draft of RDD analysis

This commit is contained in:
mjgaughan 2024-04-08 21:20:50 -04:00
parent 9bf6755f84
commit c3106bd83c
3 changed files with 290 additions and 269 deletions

View File

@ -1,271 +1,3 @@
qqnorm(octo_data$issue_mmt)
qqnorm(log(octo_data$issue_mmt))
qqnorm(residuals(octo_data$issue_mmt))
qqnorm(octo_data$issue_mmt)
qqnorm(log(octo_data$issue_mmt))
qqnorm(octo_data$issue_mmt)
hist(log(octo_data$issue_mmt))
hist(sqrt(octo_data$issue_mmt))
#below are the models for the octo data, there should be analysis for each one
octo_mmtmodel1 <- lm(underproduction_mean ~ mmt + new.age.factor, data=octo_data)
summary(octo_mmtmodel1)
#below are the models for the octo data, there should be analysis for each one
octo_mmtmodel1 <- lm(underproduction_mean ~ mmt + new.age.factor, data=octo_data)
summary(octo_mmtmodel1)
# below this is the analysis for the octo data
octo_data$new.age <- as.numeric(cut(octo_data$age_of_project/365, breaks=c(0,7.524197,10.323056,13.649367,17), labels=c(1,2,3,4)))
table(octo_data$new.age)
octo_data$new.age.factor <- as.factor(octo_data$new.age)
hist(octo_data$new.age)
#below are the models for the octo data, there should be analysis for each one
octo_mmtmodel1 <- lm(underproduction_mean ~ mmt + new.age.factor, data=octo_data)
summary(octo_mmtmodel1)
hist(sqrt(octo_data$issue_mmt))
hist(sqrt(octo_data$issue_mmt))
hist(octo_data$issue_mmt)
#right skewed data, need to transform
library(rcompanion)
install.packages(rcompanion)
hist(sqrt(octo_data$issue_mmt))
qqnorm(1/octo_data$issue_mmt)
hist(1/octo_data$issue_mmt)
hist(log(octo_data$issue_mmt))
hist(sqrt(octo_data$issue_mmt))
hist(log(octo_data$issue_mmt))
octo_data$sqrt_issue_mmt <- sqrt(octo_data$issue_mmt)
sqrt_issue_mmtmodel1 <- lm(underproduction_mean ~ sqrt_issue_mmt + new.age.factor, data=octo_data)
summary(sqrt_issue_mmtmodel1)
summary(issue_mmtmodel1)
octo_data$wiki_mmt <- ((octo_data$wiki_contrib_count * 2) + (octo_data$total_contrib - octo_data$wiki_contrib_count)) / (octo_data$total_contrib)
hist(octo_data$wiki_mmt)
wiki_mmtmodel1 <- lm(underproduction_mean ~ wiki_mmt + new.age.factor, data=octo_data)
summary(wiki_mmtmodel1)
g3 <- ggplot(octo_data, aes(wiki_mmt)) + geom_histogram(binwidth = 5)
g3
g3 <- ggplot(octo_data, aes(wiki_mmt)) + geom_histogram(binwidth = 0.05)
g3
g3 <- ggplot(octo_data, aes(wiki_mmt)) + geom_histogram(binwidth = 0.05) + theme_bw()
g3
g3 <- ggplot(octo_data, aes(wiki_mmt)) + geom_histogram(binwidth = 0.01) + theme_bw()
g3
g2 <- ggplot(octo_data, aes(issue_mmt)) + geom_histogram(binwidth = 0.01) + theme_bw()
g2
g1 <- ggplot(octo_data, aes(sqrt_issue_mmt)) + geom_histogram(binwidth = 0.01) + theme_bw()
g1
g3 <- ggplot(octo_data, aes(wiki_mmt)) + geom_histogram(binwidth = 0.01) + theme_bw()
g3
g2 <- ggplot(octo_data, aes(issue_mmt)) + geom_histogram(binwidth = 0.01) + theme_bw()
g2
texreg(list(octo_mmtmodel1, issue_mmtmodel1, wiki_mmtmodel1), stars=NULL, digits=2,
custom.model.names=c( 'M1: augm. formality','M2: MMT', 'M3: milestones' ),
custom.coef.names=c('(Intercept)', 'Augmented formality', 'MMT', 'Age-2', 'Age-3', 'Age-4', 'Milestones'),
use.packages=FALSE, table=FALSE, ci.force = TRUE)
source('powerAnalysis.R') #my little "lib"
texreg(list(octo_mmtmodel1, issue_mmtmodel1, wiki_mmtmodel1), stars=NULL, digits=2,
