-9y"="red","9-12y"="green", "12-15y"="blue","15-16y"="orange") +g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + +geom_point() + +geom_abline(aes(intercept=1.65, slope=-1.38, color="0-9y"), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-1.31, color="9-12y"), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.78, color="12-15y" ), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.23, color="15-16y") , size=1.5)+ +labs(x="MMT", y="Mean Underproduction Factor") + +scale_colour_manual(values=colors_legend) +g +colors_legend <- c("0-9y"="#E69F00","9-12y":"#56B4E9", "12-15y":"#D55E00","15-16y":"#CC79A7") +colors_legend <- c("0-9y"="#E69F00","9-12y"="#56B4E9", "12-15y"="#D55E00","15-16y"="#CC79A7") +#colors_legend <- c("0-9y"="red","9-12y"="green", "12-15y"="blue","15-16y"="orange") +g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + +geom_point() + +geom_abline(aes(intercept=1.65, slope=-1.38, color="0-9y"), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-1.31, color="9-12y"), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.78, color="12-15y" ), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.23, color="15-16y") , size=1.5)+ +labs(x="MMT", y="Mean Underproduction Factor") + +scale_colour_manual(values=colors_legend) +g +#colors_legend <- c("0-9y"="red","9-12y"="green", "12-15y"="blue","15-16y"="orange") +g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + +geom_point() + +geom_abline(aes(intercept=1.65, slope=-1.38, color="0-9y"), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-1.31, color="9-12y"), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.78, color="12-15y" ), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.23, color="15-16y") , size=1.5)+ +labs(x="MMT", y="Mean Underproduction Factor", color = "Project Age Group") + +scale_colour_manual(values=colors_legend) +g +#colors_legend <- c("0-9y"="red","9-12y"="green", "12-15y"="blue","15-16y"="orange") +g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + +geom_point() + +geom_abline(aes(intercept=1.65, slope=-1.38, color="0-9y"), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-1.31, color="9-12y"), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.78, color="12-15y" ), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.23, color="15-16y") , size=1.5)+ +labs(x="MMT", y="Mean Underproduction Factor", color = "Age Group") + +scale_colour_manual(values=colors_legend) +g +#colors_legend <- c("0-9y"="red","9-12y"="green", "12-15y"="blue","15-16y"="orange") +g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + +geom_point() + +geom_abline(aes(intercept=1.65, slope=-1.38, color="0-9y"), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-1.31, color="9-12y"), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.78, color="12-15y" ), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.23, color="15-16y") , size=1.5)+ +labs(x="MMT", y="Mean Underproduction Factor", color = "Age Group") + +scale_colour_manual(values=colors_legend, breaks = c("1", "2", "3", "4")) +g +#colors_legend <- c("0-9y"="red","9-12y"="green", "12-15y"="blue","15-16y"="orange") +g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + +geom_point() + +geom_abline(aes(intercept=1.65, slope=-1.38, color="0-9y"), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-1.31, color="9-12y"), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.78, color="12-15y" ), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.23, color="15-16y") , size=1.5)+ +labs(x="MMT", y="Mean Underproduction Factor", color = "Age Group") + +scale_colour_manual(values=colors_legend, breaks=c("1", "2", "3", "4")) +g +#colors_legend <- c("0-9y"="red","9-12y"="green", "12-15y"="blue","15-16y"="orange") +g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + +geom_point() + +geom_abline(aes(intercept=1.65, slope=-1.38, color=0), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-1.31, color=1), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.78, color=2 ), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.23, color=3) , size=1.5)+ +labs(x="MMT", y="Mean Underproduction Factor", color = "Age Group") + +scale_colour_manual(values=colors_legend) +g +#colors_legend <- c("0-9y"="red","9-12y"="green", "12-15y"="blue","15-16y"="orange") +g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + +geom_point() + +geom_abline(aes(intercept=1.65, slope=-1.38, color="a"), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-1.31, color="b"), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.78, color="c" ), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.23, color="d") , size=1.5)+ +labs(x="MMT", y="Mean Underproduction Factor", color = "Age Group") + +scale_colour_manual(values=colors_legend) +g +colors_legend <- c("a"="#E69F00","b"="#56B4E9", "c"="#D55E00","d"="#CC79A7") +#colors_legend <- c("0-9y"="red","9-12y"="green", "12-15y"="blue","15-16y"="orange") +g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + +geom_point() + +geom_abline(aes(intercept=1.65, slope=-1.38, color="a"), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-1.31, color="b"), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.78, color="c" ), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.23, color="d") , size=1.5)+ +labs(x="MMT", y="Mean Underproduction Factor", color = "Age Group") + +scale_colour_manual(values=colors_legend) +g +#colors_legend <- c("0-9y"="red","9-12y"="green", "12-15y"="blue","15-16y"="orange") +g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + +geom_point() + +geom_abline(aes(intercept=1.65, slope=-1.38, color="a"), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-1.31, color="b"), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.78, color="c" ), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.23, color="d") , size=1.5)+ +labs(x="MMT", y="Mean Underproduction Factor", color = "Age Group") + +scale_colour_manual(values=colors_legend, labels=c("0-9y", "9-12y", "12-15y","15-16y")) +g ++ theme(legend.position='bottom') +g +#colors_legend <- c("0-9y"="red","9-12y"="green", "12-15y"="blue","15-16y"="orange") +g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + +geom_point() + +geom_abline(aes(intercept=1.65, slope=-1.38, color="a"), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-1.31, color="b"), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.78, color="c" ), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.23, color="d") , size=1.5)+ +labs(x="MMT", y="Mean Underproduction Factor", color = "Age Group") + +scale_colour_manual(values=colors_legend, labels=c("0-9y", "9-12y", "12-15y","15-16y")) + +theme(legend.position='bottom') +g +#colors_legend <- c("0-9y"="red","9-12y"="green", "12-15y"="blue","15-16y"="orange") +g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + +geom_point() + +geom_abline(aes(intercept=1.65, slope=-1.38, color="a"), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-1.31, color="b"), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.78, color="c" ), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.23, color="d") , size=1.5)+ +labs(x="MMT", y="Mean Underproduction Factor", color = "Age Group") + +scale_colour_manual(values=colors_legend, labels=c("0-9y", "9-12y", "12-15y","15-16y")) + +theme(legend.position=c(0.95, 0.95)) +g +#colors_legend <- c("0-9y"="red","9-12y"="green", "12-15y"="blue","15-16y"="orange") +g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + +geom_point() + +geom_abline(aes(intercept=1.65, slope=-1.38, color="a"), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-1.31, color="b"), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.78, color="c" ), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.23, color="d") , size=1.5)+ +labs(x="MMT", y="Mean Underproduction Factor", color = "Age Group") + +scale_colour_manual(values=colors_legend, labels=c("0-9y", "9-12y", "12-15y","15-16y")) + +theme(legend.position=c(1, -5)) +g +#colors_legend <- c("0-9y"="red","9-12y"="green", "12-15y"="blue","15-16y"="orange") +g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + +geom_point() + +geom_abline(aes(intercept=1.65, slope=-1.38, color="a"), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-1.31, color="b"), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.78, color="c" ), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.23, color="d") , size=1.5)+ +labs(x="MMT", y="Mean Underproduction Factor", color = "Age Group") + +scale_colour_manual(values=colors_legend, labels=c("0-9y", "9-12y", "12-15y","15-16y")) + +theme(legend.position=c(-5, 1)) +g +#colors_legend <- c("0-9y"="red","9-12y"="green", "12-15y"="blue","15-16y"="orange") +g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + +geom_point() + +geom_abline(aes(intercept=1.65, slope=-1.38, color="a"), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-1.31, color="b"), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.78, color="c" ), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.23, color="d") , size=1.5)+ +labs(x="MMT", y="Mean Underproduction Factor", color = "Age Group") + +scale_colour_manual(values=colors_legend, labels=c("0-9y", "9-12y", "12-15y","15-16y")) + +theme(legend.position="bottom") +g +#colors_legend <- c("0-9y"="red","9-12y"="green", "12-15y"="blue","15-16y"="orange") +g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + +geom_point() + +geom_abline(aes(intercept=1.65, slope=-1.38, color="a"), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-1.31, color="b"), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.78, color="c" ), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.23, color="d") , size=1.5)+ +labs(x="MMT", y="Mean Underproduction Factor", color = "Age Group") + +scale_colour_manual(values=colors_legend, labels=c("0-9y", "9-12y", "12-15y","15-16y")) + +theme( legend.justification = c("right", "top")) +g +#colors_legend <- c("0-9y"="red","9-12y"="green", "12-15y"="blue","15-16y"="orange") +g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + +geom_point() + +geom_abline(aes(intercept=1.65, slope=-1.38, color="a"), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-1.31, color="b"), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.78, color="c" ), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.23, color="d") , size=1.5)+ +labs(x="MMT", y="Mean Underproduction Factor", color = "Age Group") + +scale_colour_manual(values=colors_legend, labels=c("0-9y", "9-12y", "12-15y","15-16y")) + +theme( legend.justification = c("left", "bottom")) +g +#colors_legend <- c("0-9y"="red","9-12y"="green", "12-15y"="blue","15-16y"="orange") +g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + +geom_point() + +geom_abline(aes(intercept=1.65, slope=-1.38, color="a"), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-1.31, color="b"), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.78, color="c" ), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.23, color="d") , size=1.5)+ +labs(x="MMT", y="Mean Underproduction Factor", color = "Age Group") + +scale_colour_manual(values=colors_legend, labels=c("0-9y", "9-12y", "12-15y","15-16y")) + +theme( legend.position = c(0.95, 0.95), legend.justification = c("left", "bottom")) +g +#colors_legend <- c("0-9y"="red","9-12y"="green", "12-15y"="blue","15-16y"="orange") +g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + +geom_point() + +geom_abline(aes(intercept=1.65, slope=-1.38, color="a"), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-1.31, color="b"), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.78, color="c" ), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.23, color="d") , size=1.5)+ +labs(x="MMT", y="Mean Underproduction Factor", color = "Age Group") + +scale_colour_manual(values=colors_legend, labels=c("0-9y", "9-12y", "12-15y","15-16y")) + +theme( legend.position = c(0.75, 0.95), legend.justification = c("left", "bottom")) +g +#colors_legend <- c("0-9y"="red","9-12y"="green", "12-15y"="blue","15-16y"="orange") +g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + +geom_point() + +geom_abline(aes(intercept=1.65, slope=-1.38, color="a"), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-1.31, color="b"), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.78, color="c" ), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.23, color="d") , size=1.5)+ +labs(x="MMT", y="Mean Underproduction Factor", color = "Age Group") + +scale_colour_manual(values=colors_legend, labels=c("0-9y", "9-12y", "12-15y","15-16y")) + +theme( legend.position = c(0.35, 0.95), legend.justification = c("left", "bottom")) +g +#colors_legend <- c("0-9y"="red","9-12y"="green", "12-15y"="blue","15-16y"="orange") +g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + +geom_point() + +geom_abline(aes(intercept=1.65, slope=-1.38, color="a"), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-1.31, color="b"), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.78, color="c" ), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.23, color="d") , size=1.5)+ +labs(x="MMT", y="Mean Underproduction Factor", color = "Age Group") + +scale_colour_manual(values=colors_legend, labels=c("0-9y", "9-12y", "12-15y","15-16y")) + +theme( legend.position = c(0.35, 0.25), legend.justification = c("left", "bottom")) +g +#colors_legend <- c("0-9y"="red","9-12y"="green", "12-15y"="blue","15-16y"="orange") +g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + +geom_point() + +geom_abline(aes(intercept=1.65, slope=-1.38, color="a"), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-1.31, color="b"), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.78, color="c" ), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.23, color="d") , size=1.5)+ +labs(x="MMT", y="Mean Underproduction Factor", color = "Age Group") + +scale_colour_manual(values=colors_legend, labels=c("0-9y", "9-12y", "12-15y","15-16y")) + +theme( legend.position = c(0.35, 0.15), legend.justification = c("left", "bottom")) +g +#colors_legend <- c("0-9y"="red","9-12y"="green", "12-15y"="blue","15-16y"="orange") +g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + +geom_point() + +geom_abline(aes(intercept=1.65, slope=-1.38, color="a"), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-1.31, color="b"), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.78, color="c" ), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.23, color="d") , size=1.5)+ +labs(x="MMT", y="Mean Underproduction Factor", color = "Age Group") + +scale_colour_manual(values=colors_legend, labels=c("0-9y", "9-12y", "12-15y","15-16y")) + +theme( legend.position = c(0.25, 0.15), legend.justification = c("left", "bottom")) +g +#colors_legend <- c("0-9y"="red","9-12y"="green", "12-15y"="blue","15-16y"="orange") +g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + +geom_point() + +geom_abline(aes(intercept=1.65, slope=-1.38, color="a"), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-1.31, color="b"), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.78, color="c" ), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.23, color="d") , size=1.5)+ +labs(x="MMT", y="Mean Underproduction Factor", color = "Age Group") + +scale_colour_manual(values=colors_legend, labels=c("0-9y", "9-12y", "12-15y","15-16y")) + +theme( legend.position = c(0.15, 0.15), legend.justification = c("left", "bottom")) +g +#colors_legend <- c("0-9y"="red","9-12y"="green", "12-15y"="blue","15-16y"="orange") +g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + +geom_point() + +geom_abline(aes(intercept=1.65, slope=-1.38, color="a"), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-1.31, color="b"), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.78, color="c" ), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.23, color="d") , size=1.5)+ +labs(x="MMT", y="Mean Underproduction Factor", color = "Age Group") + +scale_colour_manual(values=colors_legend, labels=c("0-9y", "9-12y", "12-15y","15-16y")) + +theme( legend.position = c(0.15, 0.05), legend.justification = c("left", "bottom")) +g +#colors_legend <- c("0-9y"="red","9-12y"="green", "12-15y"="blue","15-16y"="orange") +g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + +geom_point() + +geom_abline(aes(intercept=1.65, slope=-1.38, color="a"), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-1.31, color="b"), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.78, color="c" ), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.23, color="d") , size=1.5)+ +labs(x="MMT", y="Mean Underproduction Factor", color = "Age Group") + +scale_colour_manual(values=colors_legend, labels=c("0-9y", "9-12y", "12-15y","15-16y")) + +theme( legend.position = c(0.05, 0.05), legend.justification = c("left", "bottom")) +g +#colors_legend <- c("0-9y"="red","9-12y"="green", "12-15y"="blue","15-16y"="orange") +g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + +geom_point() + +geom_abline(aes(intercept=1.65, slope=-1.38, color="a"), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-1.31, color="b"), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.78, color="c" ), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-0.23, color="d") , size=1.5)+ +labs(x="MMT", y="Mean Underproduction Factor", color = "Project Age Group") + +scale_colour_manual(values=colors_legend, labels=c("0-9y", "9-12y", "12-15y","15-16y")) + +theme( legend.position = c(0.05, 0.05), legend.justification = c("left", "bottom")) +g +#colors_legend <- c("0-9y"="red","9-12y"="green", "12-15y"="blue","15-16y"="orange") +g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + +geom_point() + +geom_abline(aes(intercept=1.65, slope=-1.38, color="a"), size=1.5)+ +geom_abline(aes(intercept=1.72, slope=-1.38, color="b"), size=1.5)+ +geom_abline(aes(intercept=1.65, slope=-1.38, color="c" ), size=1.5)+ +geom_abline(aes(intercept=2.8, slope=-1.38, color="d") , size=1.5)+ +labs(x="MMT", y="Mean Underproduction Factor", color = "Project Age Group") + +scale_colour_manual(values=colors_legend, labels=c("0-9y", "9-12y", "12-15y","15-16y")) + +theme( legend.position = c(0.05, 0.05), legend.justification = c("left", "bottom")) +g +#colors_legend <- c("0-9y"="red","9-12y"="green", "12-15y"="blue","15-16y"="orange") +g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + +geom_point() + +geom_abline(aes(intercept=1.65, slope=-1.38, color="a"), size=1.5)+ +geom_abline(aes(intercept=1.72, slope=-1.38, color="b"), size=1.5)+ +geom_abline(aes(intercept=2.255, slope=-1.38, color="c" ), size=1.5)+ +geom_abline(aes(intercept=2.8, slope=-1.38, color="d") , size=1.5)+ +labs(x="MMT", y="Mean Underproduction Factor", color = "Project Age Group") + +scale_colour_manual(values=colors_legend, labels=c("0-9y", "9-12y", "12-15y","15-16y")) + +theme( legend.position = c(0.05, 0.05), legend.justification = c("left", "bottom")) +g +#colors_legend <- c("0-9y"="red","9-12y"="green", "12-15y"="blue","15-16y"="orange") +g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + +geom_point() + +geom_abline(aes(intercept=1.65, slope=-1.38, color="a"), size=1.5)+ +geom_abline(aes(intercept=1.72, slope=-1.38, color="b"), size=1.5)+ +geom_abline(aes(intercept=2.25, slope=-1.38, color="c" ), size=1.5)+ +geom_abline(aes(intercept=2.8, slope=-1.38, color="d") , size=1.5)+ +labs(x="MMT", y="Mean Underproduction Factor", color = "Project Age Group") + +scale_colour_manual(values=colors_legend, labels=c("0-9y", "9-12y", "12-15y","15-16y")) + +theme( legend.position = c(0.05, 0.05), legend.justification = c("left", "bottom")) +g +#colors_legend <- c("0-9y"="red","9-12y"="green", "12-15y"="blue","15-16y"="orange") +g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + +geom_point() + +geom_abline(aes(intercept=1.65, slope=-1.38, color="a"), size=1.5)+ +geom_abline(aes(intercept=1.72, slope=-1.38, color="b"), size=1.5)+ +geom_abline(aes(intercept=2.25, slope=-1.38, color="c" ), size=1.5)+ +geom_abline(aes(intercept=2.8, slope=-1.38, color="d") , size=1.5)+ +labs(x="MMT", y="Mean Underproduction Factor", color = "Project Age Group") + +scale_colour_manual(values=colors_legend, labels=c("0-9y", "9-12y", "12-15y","15-16y")) + +theme( legend.position = c(0.05, 0.05), legend.justification = c("left", "bottom")) + theme_bw() g -library(ggplot2) +#colors_legend <- c("0-9y"="red","9-12y"="green", "12-15y"="blue","15-16y"="orange") g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + geom_point() + -aes(x=mmt, y=up.fac.mean, color=new.age)+ -geom_smooth() + -xlab("MMT") + -ylab("Underproduction Factor") + -theme_bw() +geom_abline(aes(intercept=1.65, slope=-1.38, color="a"), size=1.5)+ +geom_abline(aes(intercept=1.72, slope=-1.38, color="b"), size=1.5)+ +geom_abline(aes(intercept=2.25, slope=-1.38, color="c" ), size=1.5)+ +geom_abline(aes(intercept=2.8, slope=-1.38, color="d") , size=1.5)+ +labs(x="MMT", y="Mean Underproduction Factor", color = "Project Age Group") + +scale_colour_manual(values=colors_legend, labels=c("0-9y", "9-12y", "12-15y","15-16y")) + +theme_bw( legend.position = c(0.05, 0.05), legend.justification = c("left", "bottom")) g -msmodel1 <- lm(up.fac.mean ~ old_milestones + as.factor(new.age), data=data1) -summary(msmodel1) +#colors_legend <- c("0-9y"="red","9-12y"="green", "12-15y"="blue","15-16y"="orange") g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + geom_point() + -aes(x=mmt, y=up.fac.mean, color=new.age)+ -geom_smooth() + -xlab("MMT") + -ylab("Underproduction Factor") + +geom_abline(aes(intercept=1.65, slope=-1.38, color="a"), size=1.5)+ +geom_abline(aes(intercept=1.72, slope=-1.38, color="b"), size=1.5)+ +geom_abline(aes(intercept=2.25, slope=-1.38, color="c" ), size=1.5)+ +geom_abline(aes(intercept=2.8, slope=-1.38, color="d") , size=1.5)+ +labs(x="MMT", y="Mean Underproduction Factor", color = "Project Age Group") + +scale_colour_manual(values=colors_legend, labels=c("0-9y", "9-12y", "12-15y","15-16y")) + +theme_bw(legend.position = c(0.05, 0.05), legend.justification = c("left", "bottom")) +g +#colors_legend <- c("0-9y"="red","9-12y"="green", "12-15y"="blue","15-16y"="orange") +g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + +geom_point() + +geom_abline(aes(intercept=1.65, slope=-1.38, color="a"), size=1.5)+ +geom_abline(aes(intercept=1.72, slope=-1.38, color="b"), size=1.5)+ +geom_abline(aes(intercept=2.25, slope=-1.38, color="c" ), size=1.5)+ +geom_abline(aes(intercept=2.8, slope=-1.38, color="d") , size=1.5)+ +labs(x="MMT", y="Mean Underproduction Factor", color = "Project Age Group") + +scale_colour_manual(values=colors_legend, labels=c("0-9y", "9-12y", "12-15y","15-16y")) + theme_bw()+ -scale_color_brewer(palette="Dark2") -g -g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + -geom_point() + -aes(x=mmt, y=up.fac.mean, color=new.age)+ -geom_smooth() + -xlab("MMT") + -ylab("Underproduction Factor") + -theme_bw() -g + scale_color_brewer(palette="Dark2") -g + scale_color_viridis_b() -g + scale_color_viridis_d() -g -g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + -geom_point() + -aes(x=mmt, y=up.fac.mean, color=new.age)+ -geom_smooth() + -xlab("MMT") + -ylab("Underproduction Factor") + -theme_bw() -g + scale_color_viridis_b() -g -g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + -geom_point() + -aes(x=mmt, y=up.fac.mean, color=new.age)+ -geom_smooth() + -xlab("MMT") + -ylab("Underproduction Factor") + -theme_bw() -g + scale_color_viridis_b() -g + scale_color_viridis_b() scale_fill_continuous(name = "New Legend Title") -g -g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + -geom_point() + -aes(x=mmt, y=up.fac.mean, color=new.age)+ -geom_smooth() + -xlab("MMT") + -ylab("Underproduction Factor") + -theme_bw() -g + scale_color_viridis_b() scale_fill_continuous(name = "New Legend Title") -g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + -geom_point() + -aes(x=mmt, y=up.fac.mean, color=new.age)+ -geom_smooth() + -xlab("MMT") + -ylab("Underproduction Factor") + -theme_bw() -g + scale_color_viridis_b() + scale_fill_continuous(name = "New Legend Title") -g -g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + -geom_point() + -aes(x=mmt, y=up.fac.mean, color=new.age)+ -geom_smooth() + -xlab("MMT") + -ylab("Underproduction Factor") + -theme_bw() -g + scale_color_viridis_b() + scale_fill_continuous(name = "New Legend Title") -g + scale_color_viridis_b() + scale_color_continuous(name = "New Legend Title") -g + scale_color_viridis_b() + scale_color_continuous(name = "Age Group") -g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + -geom_point() + -aes(x=mmt, y=up.fac.mean, color=new.age)+ -geom_smooth() + -xlab("MMT") + -ylab("Underproduction Factor") + -theme_bw() -g + scale_color_viridis_b() + scale_color_continuous(name = "Age Group") -g -g + scale_color_viridis_b(name = "Age Group") -g + scale_color_viridis_b(name = "Age Group", labels = c('1', '2', '3', '4')) -g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + -geom_point() + -aes(x=mmt, y=up.fac.mean, color=new.age)+ -geom_smooth() + -xlab("MMT") + -ylab("Underproduction Factor") + -theme_bw() -g + scale_color_viridis_b(name = "Age Group", labels = c('1', '2', '3', '4')) -g -g + scale_fill_viridis_b(name = "Age Group", labels = c('1', '2', '3', '4')) -g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + -geom_point() + -aes(x=mmt, y=up.fac.mean, color=new.age)+ -geom_smooth() + -xlab("MMT") + -ylab("Underproduction Factor") + -theme_bw() -g + scale_fill_viridis_b(name = "Age Group", labels = c('1', '2', '3', '4')) -g -g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + -geom_point() + -aes(x=mmt, y=up.fac.mean, color=new.age)+ -geom_smooth() + -xlab("MMT") + -ylab("Underproduction Factor") + -theme_bw() -g + scale_fill_viridis_b(name = "Age Group") -g -g + scale_fill_viridis_b(name = "Age Group") -g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + -geom_point() + -aes(x=mmt, y=up.fac.mean, color=new.age)+ -geom_smooth() + -xlab("MMT") + -ylab("Underproduction Factor") + -theme_bw() -g + scale_colour_viridis_b(name = "Age Group") -g + scale_fill_continuous(name = "Age Group") -g -g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + -geom_point() + -aes(x=mmt, y=up.fac.mean, color=new.age)+ -geom_smooth() + -xlab("MMT") + -ylab("Underproduction Factor") + -theme_bw() -g + scale_fill_continuous(name = "Age Group") -g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + -geom_point() + -aes(x=mmt, y=up.fac.mean, color=new.age)+ -geom_smooth() + -xlab("MMT") + -ylab("Underproduction Factor") -g + scale_fill_continuous(name = "Age Group") -g + scale_fill_continuous(name = "Age Group", labels=c("Woman", "Man")) -g + scale_color_continuous(name = "Age Group", labels=c("Woman", "Man")) -g -g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + -geom_point() + -aes(x=mmt, y=up.fac.mean, color=new.age)+ -geom_smooth() + -xlab("MMT") + -ylab("Underproduction Factor") + -theme_bw() -g + scale_color_continuous(name = "Age Group", labels=c("Woman", "Man")) -g -g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + -geom_point() + -aes(x=mmt, y=up.fac.mean, color=new.age)+ -geom_smooth() + -xlab("MMT") + -ylab("Underproduction Factor") + -theme_bw() -g + scale_color_continuous(type = "viridis", name = "Age Group", labels=c("Woman", "Man")) -g -g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + -geom_point() + -aes(x=mmt, y=up.fac.mean, color=new.age)+ -geom_smooth() + -xlab("MMT") + -ylab("Underproduction Factor") + -theme_bw() + -scale_color_continuous(type = "viridis", name = "Age Group") -g -g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + -geom_point() + -aes(x=mmt, y=up.fac.mean, color=new.age)+ -geom_smooth() + -xlab("MMT") + -ylab("Underproduction Factor") + -theme_bw() + -scale_color_continuous(type = "viridis", name = "Age Group", labels="0-9y", "9-12y", "12-15y", "15-17y") -g -g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + -geom_point() + -aes(x=mmt, y=up.fac.mean, color=new.age)+ -geom_smooth() + -xlab("MMT") + -ylab("Underproduction Factor") + -theme_bw() + -scale_color_continuous(type = "viridis", name = "Age Group", labels=c("0-9y", "9-12y", "12-15y", "15-17y")) -g -+ theme(legend.position = c(0.8, 0.2)) -g -g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + -geom_point() + -aes(x=mmt, y=up.fac.mean, color=new.age)+ -geom_smooth() + -xlab("MMT") + -ylab("Underproduction Factor") + -theme_bw() + -scale_color_continuous(type = "viridis", name = "Age Group", labels=c("0-9y", "9-12y", "12-15y", "15-17y")) + -theme(legend.position = c(0.8, 0.2)) -g -g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + -geom_point() + -aes(x=mmt, y=up.fac.mean, color=new.age)+ -geom_smooth() + -xlab("MMT") + -ylab("Underproduction Factor") + -theme_bw() + -scale_color_continuous(type = "viridis", name = "Age Group", labels=c("0-9y", "9-12y", "12-15y", "15-17y")) + -theme(legend.position = c(0.1, 0.1)) -g -g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + -geom_point() + -aes(x=mmt, y=up.fac.mean, color=new.age)+ -geom_smooth() + -xlab("MMT") + -ylab("Underproduction Factor") + -theme_bw() + -scale_color_continuous(type = "viridis", name = "Age Group", labels=c("0-9y", "9-12y", "12-15y", "15-17y")) + -theme(legend.position = c(0.1, 0.2)) -g -summary(mmtmodel1) -g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + -geom_point() + -aes(x=mmt, y=up.fac.mean, color=as.factor(new.age))+ -geom_smooth() + -xlab("MMT") + -ylab("Underproduction Factor") + -theme_bw() + -scale_color_continuous(type = "viridis", name = "Age Group", labels=c("0-9y", "9-12y", "12-15y", "15-17y")) + -theme(legend.position = c(0.1, 0.2)) -g -g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + -geom_point() + -aes(x=mmt, y=up.fac.mean, color=as.factor(new.age))+ -geom_smooth() + -xlab("MMT") + -ylab("Underproduction Factor") + -theme_bw() + -scale_color_discrete(type = "viridis", name = "Age Group", labels=c("0-9y", "9-12y", "12-15y", "15-17y")) + -theme(legend.position = c(0.1, 0.2)) -g -g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + -geom_point() + -aes(x=mmt, y=up.fac.mean, color=new.age)+ -geom_smooth() + -xlab("MMT") + -ylab("Underproduction Factor") + -theme_bw() + -scale_color_identity(type = "viridis", name = "Age Group", labels=c("0-9y", "9-12y", "12-15y", "15-17y")) + -theme(legend.position = c(0.1, 0.2)) -g -g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + -geom_point() + -aes(x=mmt, y=up.fac.mean, color=new.age)+ -geom_smooth() + -xlab("MMT") + -ylab("Underproduction Factor") + -theme_bw() + -scale_color_identity(type = "viridis", name = "Age Group", labels=c("0-9y", "9-12y", "12-15y", "15-17y")) + -theme(legend.position = c(0.1, 0.2)) -g -g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + -geom_point() + -aes(x=mmt, y=up.fac.mean, color=round(new.age))+ -geom_smooth() + -xlab("MMT") + -ylab("Underproduction Factor") + -theme_bw() + -scale_color_identity(type = "viridis", name = "Age Group", labels=c("0-9y", "9-12y", "12-15y", "15-17y")) + -theme(legend.position = c(0.1, 0.2)) -g -g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + -geom_point() + -geom_smooth() + -xlab("MMT") + -ylab("Underproduction Factor") + -theme_bw() +theme(legend.position = c(0.05, 0.05), legend.justification = c("left", "bottom")) g diff --git a/R/0119-final-mmt.png b/R/0119-final-mmt.png new file mode 100644 index 0000000..3c4e81e Binary files /dev/null and b/R/0119-final-mmt.png differ diff --git a/R/630_0119_final.png b/R/630_0119_final.png new file mode 100644 index 0000000..0980bb4 Binary files /dev/null and b/R/630_0119_final.png differ diff --git a/R/calculatePower.R b/R/calculatePower.R index e7dca57..c9df63b 100644 --- a/R/calculatePower.R +++ b/R/calculatePower.R @@ -34,8 +34,9 @@ data1$new_milestones <- as.numeric(data1$milestones > 0) + 1 data1$formal.score <- data1$mmt / (data1$old_milestones/data1$age) table(data1$formal.score) hist(data1$old_mmt, prob=TRUE) #inequality of participation -hist(data1$formal.score) -hist(data1$age/365) +median(data1$contributors) +median(data1$collaborators) +median(data1$age/365) data1$new_mmt <- data1$mmt - 1 hist(data1$new_mmt, prob=TRUE) @@ -67,15 +68,35 @@ cor.test(data1$mmt, data1$up.fac.mean) cor.test(data1$milestones, data1$up.fac.mean) cor.test(data1$age, data1$up.fac.mean) +data1$new.age.factor <- as.factor(data1$new.age) +#geom_abline(intercept=coef(mmtmodel1)[1], slope=coef(mmtmodel1)[2], colour = "orange")+ + g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + geom_point() + - geom_smooth() + + #geom_smooth( method="lm", formula=(y~x), colour = "orange")+ + geom_abline(intercept=coef(mmtmodel1)[1], slope=coef(mmtmodel1)[2], colour = "orange", size=1)+ + geom_errorbar(aes(ymin=y-yerr, ymax=y+yerr), width=0.09)+ xlab("MMT") + ylab("Underproduction Factor") + theme_bw() g g +colors_legend <- c("a"="#E69F00","b"="#56B4E9", "c"="#D55E00","d"="#CC79A7") +#colors_legend <- c("0-9y"="red","9-12y"="green", "12-15y"="blue","15-16y"="orange") +g <- ggplot(data1, aes(x=mmt, y=up.fac.mean)) + + geom_point() + + geom_abline(aes(intercept=1.65, slope=-1.38, color="a"), size=1.5)+ + geom_abline(aes(intercept=1.72, slope=-1.38, color="b"), size=1.5)+ + geom_abline(aes(intercept=2.25, slope=-1.38, color="c" ), size=1.5)+ + geom_abline(aes(intercept=2.8, slope=-1.38, color="d") , size=1.5)+ + labs(x="MMT", y="Mean Underproduction Factor", color = "Project Age Group") + + scale_colour_manual(values=colors_legend, labels=c("0-9y", "9-12y", "12-15y","15-16y")) + + theme_bw()+ + theme(legend.position = c(0.05, 0.05), legend.justification = c("left", "bottom")) +g + + data2 <- subset(data1, (data1$age / 365) < 14 ) hist(floor(data2$age)) g <- ggplot(data2, aes(x=mmt, y=up.fac.mean)) + diff --git a/R/data_subset_agegroup.png b/R/data_subset_agegroup.png new file mode 100644 index 0000000..7090f97 Binary files /dev/null and b/R/data_subset_agegroup.png differ diff --git a/R/final-mmt-plot.png b/R/final-mmt-plot.png new file mode 100644 index 0000000..816aa93 Binary files /dev/null and b/R/final-mmt-plot.png differ diff --git a/R/final-mmt-underprod-final-last.png b/R/final-mmt-underprod-final-last.png new file mode 100644 index 0000000..1e5e2f0 Binary files /dev/null and b/R/final-mmt-underprod-final-last.png differ diff --git a/R/newAnalysis.R b/R/newAnalysis.R new file mode 100644 index 0000000..ddf547c --- /dev/null +++ b/R/newAnalysis.R @@ -0,0 +1,143 @@ +rm(list=ls()) +set.seed(424242) + +library(readr) +library(ggplot2) + +data1 <- read_csv('../kk_final_expanded_data_final.csv',show_col_types = FALSE) +data2 <- read_csv('../kk_final_octo_data_total.csv',show_col_types = FALSE) +data3 <- read_csv('../kk_final_doclist_roster.csv',show_col_types = FALSE) +data4 <-read_csv('../kk_final_rosterslist.csv',show_col_types = FALSE) +#getting data subset metadata + +head(data1) +head(data2) +head(data3) +head(data4) + +length(which(data2$underproduction_low < 0)) +mean(data2$underproduction_mean) + +length(which(data1$underproduction_low < 0)) +mean(data1$underproduction_mean) + +length(which(data3$underproduction_low < 0)) +mean(data3$underproduction_mean) + +length(which(data4$underproduction_low < 0)) +mean(data4$underproduction_mean) + +data1$mmt <- (((data1$collaborators * 2)+ data1$contributors) / (data1$contributors + data1$collaborators)) - 1 +mean(data1$mmt) +hist(data1$mmt, probability = TRUE) + +data1$new.age <- as.numeric(cut(data1$age_of_project/365, breaks=c(0,9,12,15,17), labels=c(1,2,3,4))) +table(data1$new.age) +data1$new.age.factor <- as.factor(data1$new.age) +hist(data1$new.age) +age1 <- c(0.39369, 0.239271, 0.2096806, 0.1573584) + +d1label <- rep("Overall", length(data1$new.age.factor)) +d1per <- data1$new.age +d1per[d1per==1] <- 39.37 +d1per[d1per==2] <- 23.93 +d1per[d1per==3] <- 20.97 +d1per[d1per==4] <- 15.74 +d1per.factor<- as.factor(d1per) + +data5 <- (d1label) + +data2$new.age <- as.numeric(cut(data2$age_of_project/365, breaks=c(0,9,12,15,17), labels=c(1,2,3,4))) +table(data2$new.age) +data2$new.age.factor <- as.factor(data2$new.age) +hist(data2$new.age) +age2 <- c(0.5675676, 0.1981982, 0.1681682, 0.06606607) + +d2label <- rep("Expanded Contrib.", length(data2$new.age.factor)) +d2per <- data2$new.age +d2per[d2per==1] <- 56.76 +d2per[d2per==2] <- 19.82 +d2per[d2per==3] <- 16.82 +d2per[d2per==4] <- 06.61 +d2per.factor <- as.factor(d2per) + +data3$new.age <- as.numeric(cut(data3$age_of_project/365, breaks=c(0,9,12,15,17), labels=c(1,2,3,4))) +table(data3$new.age) +data3$new.age.factor <- as.factor(data3$new.age) +hist(data3$new.age) +age3 <-c(0.2556818, 0.2954545, 0.2405303, 0.2083333) +d3label <- rep("Contrib. Files", length(data3$new.age.factor)) +d3per <- data3$new.age +d3per[d3per==1] <- 25.57 +d3per[d3per==2] <- 29.55 +d3per[d3per==3] <- 24.05 +d3per[d3per==4] <- 20.83 +d3per.factor <- as.factor(d3per) + +data4$new.age <- as.numeric(cut(data4$age_of_project/365, breaks=c(0,9,12,15,17), labels=c(1,2,3,4))) +table(data4$new.age) +data4$new.age.factor <- as.factor(data4$new.age) +hist(data4$new.age) +age4 <- c(0.5, 0.125, 0.125, 0.25) +d4label <- rep("Contrib. Rosters", length(data4$new.age.factor)) +d4per <- data4$new.age +d4per[d4per==1] <- 57.14 +d4per[d4per==2] <- 14.29 +d4per[d4per==3] <- 14.29 +d4per[d4per==4] <- 28.57 +d4per.factor <- as.factor(d4per) + +all_per <- c(d1per.factor, d2per.factor, d3per.factor, d4per.factor) +all_persss <- c(d1per, d2per, d3per, d4per) +all_labels <- c(d1label, d2label, d3label, d4label) +all_age_groups <- c(data1$new.age.factor, data2$new.age.factor, data3$new.age.factor, data4$new.age.factor) + +d5 <- data.frame(labels = all_labels, + age_groups = all_age_groups, + per = all_per, + persss = all_persss) +d5 <- na.omit(d5) + +g <- ggplot(d5, aes(fill=forcats::fct_rev(age_groups), y = 1, x=forcats::fct_rev(labels))) + + geom_bar(position="fill", stat="identity") + + scale_fill_discrete(name = "Project Age Group", labels = c("15-16y", "12-15y", "9-12y", "0-9y"), guide = guide_legend(reverse = TRUE)) + + xlab("Dataset") + + ylab("Age Grouping Percentage") + + theme_bw()+ + theme(axis.text.x = element_text(angle = 0), legend.position="top") +g + +sdata1$new_milestones <- as.numeric(data1$milestone_count > 0) + 1 +data1$new.formal.score <- data1$mmt / (data1$new_milestones/data1$new.age) + +mmtmodel1 <- lm(underproduction_mean ~ mmt + as.factor(new.age), data=data1) +summary(mmtmodel1) + +agemodel1 <- lm(mmt ~ age_of_project, data=data1) +summary(agemodel1) + +fsmodel2 <- lm(underproduction_mean ~ new.formal.score, data=data1) +summary(fsmodel2) + +g <- ggplot(data1, aes(x=mmt, y=underproduction_mean)) + + geom_point() + + geom_smooth(method='lm', formula= y~x) + + xlab("MMT") + + ylab("Underproduction Factor") + + theme_bw() +g + +#shows the cross-age downward slopes for all underproduction averages in the face of MMT +g3 <- ggplot(data1, aes(x=mmt, y=underproduction_mean)) + + geom_smooth(mapping = aes(x=mmt, y=underproduction_mean, color=new.age.factor), + method='lm', formula= y~x) + + xlab("MMT") + + ylab("Underproduction Factor") + + theme_bw() +g3 + +cor.test(data1$mmt, data1$new.age) +age_data <- subset(data1, !is.na(new.age)) +g2 <- ggplot(age_data, aes(x=factor(new.age), y=mmt))+ + geom_boxplot() +g2 diff --git a/R/new_mmt_underprod_plot.png b/R/new_mmt_underprod_plot.png new file mode 100644 index 0000000..f1d5b39 Binary files /dev/null and b/R/new_mmt_underprod_plot.png differ diff --git a/R/newmmt-underprod-plot.png b/R/newmmt-underprod-plot.png index 84e9010..c183ab6 100644 Binary files a/R/newmmt-underprod-plot.png and b/R/newmmt-underprod-plot.png differ diff --git a/R/plotting_age.R b/R/plotting_age.R new file mode 100644 index 0000000..9ad939c --- /dev/null +++ b/R/plotting_age.R @@ -0,0 +1,9 @@ +rm(list=ls()) +set.seed(424242) + +library(readr) +library(ggplot2) +data1 <- read_csv('../age_percentages.csv',show_col_types = FALSE) + +head(data1) + diff --git a/R/temp-mmt-colors.png b/R/temp-mmt-colors.png new file mode 100644 index 0000000..34159b0 Binary files /dev/null and b/R/temp-mmt-colors.png differ diff --git a/R/temp-temp.png b/R/temp-temp.png new file mode 100644 index 0000000..0daee90 Binary files /dev/null and b/R/temp-temp.png differ diff --git a/age_percentages.csv b/age_percentages.csv new file mode 100644 index 0000000..a1b9cc4 --- /dev/null +++ b/age_percentages.csv @@ -0,0 +1,5 @@ +setname,age1,age2,age3,age4 +data1,0.39369,0.239271,0.2096806,0.1573584 +data2,0.5675676,0.1981982,0.1681682,0.06606607 +data3,0.2556818,0.2954545,0.2405303,0.2083333 +data4,0.5714286,0.1428571,0.1428571,0.2857143 \ No newline at end of file diff --git a/kkex-github-api-key.rtf b/kkex-github-api-key.rtf deleted file mode 100644 index 699d182..0000000 --- a/kkex-github-api-key.rtf +++ /dev/null @@ -1,8 +0,0 @@ -{\rtf1\ansi\ansicpg1252\cocoartf2708 -\cocoatextscaling0\cocoaplatform0{\fonttbl\f0\fswiss\fcharset0 Helvetica;} -{\colortbl;\red255\green255\blue255;} -{\*\expandedcolortbl;;} -\margl1440\margr1440\vieww11520\viewh8400\viewkind0 -\pard\tx720\tx1440\tx2160\tx2880\tx3600\tx4320\tx5040\tx5760\tx6480\tx7200\tx7920\tx8640\pardirnatural\partightenfactor0 - -\f0\fs24 \cf0 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} \ No newline at end of file