custom.model.names=c( 'M1: augm. formality','M2: MMT', 'M3: milestones' ),
custom.coef.names=c('(Intercept)', 'Augmented formality', 'MMT', 'Age-2', 'Age-3', 'Age-4', 'Milestones'),
use.packages=FALSE, table=FALSE, ci.force = TRUE)
library(texreg) #my little "lib"
texreg(list(octo_mmtmodel1, issue_mmtmodel1, wiki_mmtmodel1), stars=NULL, digits=2,
custom.model.names=c( 'M1: augm. formality','M2: MMT', 'M3: milestones' ),
custom.coef.names=c('(Intercept)', 'Augmented formality', 'MMT', 'Age-2', 'Age-3', 'Age-4', 'Milestones'),
use.packages=FALSE, table=FALSE, ci.force = TRUE)
texreg(list(octo_mmtmodel1, issue_mmtmodel1, wiki_mmtmodel1), stars=NULL, digits=2,
custom.model.names=c( 'M1: MMT','M2: issue contrib.', 'M3: wiki_contrib.' ),
custom.coef.names=c('(Intercept)', 'MMT', 'Issues', 'Age-2', 'Age-3', 'Age-4', 'Wiki'),
use.packages=FALSE, table=FALSE, ci.force = TRUE)
glimpse(readme_df)
library(tidyverse)
#set wd, read in data
try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path)))
readme_df <- read_csv("../final_data/deb_readme_did.csv")
contributing_df <- read_csv("../final_data/deb_contrib_did.csv")
glimpse(readme_df)
head(readme_df)
colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_cnt", "before_mrg_cnt", "after_all_cnt", "after_mrg_cnt", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new")
glimpse(readme_df)
col_order <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_cnt", "after_all_cnt", "before_mrg_cnt", "after_mrg_cnt", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new")
readme_df <- readme_df[,col_order]
glimpse(readme_df)
#TODO: turn character type into vector of numbers
str_split(test, ", ")
test <- "[0, 0, 0, 0]"
#TODO: turn character type into vector of numbers
str_split(test, ", ")
#TODO: turn character type into vector of numbers
str_split(gsub("[][]","", test), ", ")
readme_df %>% add_column(cnt_before_all = str_split(gsub("[][]","", before_all_count), ", "))
readme_df %>% mutate(cnt_before_all = str_split(gsub("[][]","", before_all_count), ", "))
readme_df %>% mutate("cnt_before_all" = str_split(gsub("[][]","", "before_all_count"), ", "))
head(readme_df$before_all_cnt)
head(readme_df$cnt_before_all)
readme_df %>% mutate(cnt_before_all = str_split(gsub("[][]","", "before_all_count"), ", "))
head(readme_df$cnt_before_all)
View(readme_df)
View(readme_df)
readme_df$cnt_before_all
readme_df %>% mutate(cnt_before_all = str_split(gsub("[][]","", "before_all_count"), ", "))
str_split(gsub("[][]","", readme_df$before_all_count), ", ")
#str_split(gsub("[][]","", readme_df$before_all_cnt), ", ")
readme_df %>% mutate(cnt_before_all = str_split(gsub("[][]","", "before_all_cnt"), ", "))
readme_df$cnt_before_all
#str_split(gsub("[][]","", readme_df$before_all_cnt), ", ")
readme_df %>% mutate("cnt_before_all" = str_split(gsub("[][]","", "before_all_cnt"), ", "))
readme_df$cnt_before_all
str_split(gsub("[][]","", readme_df$before_all_cnt), ", ")
readme_df$cnt_before_all <- str_split(gsub("[][]","", readme_df$before_all_cnt), ", ")
readme_df$cnt_before_all
readme_df$cnt_after_all <- str_split(gsub("[][]","", readme_df$after_all_cnt), ", ")
readme_df$cnt_after_all
readme_df$cnt_before_mrg <- str_split(gsub("[][]","", readme_df$before_mrg_cnt), ", ")
readme_df$cnt_before_mrg
readme_df$cnt_after_mrg <- str_split(gsub("[][]","", readme_df$after_mrg_cnt), ", ")
readme_df$cnt_after_mrg
#TODO: figure out if one needs to expand the data into a different dataframe, and if so how
readme_df <- subset(readme_df, select = -c("before_all_cnt", "before_mrg_cnt", "after_all_cnt", "after_mrg_cnt"))
drop <- c("before_all_cnt", "before_mrg_cnt", "after_all_cnt", "after_mrg_cnt")
readme_df = readme_df[,!(names(readme_df) %in% drop)]
View(readme_df)
library(tidyverse)
#set wd, read in data
try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path)))
readme_df <- read_csv("../final_data/deb_readme_did.csv")
colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_cnt", "before_mrg_cnt", "after_all_cnt", "after_mrg_cnt", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new")
col_order <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_cnt", "after_all_cnt", "before_mrg_cnt", "after_mrg_cnt", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new")
readme_df <- readme_df[,col_order]
glimpse(readme_df)
readme_df$cnt_before_all <- str_split(gsub("[][]","", readme_df$before_all_cnt), ", ")
readme_df$cnt_before_all <- as.numeric(readme_df$cnt_before_all)
View(readme_df)
readme_df$cnt_before_all
type(readme_df$cnt_before_all)
typeof(readme_df$cnt_before_all)
typeof(readme_df$cnt_before_all[0])
readme_df$cnt_before_all <- unlist(str_split(gsub("[][]","", readme_df$before_all_cnt), ", "))
readme_df$cnt_before_all <- str_split(gsub("[][]","", readme_df$before_all_cnt), ", ")
typeof(readme_df$cnt_before_all)
typeof(readme_df$cnt_before_all[[0]])
typeof(readme_df$cnt_before_all[0])
sapply(readme_df, class)
readme_df[,lapply(readme_df, unlist)]
readme_df[,lapply(readme_df$cnt, unlist)]
readme_df[,lapply(readme_df$cnt_before_all, unlist)]
typeof(readme_df$cnt_before_all[0])
View(readme_df)
View(readme_df)
readme_df$cnt_before_all <- as.numeric(str_split(gsub("[][]","", readme_df$before_all_cnt), ", "))
readme_df$cnt_before_all <- as.numeric(str_split(gsub("[][]","", readme_df$before_all_cnt), ", ")[[1]])
readme_df$cnt_before_all <- str_split(gsub("[][]","", readme_df$before_all_cnt), ", ")
typeof(readme_df$cnt_before_all[0])
typeof(readme_df$cnt_before_all[0][0])
readme_df$cnt_before_all[0]
unlist(readme_df$cnt_before_all[0])
readme_df$cnt_before_all[0]
readme_df$cnt_before_all
test <- readme_df$cnt_before_all
test
as.numeric(test)
test[0]
test[1]
as.numeric(test[1])
unlist(test[1])
as.numeric(unlist(test[1]))
test2 <- as.numeric(unlist(test))
test2
print(entry)
for (entry in test) {
print(entry)
}
print(as.numeric(unlist(entry)))
for (entry in test) {
print(as.numeric(unlist(entry)))
}
test_two <- append(test_two, as.numeric(unlist(entry)))
print(as.numeric(unlist(entry)))
for (entry in test) {
test_two <- append(test_two, as.numeric(unlist(entry)))
print(as.numeric(unlist(entry)))
}
test_two <- c()
for (entry in test) {
test_two <- append(test_two, as.numeric(unlist(entry)))
print(as.numeric(unlist(entry)))
}
readme_df$cnt_before_all <- as.numeric(readme_df$cnt_before_all)
test_two
readme_df$cnt_before_all[iterator] <- as.numeric(unlist(entry))
iterator <- 0
for (entry in test) {
readme_df$cnt_before_all[iterator] <- as.numeric(unlist(entry))
print(as.numeric(unlist(entry)))
iterator <- iterator + 1
}
View(readme_df)
library(tidyverse)
#set wd, read in data
try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path)))
readme_df <- read_csv("../final_data/deb_readme_did.csv")
colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_cnt", "before_mrg_cnt", "after_all_cnt", "after_mrg_cnt", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new")
col_order <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_cnt", "after_all_cnt", "before_mrg_cnt", "after_mrg_cnt", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new")
readme_df <- readme_df[,col_order]
glimpse(readme_df)
head(readme_df)
#this has to happen on the analysis side of things for a given row, it cannot happen on the storage side
#this is a conversation of whether or not the data should be saved in terms of
readme_df$cnt_before_all <- str_split(gsub("[][]","", readme_df$before_all_cnt), ", ")
# test <- readme_df$cnt_before_all
# as.numeric(unlist(test[1]))
# test_two <- c()
# iterator <- 0
# for (entry in test) {
# readme_df$cnt_before_all[iterator] <- as.numeric(unlist(entry))
# print(as.numeric(unlist(entry)))
# iterator <- iterator + 1
# }
# test_two
readme_df$cnt_after_all <- str_split(gsub("[][]","", readme_df$after_all_cnt), ", ")
readme_df$cnt_before_mrg <- str_split(gsub("[][]","", readme_df$before_mrg_cnt), ", ")
readme_df$cnt_after_mrg <- str_split(gsub("[][]","", readme_df$after_mrg_cnt), ", ")
drop <- c("before_all_cnt", "before_mrg_cnt", "after_all_cnt", "after_mrg_cnt")
readme_df = readme_df[,!(names(readme_df) %in% drop)]
#Yes, need to expand the dataframe, but again, for the sake of clarity, do not want to until analysis step
new_test <- head(readme_df, 1)
View(new_test)
write.csv(readme_df, "r_readme_did.csv", row.names=FALSE)
# as.numeric(unlist(test[1]))
# test_two <- c()
# iterator <- 0
# for (entry in test) {
# readme_df$cnt_before_all[iterator] <- as.numeric(unlist(entry))
# print(as.numeric(unlist(entry)))
# iterator <- iterator + 1
# }
# test_two
#Yes, need to expand the dataframe, but again, for the sake of clarity, do not want to until analysis step
new_test <- head(readme_df, 1)
View(new_test)
longer <- new_test |>
pivot_longer(cols = starts_with("cnt"),
names_to = "window",
values_to = "count"))
longer <- new_test |>
pivot_longer(cols = starts_with("cnt"),
names_to = "window",
values_to = "count")
longer
View(longer)
longer |> unnest(count)
new_longer <- longer |> unnest(count)
View(new_longer)
longer
View(new_longer)
longer <- new_test |>
pivot_longer(cols = starts_with("cnt"),
names_to = "window",
values_to = "count") |>
unnest(as.numeric(unlist(count)))
longer
longer <- new_test |>
pivot_longer(cols = starts_with("cnt"),
names_to = "window",
values_to = "count") |>
@ -510,3 +242,271 @@ longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, le
View(longer)
head(longer)
sapply(longer, class)
library(plyr)
library(tidyverse)
#set wd, read in data
try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path)))
readme_df <- read_csv("../final_data/deb_readme_did.csv")
contributing_df <- read_csv("../final_data/deb_contrib_did.csv")
#preprocessing for readme_df
colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new")
col_order <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new")
readme_df <- readme_df[,col_order]
readme_df$ct_before_all <- str_split(gsub("[][]","", readme_df$before_all_ct), ", ")
readme_df$ct_after_all <- str_split(gsub("[][]","", readme_df$after_all_ct), ", ")
readme_df$ct_before_mrg <- str_split(gsub("[][]","", readme_df$before_mrg_ct), ", ")
readme_df$ct_after_mrg <- str_split(gsub("[][]","", readme_df$after_mrg_ct), ", ")
drop <- c("before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct")
readme_df = readme_df[,!(names(readme_df) %in% drop)]
# as.numeric(unlist(test[1]))
# test_two <- c()
# iterator <- 0
# for (entry in test) {
# readme_df$cnt_before_all[iterator] <- as.numeric(unlist(entry))
# print(as.numeric(unlist(entry)))
# iterator <- iterator + 1
# }
# test_two
#Yes, need to expand the dataframe, but again, for the sake of clarity, do not want to until analysis step
new_test <- head(readme_df, 1)
longer <- new_test |>
pivot_longer(cols = starts_with("ct"),
names_to = "window",
values_to = "count") |>
unnest(count)
longer$observation_type <- gsub("^.*_", "", longer$window)
longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type)))
View(longer)
#testing out analysis below
longer[which(longer$observation_type == all)] |>
ggplot(aes(x = week, y = count)) +
geom_point() +
geom_vline(xintercept = 26)
#testing out analysis below
longer[which(longer$observation_type == "all")] |>
ggplot(aes(x = week, y = count)) +
geom_point() +
geom_vline(xintercept = 26)
#testing out analysis below
longer[which(longer$observation_type == "all"),] |>
ggplot(aes(x = week, y = count)) +
geom_point() +
geom_vline(xintercept = 26)
View(readme_df)
# as.numeric(unlist(test[1]))
# test_two <- c()
# iterator <- 0
# for (entry in test) {
# readme_df$cnt_before_all[iterator] <- as.numeric(unlist(entry))
# print(as.numeric(unlist(entry)))
# iterator <- iterator + 1
# }
# test_two
#Yes, need to expand the dataframe, but again, for the sake of clarity, do not want to until analysis step
new_test <- readme_df[5,]
longer <- new_test |>
pivot_longer(cols = starts_with("ct"),
names_to = "window",
values_to = "count") |>
unnest(count)
longer$observation_type <- gsub("^.*_", "", longer$window)
longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type)))
#testing out analysis below
longer[which(longer$observation_type == "all"),] |>
ggplot(aes(x = week, y = count)) +
geom_point() +
geom_vline(xintercept = 26)
View(readme_df)
# as.numeric(unlist(test[1]))
# test_two <- c()
# iterator <- 0
# for (entry in test) {
# readme_df$cnt_before_all[iterator] <- as.numeric(unlist(entry))
# print(as.numeric(unlist(entry)))
# iterator <- iterator + 1
# }
# test_two
#Yes, need to expand the dataframe, but again, for the sake of clarity, do not want to until analysis step
new_test <- readme_df[76,]
longer <- new_test |>
pivot_longer(cols = starts_with("ct"),
names_to = "window",
values_to = "count") |>
unnest(count)
longer$observation_type <- gsub("^.*_", "", longer$window)
longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type)))
#testing out analysis below
longer[which(longer$observation_type == "all"),] |>
ggplot(aes(x = week, y = count)) +
geom_point() +
geom_vline(xintercept = 26)
# as.numeric(unlist(test[1]))
# test_two <- c()
# iterator <- 0
# for (entry in test) {
# readme_df$cnt_before_all[iterator] <- as.numeric(unlist(entry))
# print(as.numeric(unlist(entry)))
# iterator <- iterator + 1
# }
# test_two
#Yes, need to expand the dataframe, but again, for the sake of clarity, do not want to until analysis step
new_test <- readme_df[77,]
longer <- new_test |>
pivot_longer(cols = starts_with("ct"),
names_to = "window",
values_to = "count") |>
unnest(count)
longer$observation_type <- gsub("^.*_", "", longer$window)
longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type)))
#testing out analysis below
longer[which(longer$observation_type == "all"),] |>
ggplot(aes(x = week, y = count)) +
geom_point() +
geom_vline(xintercept = 26)
# as.numeric(unlist(test[1]))
# test_two <- c()
# iterator <- 0
# for (entry in test) {
# readme_df$cnt_before_all[iterator] <- as.numeric(unlist(entry))
# print(as.numeric(unlist(entry)))
# iterator <- iterator + 1
# }
# test_two
#Yes, need to expand the dataframe, but again, for the sake of clarity, do not want to until analysis step
new_test <- readme_df[143,]
longer <- new_test |>
pivot_longer(cols = starts_with("ct"),
names_to = "window",
values_to = "count") |>
unnest(count)
longer$observation_type <- gsub("^.*_", "", longer$window)
longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type)))
#testing out analysis below
longer[which(longer$observation_type == "all"),] |>
ggplot(aes(x = week, y = count)) +
geom_point() +
geom_vline(xintercept = 26)
# as.numeric(unlist(test[1]))
# test_two <- c()
# iterator <- 0
# for (entry in test) {
# readme_df$cnt_before_all[iterator] <- as.numeric(unlist(entry))
# print(as.numeric(unlist(entry)))
# iterator <- iterator + 1
# }
# test_two
#Yes, need to expand the dataframe, but again, for the sake of clarity, do not want to until analysis step
new_test <- readme_df[185,]
longer <- new_test |>
pivot_longer(cols = starts_with("ct"),
names_to = "window",
values_to = "count") |>
unnest(count)
longer$observation_type <- gsub("^.*_", "", longer$window)
longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type)))
#testing out analysis below
longer[which(longer$observation_type == "all"),] |>
ggplot(aes(x = week, y = count)) +
geom_point() +
geom_vline(xintercept = 26)
# as.numeric(unlist(test[1]))
# test_two <- c()
# iterator <- 0
# for (entry in test) {
# readme_df$cnt_before_all[iterator] <- as.numeric(unlist(entry))
# print(as.numeric(unlist(entry)))
# iterator <- iterator + 1
# }
# test_two
#Yes, need to expand the dataframe, but again, for the sake of clarity, do not want to until analysis step
new_test <- readme_df[231,]
longer <- new_test |>
pivot_longer(cols = starts_with("ct"),
names_to = "window",
values_to = "count") |>
unnest(count)
longer$observation_type <- gsub("^.*_", "", longer$window)
longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type)))
#testing out analysis below
longer[which(longer$observation_type == "all"),] |>
ggplot(aes(x = week, y = count)) +
geom_point() +
geom_vline(xintercept = 26)
longer[which(longer$observation_type == "all"),] |>
mutate(D = ifelse(week >= 26, 1, 0)) |>
lm(count ~ D + I(week - 26)) |>
summary()
longer[which(longer$observation_type == "all"),] |>
mutate(D = ifelse(week >= 26, 1, 0)) |>
lm(count ~ D * I(week - 26)) |>
summary()
longer[which(longer$observation_type == "all"),] |>
mutate(D = ifelse(week >= 26, 1, 0)) |>
lm(formula = count ~ D * I(week - 26)) |>
summary()
longer[which(longer$observation_type == "all"),] |>
select(count, week) |>
mutate(D = ifelse(week >= 26, 1, 0)) |>
ggplot(aes(x = week, y = count, color = D)) +
geom_point() +
geom_smooth(method = "lm")
longer[which(longer$observation_type == "all"),] |>
select(count, week) |>
mutate(D = as.factor(ifelse(week >= 26, 1, 0))) |>
ggplot(aes(x = week, y = count, color = D)) +
geom_point() +
geom_smooth(method = "lm")
longer[which(longer$observation_type == "all"),] |>
select(count, week) |>
mutate(D = as.factor(ifelse(week >= 26, 1, 0))) |>
ggplot(aes(x = week, y = count, color = D)) +
geom_point() +
geom_smooth()
longer[which(longer$observation_type == "all"),] |>
select(count, week) |>
mutate(D = as.factor(ifelse(week >= 26, 1, 0))) |>
ggplot(aes(x = week, y = count, color = D)) +
geom_point() +
geom_smooth()
longer[which(longer$observation_type == "all"),] |>
select(count, week) |>
mutate(D = as.factor(ifelse(week >= 26, 1, 0))) |>
ggplot(aes(x = week, y = count, color = D)) +
geom_point() +
geom_smooth(aes(x = week, y = count, color = D))
longer[which(longer$observation_type == "all"),] |>
select(count, week) |>
mutate(D = as.factor(ifelse(week >= 26, 1, 0))) |>
ggplot(aes(x = week, y = count, color = D)) +
geom_point() +
geom_smooth()
sapply(longer, class)
longer$count <- as.numeric(longer$count)
sapply(longer, class)
#testing out analysis below
longer[which(longer$observation_type == "all"),] |>
ggplot(aes(x = week, y = count)) +
geom_point() +
geom_vline(xintercept = 26)
longer[which(longer$observation_type == "all"),] |>
mutate(D = ifelse(week >= 26, 1, 0)) |>
lm(formula = count ~ D * I(week - 26)) |>
summary()
longer[which(longer$observation_type == "all"),] |>
select(count, week) |>
mutate(D = as.factor(ifelse(week >= 26, 1, 0))) |>
ggplot(aes(x = week, y = count, color = D)) +
geom_point() +
geom_smooth()
longer[which(longer$observation_type == "all"),] |>
select(count, week) |>
mutate(D = as.factor(ifelse(week >= 26, 1, 0))) |>
ggplot(aes(x = week, y = count, color = D)) +
geom_point() +
geom_smooth(se = False)
longer[which(longer$observation_type == "all"),] |>
select(count, week) |>
mutate(D = as.factor(ifelse(week >= 26, 1, 0))) |>
ggplot(aes(x = week, y = count, color = D)) +
geom_point() +
geom_smooth(se = FALSE)

0
R/didAnalysis.R Normal file
View File

View File

@ -32,7 +32,7 @@ readme_df = readme_df[,!(names(readme_df) %in% drop)]
# }
# test_two
#Yes, need to expand the dataframe, but again, for the sake of clarity, do not want to until analysis step
new_test <- head(readme_df, 1)
new_test <- readme_df[231,]
longer <- new_test |>
pivot_longer(cols = starts_with("ct"),
names_to = "window",
@ -40,3 +40,24 @@ longer <- new_test |>
unnest(count)
longer$observation_type <- gsub("^.*_", "", longer$window)
longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type)))
longer$count <- as.numeric(longer$count)
#sapply(longer, class)
#testing out analysis below
longer[which(longer$observation_type == "all"),] |>
ggplot(aes(x = week, y = count)) +
geom_point() +
geom_vline(xintercept = 26)
longer[which(longer$observation_type == "all"),] |>
mutate(D = ifelse(week >= 26, 1, 0)) |>
lm(formula = count ~ D * I(week - 26)) |>
summary()
longer[which(longer$observation_type == "all"),] |>
select(count, week) |>
mutate(D = as.factor(ifelse(week >= 26, 1, 0))) |>
ggplot(aes(x = week, y = count, color = D)) +
geom_point() +
geom_smooth(se = FALSE)